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Abstract: A non-uniform constellation (NUC) can effectively reduce the gap between bit-interleaved
coded modulation (BICM) capacity and Shannon capacity, which has been utilized in recent wireless
broadcasting systems. However, the soft demapping algorithm needs a lot of Euclidean distance (ED)
calculations and comparisons, which brings great demapping complexity to NUC. A universal
low-complexity NUC demapping algorithm is proposed in this paper, which creates subsets
based on the quadrant of the two-dimensional NUC (2D-NUC) received symbol or the sign of
the in-phase (I)/quadrature (Q) component of the one-dimensional NUC (1D-NUC) received symbol.
ED calculations and comparisons are only carried out on the constellation points contained in
subsets. To further reduce the number of constellation points contained in subsets, the proposed
algorithm takes advantage of the condensation property of NUC and regards a constellation cluster
containing several constellation points as a virtual point. Analysis and simulation results show
that, compared with the Max-Log-MAP algorithm, the proposed algorithm can greatly reduce the
demapping complexity of NUC with negligible performance loss.
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1. Introduction

Shannon defined the channel capacity limitation in his landmark paper [1]. Bit-interleaved coded
modulation (BICM) is commonly utilized to approach Shannon capacity in modern communication
systems. The BICM transmitter consists of a cascaded forward error correction (FEC) encoder,
bit interleaver, and constellation mapper, and the capacity of the BICM system is called BICM
capacity [2]. A gap between the BICM capacity and Shannon capacity appears when gray labeled
uniform quadrature amplitude modulation (QAM) constellation is applied, which becomes larger as
the constellation order increases. Signal shaping is an efficient way to reduce this gap, which can be
classified into probabilistic shaping and geometrical shaping [3]. Probabilistic shaping sends symbols
with unequal probability. Since a shaping decoder is needed in the receiver, there are difficulties in its
application. Geometrical shaping changes the position of constellation points, and the receiver only
needs to store new constellations. Non-uniform constellation (NUC) belongs to the latter.

NUC can be classified into one-dimensional NUC (1D-NUC) and two-dimensional NUC (2D-NUC).
The former restricts the shape of NUC to a square, while the latter has no constraint on the shape
of NUC. Compared with 1D-NUC, 2D-NUC can provide higher shaping gain, but the optimization
and demapping complexity is also greatly increased. NUC has been applied in Digital Video
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Broadcasting-Next Generation Handheld (DVB-NGH) [4] and Advanced Television Systems Committee
3rd Generation (ATSC 3.0) [5], and its application in 5G New Radio (NR) is considered in [6].

A soft demapping algorithm is usually utilized to calculate the log-likelihood ratio (LLR)
of each bit to obtain optimal performance in the decoding phase. The Log-MAP algorithm is a
commonly used algorithm, which can be simplified to the Max-Log-MAP algorithm by applying
the Max-Log approximation. For the Max-Log-MAP demapping algorithm, the Euclidean distances
(EDs) between the received symbol and all constellation points need to be calculated. Then, these
EDs are compared to determine the required EDs to calculate the LLR of each bit. 1D-NUC can be
decomposed into two independent non-uniform pulse amplitude modulation (NU-PAM) constellations,
so only one-dimensional EDs need to be calculated and compared. 2D-NUC cannot be decomposed,
so two-dimensional EDs of all constellation points need to be calculated and compared. A large number
of ED calculations and comparisons in the Max-Log-MAP algorithm lead to the high demapping
complexity of 2D-NUC and high-order 1D-NUC.

