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Abstract: Recent developments in bioinspired technologies combined with the advance of intelligent
and soft materials have allowed soft robots to replicate the behavior of different animal species.
These devices can perform complicated tasks such as reaching or adapting in constrained and
unstructured environments. This article proposes a methodology to develop a soft robot called
“JellyRobcib” inspired in morphology and behavior by jellyfish, using shape-memory alloy springs
as actuators (as bio-muscles). Such actuators can move the jellyfish both vertically and laterally
by applying closed-loop fuzzy and visual controls. Additionally, Computer-Assisted Designs and
Computational Fluid Dynamics simulations have been carried out to validate the soft robot model.
The results show that the robot movements are very close to the morphological behavior of a real
jellyfish regarding the curves of displacements, speeds and accelerations, after performing several
experiments for autonomous movement: vertical ascent, lateral movements and trajectory tracking,
obtaining an accuracy of £1479 cm and repeatability of 0.944 for lateral movements for fuzzy visual
control. Furthermore, thermal measurements were taken throughout a given path, allowing the
generation of temperature gradients within the underwater environment for monitoring purposes.

Keywords: soft robotics; biomimetic robotics; fuzzy control; smart materials; shape-memory alloy;
computational fluid simulation

1. Introduction

Recent developments in intelligent materials have made it possible for them to be used as
actuators because of their outstanding characteristics. For example, shape-memory alloys (SMA)
present a reduced size, lack of mechanical elements, or the ability to modify their mechanical properties
(elastic modulus, electrical resistance) by applying currents during milliseconds to generate movement.
In the robotics field, the use of intelligent materials for actuation and mainly SMA, have allowed
the implementation of soft robots capable of replicating the movement of animals. On the other
hand, conventional mechanisms are complex to miniaturize and heavy to be introduced in aquatic
environments. The main contribution of this work is the development of lateral displacements in
the soft robot (“JellyRobcib”) actuated by SMAs, taking as a starting point a computational analysis,
since the most representative prototypes actuated with SMA only have vertical movement, without
prior exhaustive analysis, and the presented robot can follow a defined trajectory. Before the robot’s
implementation, computational analysis was carried out using Computational Fluid Dynamics (CFD),
body deformations and a heat transfer simulation to verify the thermal maps performed from acquired
data. This project integrates different disciplines to achieve the pursued objectives: vision, control,
electronics and mechanical systems.
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This paper is structured as follows: in Section 2, state-of-the-art and previous works are shown.
This is followed by the Materials and Methods in Section 3, which has been divided into subsections
showing the design, analysis and implementation. In Section 4, the specific results that correspond to
each of the processing steps explained previously are included. To conclude, Section 5 summarizes the
main findings.

2. State-of-the-Art

Previous works show different technologies developed until today following an evolutionary
line based on the feedback of previous works and research. Nonetheless, a detailed speed and
pressure analysis has not been found, nor an analysis of reactions generated based on the displacement
of fluids that causes the movement of the jellyfish, or lateral displacements executed with SMAs.
Thus, the present work starts from a theoretical structured model to develop a bioinspired robot
actuated by materials with shape memory and the application of the robot to carry out tasks such
as thermal monitoring in underwater environments. This state-of-the-art paper focuses on soft
underwater bioinspired robots and especially on jellyfish prototypes. At the same time, it is important
to highlight the importance of previous studies on the pulsed-jetting system; in [1], numerous examples
are mentioned.

2.1. Soft Underwater Bioinspired Robots

Soft materials allow soft bioinspired robots to replicate movements of animals in both terrestrial
and marine habitats. In the case of the underground environment, some of the most significant
prototypes are worm-like robots [2—4], caterpillars [5], snakes [6,7], insects [8], and bat wings [9,10].
In the case of the underwater environment, research focuses on the development of prototypes that
replicate the movement of fishes [11-15], octopuses [16-18], and jellyfishes [19-22]. Other interesting
prototypes are the quadruped robot that walks underwater [23], the Manta swimming robot [24],
biomimetic underwater robots based on dielectric elastomer actuators [25], or rajiform swimming
robot [26]. All these robots present different actuation systems that can be summarized into three main
categories: variable length tendon, fluidic actuation, and electroactive polymer (EAP) [27]. The first
category (variable length tendon) comprises robots actuated with traditional tendons and motors [28]
and robots actuated with shape-memory alloy (SMA) [29,30], the type of actuation examined for this
paper. Each of the actuation systems present advantages and disadvantages. SMA is characterized
by simplicity, noiseless actuation, and low weight, among many other merits. On the other hand,
this material also presents some disadvantages, such as low energy efficiency, complex motion
control, and low operational speed [31]. EAP actuators present advantages similar to those of SMA
actuators, and they are probably one of the best choices when prototypes are significantly small [32].
Fluidic actuation, by contrast, presents high operation speed, easy motion control, and can generate
greater forces. Principal disadvantages include weight, dimensions, and noise.

2.2. Evolution of Projects Developed and Actuation Systems

One of the first jellyfish prototypes, developed by the University of Kagawa (Figure 1a), used the
conductive ionic polymer film (ICPF) as an actuation system [18]. It generates contractions using an
articulated mechanism. The next representative development was realized by the Virginia Center
of Investigation that created a jellyfish using SMA named “Robojelly” (2011). It has a polyethylene
coverage, inspired in the Aurita Aurelia species. When the SMA is activated, it produces a reaction
with the water that generates hydrogen that helps the displacement [19]. Along the same line,
a jellyfish robot based on a mechanism of spring retraction was implemented (Figure 1b) [20]. It was
controlled by servomotors and had a silicone body, capable of generating a unilateral contraction.
Another prototype based on the same operation principle, but actuated by elastomers producing
an expansion to expel the water, is presented in [21]. Within the most recent developments in 2018,
the University of Atlantic Florida implemented a jellyfish operated by air microvalves, which is
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capable of generating a lateral movement limiting airflow to four of the eight tentacles (Figure 1c) [22].
In 2019, a jellyfish operated by SMA capable of moving vertically, thanks to a central SMA, was
developed (Figure 1d) [23]. One of the last works developed is a soft jellyfish with a diameter of 3 mm
actuated through an external oscillating magnetic field, capable of generating movements with a
degree of vertical inclination of the body. Table 1 shows complementary information on additional
related projects carried out under this same line of research [24,25].

(a) (b) © (d

Figure 1. (a) Bell-shaped mechanism that generates a contraction. (b) Jellyfish actuated by spring

retraction. (c) Jellyfish act pneumatically. (d) Jellyfish capable of performing only vertical movements
using a shape-memory alloy (SMA).

Table 1. Previous designs of jellyfishes, their actuation, materials and type of movements.

Work Actuation Body Material Movement CFD Analysis
Micro robot-Jellyfish .
(2007) [33] ICPF Latex-polymer Vertical NO
Jellyfish biomimetic
behavior-Simulation Lineal Actuators HDPE Vertical NO
(2010) [34]
Biomimetic jellyfish . .
(2011) [35] Electrical IPMC Vertical NO
Robojelly (2011) [36] SMA ﬂg";‘f{; ggjf::e Vertical NO
Bioinspired jellyfish Biosynthetic 1 .
2011) [21] actuation Surgical tissue Vertical NO
Jellyfish-like Robot for
mimicking propulsion Servomotors Silicone Vertical NO
(2012) [37]
Robotic jellyfish . .
(2015) [19] Electrical IPMC Vertical NO
Pneumatic jellyfish . .
(2016) [20] Pneumatic Elastomer Vertical NO
Robo-jellyfish (2018) [38] Pneumatic Silicone RTV Vertical and Lateral NO
Jellyfish acted by e .
springs(2019) [39] SMA Silicone Vertical NO
Biomimetic Soft Jellyfish Electro-active s .
(2019) [40] polymers Silicone Polymer Vertical NO
Multi-functional External oscillatin Magnetic
soft-bodied jellyfish-like maenetic field & composite Vertical and Lateral NO
swimming (2019) [22] & elastomer lappets
JellyRobcib SMA Silicone Vertical-Lateral YES

Despite various developments focused on jellyfish with different performance, no great progress

was made in obtaining lateral movements especially in the control algorithms.

Furthermore,

the implementation of control systems to generate coordinated movements through defined trajectories,
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especially using SMA, has not been emphasized enough. Additionally, previous works have
not focused on specific applications for this kind of robots. These are relevant aspects that this
research addresses.

3. Materials and Methods

This section describes the methods used to develop the underwater soft robot. It shows the robot
model developed based on the movement and anatomical study of the jellyfish species “Chrysaora
hysoscella”. After that, the computational simulations of CFD, pressures and material analysis to
verify the correctly operation of the robot before its implementation are shown. The requirements for
implementation are described below: body measurements were taken based on the dimensions of an
adult stage jellyfish (22-30 cm) (the Chrysaora hysoscella species commonly known as “aguamar”,
chosen because there is information published to make reference to), because it seeks to replicate the
biomimetic behavior of the jellyfish, with a speed in the range of 2.5-2.8 cm/s and a weight of 110 g,
including the actuation system. Actuation system: electrical and visual control system.