The condensed symbols reduction (CSR) algorithm proposed in [7] and the quadrant search
reduction (QSR) algorithm proposed in [8] can efficiently reduce the number of EDs that need to be
calculated and compared. The CSR algorithm is based on the condensation characteristic of NUC.
For a constellation cluster containing several constellation points, the ED only needs to be calculated
and compared once. CSR algorithm is suitable for NUCs designed for low and medium code rates
(CRs) FEC codes. As CR increases, the constellation points are barely condensed, and the complexity
of the CSR algorithm is still high. QSR algorithm is based on the quadrant symmetry characteristic
of NUC. When symbols are received in a particular quadrant, they are more likely to be sent from
certain constellation points. QSR algorithm selects these constellation points and creates a subset,
ED calculation and comparison only need to be performed on the constellation points contained in
the subset. Otherwise, the QSR algorithm is sensitive to noise, the number of constellation points in
the subset is greatly increased when facing the lower signal to noise ratio (SNR). Therefore, the QSR
algorithm is suitable for NUCs designed for medium and high CRs. Moreover, there is a problem
when the QSR algorithm creates the subset. It considers which constellation point the received symbol
is sent from. The QSR algorithm will introduce errors in LLR calculation because LLR is only related
to the constellation point closest to the received symbol. The quadrant condensed search reduction
(QCSR) algorithm proposed in [9] combines the CSR algorithm and the QSR algorithm, but the problem
when creating the subset still exists. An improved algorithm is proposed in [10] to solve this problem,
and its subset is determined according to the constellation points that may have the minimum EDs
with the received symbol, but the algorithm needs to recalculate EDs when calculating the LLR of
each bit. Moreover, the subsets in the above-mentioned algorithms are determined based on statistical
results, which may be inaccurate. The virtual-point-searching-based (VPS), further-approximated VPS
(FAVPS), and condensed VPS (CVPS) algorithms proposed in [11,12] are not based on statistical results,
and their subsets are determined in the polar coordinate system through projection operations, but these
algorithms are only suitable for APSK-like 2D-NUCs designed for low and medium CRs. The lattice
reduction algorithm proposed in [13] quantizes the 1D-NUC constellation points and received symbols
into a lattice, and determines the subset according to the position of the received symbols. However,
the lattice reduction algorithm is only suitable for specific 1D-NUCs, i.e., the distance between adjacent
constellation points must be an integer multiple of the minimum distance.

This paper proposes an improved low-complexity NUC demapping algorithm, i.e., subset condensed
search reduction (SCSR) algorithm, which can greatly reduce the number of EDs that need to be
calculated and compared during the demapping process. SCSR algorithm is suitable for 2D-NUCs and
1D-NUCs designed for all CRs. The subsets of 2D-NUC are determined according to the quadrant of
the received symbol, and the subsets of 1D-NUC are determined according to the sign of the in-phase
(I)/quadrature (Q) component of the received symbol. These subsets are not determined based on
statistical results, and the algorithm establishes different subsets for ED calculation and comparison.
The algorithm also utilizes the condensation characteristic of NUC to further reduce the number of



Appl. Sci. 2020, 10, 8572 3 of 13

constellation points contained in the subsets. The SCSR algorithm proposed in this paper is based
on the NUCs in ATSC 3.0, but it is also applicable to other NUCs. Simulation results show that the
SCSR algorithm can greatly reduce the demapping complexity of the Max-Log-MAP algorithm with
negligible performance loss.

The rest of this paper is organized as follows. Section 2 introduces the characteristics of NUC.
Section 3 describes the Max-Log-MAP algorithm and analyzes its complexity. Section 4 proposes the
SCSR algorithm. Section 5 analyzes the complexity and bit error rate (BER) performance of the SCSR
algorithm. Finally, the conclusions of this paper are summarized in Section 6.

2. Characteristics of NUC

NUC can be classified into 1D-NUC and 2D-NUC, and its design process has been described
in [14–18]. Symmetry is the first characteristic of NUC. To reduce the complexity of design and
demapping, NUC only optimized the constellation points in the first quadrant, constellation points
in other quadrants are derived from the first quadrant. Moreover, only the I component needs to be
considered during 1D-NUC optimization, and the Q component is obtained according to symmetry.
Thus, the I and Q components of 1D-NUC are independent and can be decomposed into two NU-PAMs.
LLRs of 1D-NUC can be calculated using the one-dimensional demapper. The I and Q components of
2D-NUC constellation points are jointly optimized, so they are dependent, and a two-dimensional
demapper is required to calculate LLRs.

Condensation is another characteristic of NUC. Since NUC is designed according to its working
SNR, and its working SNR is determined based on the waterfall area of FEC code, the shape of NUC is
different for different CRs. In low and medium CRs, some constellation points are very close and form
a constellation cluster. Especially, when CR is very low, the shape of a high-order NUC is closer to a
low-order NUC. As CR increases, the constellation points are gradually dispersed. When CR is very
high, the shape of NUC is closer to a uniform constellation.

The symmetry and condensation characteristics of NUC are shown in Figure 1. These two
characteristics will be used in the design of the SCSR algorithm in Section 4.
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Figure 1. 2D-256NUC and 1D-1024NUC designed for different CRs in ATSC 3.0. (a) 2D-256NUC
designed for CR = 3/15; (b) 2D-256NUC designed for CR = 13/15; (c) 1D-1024NUC designed for
CR = 3/15; (d) 1D-1024NUC designed for CR = 13/15.
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3. Soft Demapping Algorithm

The BICM system model is shown in Figure 2. A cascaded FEC encoder, bit interleaver,
and constellation mapper are included in the transmitter. And in the receiver, the received symbols
are first equalized, and then fed to the constellation demapper. After the demapping, values which
correspond to the bit interleaved codewords in the transmitter are fed to the bit deinterleaver, and then
to the FEC decoder. Assuming that the transmitted symbol is t, the received symbol r can be
represented by

r = ht + n (1)

where h is the channel fading coefficient, n is additive white Gaussian noise (AWGN).
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For optimal performance in decoding, a soft demapping algorithm is usually used to calculate the
LLRs of the received symbol. Using the Log-MAP algorithm, the LLR of the i-th bit can be calculated by

LLR(bi) = log
Pr(bi = 0|r)
Pr(bi = 1|r)

= log

∑
x∈χ0

i

exp(− |r−hx|2
N0

)

∑
x∈χ1

i

exp(− |r−hx|2
N0

)
(2)

where x is the possible transmitted symbol, N0 is the noise variance, χ0
i and χ1

i denote the sets of
constellation points for which bi = 0 and bi = 1 respectively, and log represents the natural logarithm.
Using the Max-Log approximation, the Log-MAP algorithm can be simplified to the Max-Log-MAP
algorithm. Then, the approximate LLR can be obtained as

LLR(bi) =
1

N0
(min

x∈χ1
i

|r− hx|2 −min
x∈χ0

i

|r− hx|2) (3)

Since demapping is performed after equalization, with ideal channel estimation and zero forcing
equalization, the received symbol y after equalization can be expressed as

y =
r
h
= t +

n
h

(4)

Substitute Equation (4) into Equation (3), we can obtain

LLR(bi) =
|h|2

N0
(min

x∈χ1
i

|y− x|2 −min
x∈χ0

i

|y− x|2) (5)

It can be seen from Equation (5) that when using the Max-Log-MAP algorithm to calculate LLRs,
it is necessary to calculate the EDs between the received symbol and all constellation points, and then
find the minimum ED in χ0

i and χ1
i respectively. The I and Q components of 1D-NUC are independent,
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so 1D-NUC can be decomposed into two independent NU-APSKs, only one-dimensional EDs need to
be considered when calculating LLRs

LLR(bp) =
|h|2

N0

min
x∈χ1

p

|yI − xI |
2
−min

x∈χ0
p

|yI − xI |
2

 (6)

LLR(bq) =
|h|2

N0

min
x∈χ1

q

|yQ − xQ|
2
−min

x∈χ0
q

|yQ − xQ|
2

 (7)

where index p refers to the bits demapped from the I components and index q from the Q components.
The I and Q components of 2D-NUC are dependent, so two-dimensional EDs need to be considered
when calculating LLRs

LLR(bi) =
|h|2

N0

min
x∈χ1

i

(
|yI − xI |

2 + |yQ − xQ|
2
)
−min

x∈χ0
i

(
|yI − xI |

2 + |yQ − xQ|
2
) (8)

The complexity of the Max-Log-MAP algorithm is related to two factors, i.e., the number of EDs
that need to be calculated and compared to demapping each received symbol. Since multiplication
operations are inevitable in ED calculation, the complexity of ED calculation is much greater than
ED comparison. In the demapping process, ED between the received symbol and each constellation
point only needs to be calculated once, and only ED comparison is required when calculating LLR(bi).
For 1D-NUC and 2D-NUC with modulation order M, when demapping each received symbol, the
number of one-dimensional EDs required to be calculated are 2

√
M and 2M, and the number of EDs

required to be compared are
√

M log2 M and M log2 M.
To reduce the number of EDs that need to be calculated and compared, especially the number of

EDs that need to be calculated, this paper proposes an improved algorithm named SCSR. The details
of the SCSR algorithm are described in the next section.

4. Proposed Low-Complexity Demapping Algorithm

This section proposes an improved low-complexity NUC demapping algorithm named SCSR,
which consists of two processes. The first process is to create the subsets, and the second process is to
calculate the LLRs of the received symbol according to the subsets. It should be noted that the process
of creating subsets is performed off-line. This process only needs to be executed once and the obtained
subsets are stored in the receiver. Therefore, it does not increase the demapping complexity.

4.1. Create the Subsets

Taking 2D-NUC as an example, and assume that the received symbol is in the first quadrant, the
creation process of the subsets is as described in Algorithm 1. Since 2D-NUC is quadrant symmetric,
the subsets can be derived from the subsets of the first quadrant when the received symbol is in
other quadrants.
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Algorithm 1 Subsets Creation Process of SCSR Algorithm

Input:
x: constellation (with modulation order M)
Output:
C: subset used for ED calculation; Ck

i : subset used for ED comparison; x̃: new constellation
1: for i = 0 to log2 M-1 do
2: for k = 0 to 1 do
3: determine the constellation points contained in χk

i
4: delete the constellation points in χk

i that can never have the minimum ED from the received symbol,
and obtain a reduced subset Sk

i
5: end for
6: end for
7: calculate the union of Sk

i , and obtain a subset S
8: regard a constellation cluster containing several constellation points in x as a virtual point, and its
coordinate is set to the mean value of these constellation points
9: use virtual points to replace the corresponding constellation points in x, and obtain a new constellation x̃
10: use virtual points to replace the corresponding constellation points in Sk

i , and obtain the subset Ck
i used for

ED comparison
11: use virtual points to replace the corresponding constellation points in S, and obtain the subset C used for
ED comparison

To facilitate the understanding of the creation process of the subsets, we take 2D-256NUC designed
for CR = 6/15 as an example. Assuming that the most significant bit of 2D-256NUC is b7 and the least
significant bit is b0. Then, b7 and b6 determine the quadrant where the constellation point is located,
and b5 to b0 determine the position of the constellation point in a specific quadrant.

The subsets creation process of b7 and b6 is similar. Taking b6 as an example, the constellation
points contained in χ0

6 and χ1
6 of the Max-Log-MAP algorithm are shown in Figure 3a. Where the red

circles represent the constellation points contained in χ0
6, and the blue circles represent the constellation

points contained in χ1
6. It can be seen that the constellation points contained in χ0

6 are all located
in the first and fourth quadrants, and the constellation points contained in χ1

6 are all located in the
second and third quadrants. When the received symbol is in the first quadrant, it is obvious that the
constellation points in the fourth quadrant in χ0

6 can never have the minimum ED with the received
symbol. Therefore, only the constellation points in the first quadrant in χ0

6 need to be retained and
then obtain the subset S0

6. Since χ1
6 does not contain the constellation points in the first quadrant, it is

necessary to keep the constellation points closest to the boundary of the first quadrant in χ1
6, and then

obtain the subset S1
6. The constellation points contained in S0

6 and S1
6 are shown in Figure 3b.
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The subsets creation process of b5 to b0 is simpler. Since both χ0
i and χ1

i (i = 0, 1, . . . , 5)
contain constellation points in the first quadrant, the subsets S0

i and S1
i can be obtained by retaining

the constellation points in the first quadrant in χ0
i and χ1

i respectively. Taking b3 as an example,
the constellation points contained in χ0

3 and χ1
3 are shown in Figure 4a, and the constellation points

contained in S0
3 and S1

3 are shown in Figure 4b.
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Calculate the union of Sk
i , i.e., S = U7

i=0Sk
i , (k = 0, 1). Then, S is the subset used for ED calculation

when the received symbol is in the first quadrant, as shown in Figure 5a. The constellation points
contained in S are represented by green circles.

To further reduce the number of constellation points contained in S and Sk
i , the condensation

characteristic of NUC can be used. A constellation cluster containing several constellation points can
be regarded as a virtual point, and its coordinate is set to the mean value of these constellation points.
Using virtual points to replace the corresponding constellation points in S and Sk

i , the reduced subset C
used for ED calculation and the reduced subsets Ck

i used for ED comparison are obtained. The subset
C is shown in Figure 5b.
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The above is the process of creating the subsets for 2D-NUC. Since 1D-NUC can be decomposed
into two independent NU-PAMs, the process of creating its subsets is simpler. Only the subsets when
the I component of the received symbol is positive need to be created, and the subsets when the I
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component is negative can be derived based on symmetry. Since the Q component of 1D-NUC is
also obtained according to symmetry, the same subsets can be used for the Q component and the
I component.

4.2. LLR Calculation

This section takes 2D-NUC as an example to illustrate the LLR calculation process of the SCSR
algorithm, as described in Algorithm 2.

Algorithm 2 LLR Calculation Process of SCSR Algorithm

Input:
y: received symbols after equalization; h: channel fading coefficient; N0: noise variance; x̃: new constellation
(with modulation order M); CR: code rate
Output:
LLR calculation result
1: for n = 1 to size(y) do
2: determine the quadrant Q of yn

3: select the corresponding subsets C and Ck
i according to Q and CR

4: for m = 1 to size(C) do
5: calculate the ED between yn and the m-th constellation point in C
6: end for
7: for i = 0 to log2 M-1 do
8: compare the EDs between yn and the constellation points in C0

i and C1
i respectively, and obtain

the minimum EDs
9: calculate LLR(bi)
10: end for
11: end for

The 1D-NUC demapping process is similar to Algorithm 2, except that the I component and Q
component of the received symbol need to be decomposed first, and the subsets are selected according
to the sign of the I/Q component.

It can be seen from Section 4.1 that the subsets of the SCSR algorithm are not obtained by statistical
results, but are obtained by removing the constellation points that never have the minimum ED with
the received symbol from χk

i . Therefore, if the condensation characteristic is not used, the SCSR
algorithm can achieve the same performance as the Max-Log-MAP algorithm. In fact, the condensation
characteristic is used, so the SCSR algorithm has a performance loss compared with the Max-Log-MAP
algorithm, but its complexity is greatly reduced. The complexity and BER performance of the SCSR
algorithm will be analyzed in detail in the next section.

5. Performance Evaluation

In this section, the complexity and BER performance of the Max-Log-MAP algorithm,
QCSR algorithm, and SCSR algorithm are compared. The NUCs used in this section are 2D-256NUCs
and 1D-1024NUCs in ATSC 3.0. The length of the LDPC code is 64,800 bits, and the CR is 2/15, 6/15,
10/15, 13/15.

5.1. Complexity Comparison

We compare the complexity of three algorithms from two aspects, i.e., the number of
one-dimensional EDs to be calculated and the number of EDs to be compared when calculating
the LLRs of each received symbol. Table 1 shows the complexity comparison when demapping
2D-256NUC. When CR = 2/15, 2D-256NUC becomes 2D-16NUC after condensation characteristic
is used, so the complexity of QCSR and SCSR algorithms is greatly reduced compared with the
Max-Log-MAP algorithm. Moreover, the subsets of the QCSR algorithm are obtained based on
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statistical results, and the lower the SNR, the more constellation points are contained in the subsets.
Therefore, when CR = 2/15, the complexity of the SCSR algorithm is lower than that of the QCSR
algorithm. As CR increases, the number of constellation points that can be condensed gradually
decreases. When CR = 6/15 and 10/15, using the condensation characteristic only reduces the number of
constellation points in NUC, but cannot turn it into a low-order constellation. Therefore, the complexity
of QCSR and SCSR algorithms is increased, but the complexity of the SCSR algorithm is still lower
than that of the QCSR algorithm. When CR is increased to 13/15, there are no condensed constellation
points in 2D-256NUC, and neither the QCSR algorithm nor the SCSR algorithm can use condensation
characteristics. Further, because of the high SNR, the number of constellation points contained in
the subsets of the QCSR algorithm is greatly reduced. Therefore, the number of EDs that the QCSR
algorithm needs to calculate is slightly less than that of the SCSR algorithm. However, as described in
Section 4, Ck

i is a subset of C. Therefore, the number of EDs that the SCSR algorithm needs to compare
is still far less than the QCSR algorithm. For all CRs, the number of EDs to be calculated for the
SCSR algorithm is reduced by 67.58% to 96.48%, compared with the Max-Log-MAP algorithm. Then,
the number of EDs to be compared is reduced by 74.07% to 98.97%.

Table 1. Complexity comparison when demapping 2D-256NUC.

CR Demapping
Algorithm

Number of One-Dimensional EDs to be
Calculated and Reduction Percentage

Number of EDs to be Compared
and Reduction Percentage

All Max-Log-MAP 512 2048

2/15 QCSR 32 (93.75%) 64 (96.88%)
SCSR 16 (96.48%) 21 (98.97%)

6/15 QCSR 132 (74.22%) 528 (74.22%)
SCSR 84 (83.59%) 274 (86.62%)

10/15 QCSR 160 (68.75%) 640 (68.75%)
SCSR 150 (70.70%) 475 (76.81%)

13/15 QCSR 160 (68.75%) 640 (68.75%)
SCSR 166 (67.58%) 531 (74.07%)

Table 2 shows the complexity comparison when demapping 1D-1024NUC. Since the QCSR
algorithm is not designed for 1D-NUC, only the Max-Log-MAP algorithm and SCSR algorithm are
compared. 1D-NUC can be decomposed into two independent NU-PAMs, and only one-dimensional
demapping is required. Therefore, the demapping complexity of 1D-NUC is greatly reduced compared
with that of 2D-NUC. Similar to 2D-NUC, 1D-NUC becomes a low-order constellation in low CR,
so the complexity of the SCSR algorithm is greatly reduced. With the CR increases, the number
of constellation points that can be condensed gradually decreases, so the complexity of the SCSR
algorithm gradually increases, but the complexity of the SCSR algorithm is always lower than that of
the Max-Log-MAP algorithm. For all CRs, the number of EDs to be calculated for the SCSR algorithm
is reduced by 46.88% to 90.63%, compared with the Max-Log-MAP algorithm. Then, the number of
EDs to be compared is reduced by 49.38% to 96.88%.

Table 2. Complexity comparison when demapping 1D-1024NUC.

CR Demapping
Algorithm

Number of One-Dimensional EDs to be
Calculated and Reduction Percentage

Number of EDs to be Compareed
and Reduction Percentage

All Max-Log-MAP 64 320
2/15 SCSR 6 (90.63%) 10 (96.88%)
6/15 SCSR 20 (68.75%) 104 (67.50%)

10/15 SCSR 28 (56.25%) 138 (56.87%)
13/15 SCSR 34 (46.88%) 162 (49.38%)
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5.2. BER Simulation Results

According to the description in Section 4, if condensation characteristic is not used, SCSR algorithm
can achieve the same performance as Max-Log-MAP algorithm, so the condensation characteristic
is the factor that causes the performance difference between SCSR algorithm and Max-Log-MAP
algorithm. However, the constellations obtained by the SCSR algorithm and QCSR algorithm after
using the condensation characteristic are the same, so the factor that causes the performance difference
between the two algorithms is the constellation points contained in subsets.

Figure 6 compares the BER performance of the Max-Log-MAP algorithm, QCSR algorithm,
and SCSR algorithm over i.i.d Rayleigh channel. 2D-256NUCs are used in the simulation.
Figure 6a shows the BER performance comparison when CR = 2/15. Combined with Table 1, it can
be seen that the subsets of the QCSR algorithm contain all 16 constellation points. For the received
symbols in a certain quadrant, although some constellation points in the subsets are redundant for LLR
calculation, it can ensure that all constellation points that may have the minimum ED with the received
symbol are contained in the subsets. The subsets of the SCSR algorithm remove these redundant
constellation points. Therefore, the complexity of the SCSR algorithm is lower than that of the QCSR
algorithm, but it can achieve the same BER performance as the QCSR algorithm. Moreover, due to
the use of condensation characteristic, the performance of these two algorithms is 0.006 dB worse
than that of the Max-Log-MAP algorithm. Figure 6b shows the BER performance comparison when
CR = 6/15. As described in Section 1, the subsets of the QCSR algorithm are determined based on
statistical results, which contain some redundant constellation points, and some constellation points
that may have the minimum ED with the received symbol are lost. Therefore, the QCSR algorithm
has the worst performance. The subsets of the SCSR algorithm contain all constellation points that
may have the minimum ED with the received symbol, so its performance is 0.004 dB better than that
of the QCSR algorithm. Then, due to the use of condensation characteristic, the performance of the
SCSR algorithm is 0.009 dB worse than that of the Max-Log-MAP algorithm. Figure 6c shows the BER
performance comparison when CR = 10/15. For the QCSR algorithm, although some constellation
points in its subsets are redundant, the subsets still contain all constellation points that may have
the minimum ED with the received symbol. Therefore, the performance of the QCSR algorithm and
the SCSR algorithm are the same. Due to the use of condensation characteristic, the performance of
these two algorithms is 0.006 dB worse than that of the Max-Log-MAP algorithm. Figure 6d shows
the BER performance comparison when CR = 13/15. Since the condensation characteristic cannot be
used, the SCSR algorithm has the same performance as the Max-Log-MAP algorithm. And some
constellation points that may have the minimum ED with the received symbol are lost in the subsets of
the QCSR algorithm, so the QCSR algorithm has the worst performance. The performance of the SCSR
algorithm is 0.05 dB better than that of the QCSR algorithm.

When using 1D-1024NUCs, the performance comparison between the SCSR algorithm and the
Max-Log-MAP algorithm is shown in Figure 7. Similar to Figure 6, when the condensation characteristic
can be used, the SCSR algorithm has a slight performance loss compared with the Max-Log-MAP
algorithm. When the CR is 2/15, 6/15, 10/15, the performance of the SCSR algorithm is worse than that
of the Max-Log-MAP algorithm by 0.003 dB, 0.004 dB, and 0.0001 dB, respectively. When CR is 13/15,
the condensation characteristic cannot be used, so the performance of the SCSR algorithm is the same
as that of the Max-Log-MAP algorithm.
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6. Conclusions

This paper proposes a low-complexity NUC demapping algorithm, i.e., the SCSR algorithm.
SCSR algorithm creates the subsets based on the quadrant of the 2D-NUC received symbol or
the sign of the I/Q component after the 1D-NUC received symbol is decomposed. The number of
constellation points contained in the subsets is further reduced through the condensation characteristic.
When demapping the received symbols, EDs calculation and comparison only need to be performed
on the constellation points contained in the subsets. Compared with the Max-Log-MAP algorithm,
when demapping 2D-256NUC, the number of EDs that need to be calculated can be reduced by
67.58% to 96.48%, and the number of EDs that need to be compared can be reduced by 74.07%
to 96.88%. When demapping 1D-1024NUC, the number of EDs that need to be calculated can be
reduced by 46.88% to 90.63%, and the number of EDs that need to be compared can be reduced
by 49.38% to 96.88%. The BER simulation results show that, compared with the Max-Log-MAP
algorithm, the performance loss of the SCSR algorithm is less than 0.01 dB. This paper also compares
the complexity and performance of the SCSR algorithm and QCSR algorithm. The results show that
the SCSR algorithm can always achieve the same or better BER performance as the QCSR algorithm,
and the complexity of the SCSR algorithm is almost always lower than that of the QCSR algorithm.
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