3.1. Design and Implementation of the Jellyfish Body

Among the main characteristics of the jellyfish is the reduction of turbulence caused by the robot
movement, which implies using a low-invasive propulsion system [41]. Taking that into account,
the robot model has been inspired by a jellyfish, mainly due to its soft body, small size and propulsion
system due to periodic contractions.

3.2. Computer-Assisted Design (CAD) Model Design and SMA Actuation

One of the main systems of actuation within the soft robotic is the SMA, which is an alloy of nickel
and titanium (hence the commercial name Nitinol), developed by the Naval Ordnance laboratory
in the United States in 1962. After the material deformation and taking advantage of the change of
state in the composition of its crystalline structure because of the change in temperature, the material
recovers its original form. From this date, research and prototypes have been carried out using SMA
wires as actuators instead of conventional engines [42]. The importance of using SMAs as actuators
lies in their small diameter, quick action and low weight, which facilitate the generation of complex
movements in small spaces, which with conventional mechanisms, servomotors or other intelligent
materials, such as piezoelectric materials, will be complex to replicate [43,44].

The CAD model developed for analysis and simulations was generated in Solidworks based on
a behavior study for jellyfish species Chrysaora hysoscella, which is typical of the Mediterranean
Sea and has several representative characteristics of most jellyfish (bell delimited and pronounced
tentacles) [45]. Figure 2 shows the analysis carried out on an adult-sized Chrysaora jellyfish (diameter
of approximately 23 cm), for which 10 uniformly distributed points were established along its bell to
analyze the evolution of the extreme areas (4 points) and middle zone (6 points) during the process of
relaxation and contraction.

The described movement consists mainly of two stages: the first one of relaxation, Figure 2a,b,
at which stage the central bell is extended, and a second phase of contraction, which happens in a
range of reduced time with respect to relaxation (around 21% of the relaxation time); the contraction
phase is from the state shown in Figure 2c,d, which is in the range of 0.7 s and allows it to expel the
fluid inside the bell, achieving movement. The points in Figure 2 [P1-P10] represent distributed points
on the surface of the jellyfish body and have been placed to have a visual reference of the states of the
body during the contraction and relaxation phases.

Additionally, it has been identified that the tentacles contribute with an additional fluid
displacement that generates vertical movement.

The implemented actuators have been selected based on their desirable characteristics for the
movement, specifically to generate rapid contractions, which are their reduced size and their weight
which does not represent a significant load, as well as the characteristics of the Nitinol used: activation
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temperature 50-65 °C + —5 °C, diameter 500 and 375 pm, alloy material: nickel titanium, acquired in
“smartwires” [46].

Figure 2. Chrysaora jellyfish movement cycle. (a,b) correspond to the state of relaxation,
and (c,d) correspond to the rapid contraction phase. Source: Author, images captured in
Oceanografic-Valencia.

The robot body has been made with a highly flexible Ecoflex®) silicone base, and it has an average
diameter of 22 cm. Figure 3a shows a central cross-section of the model, and Figure 3b is a photograph
of the final prototype. In the first state, a mold (Figure 3c) made with a 3D printer in ABS plastic
generated from the jellyfish CAD model was made to develop such tests as silicone elasticity resistance
and temperature resistance of the SMA + silicone set. Finally, the body of the implemented robot
(Figure 3d) had to be dried for 2 h in a flat glass surface, and during this process, the central SMA was
added, as well as the tentacles, which were taken from the mold.

The robot consists of 5 SMA spring actuators placed so that one SMA is in the center of the body
(350 microns) with a ring shape of an 80 mm diameter and 4 lateral SMAs (500 microns) of 75 mm
length are located radially, anchored in the center and on the periphery with 90 degrees of separation,
as reflected in the cross-section of Figure 3a. In this way, the controller can determine the degree and
the time of contraction to produce the relaxation and contraction to expel water.

(© (d)

Figure 3. Computer-assisted design (CAD) model implemented in Solidworks: (a) cross-section of the
CAD model. (b) Robotic jellyfish implemented inside the test pool. (c) 3D-printed mold. (d) Extended
body. Source: Author.
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3.3. Design and Placement of the Actuators

The SMA manufacturing process is based on winding the SMA wire in a screw and fastening
it with nuts at the ends, then it is introduced into the oven where it reaches 600 °C, for 15 min,
prior to a subsequent cooling process (Figure 4a), thus obtaining the SMA with the spring memory.
The subjection of the 4 lateral SMAs was carried out externally, i.e., SMAs had been previously
encapsulated (Figure 4b) with a thin layer of Ecoflex Silicone, leaving them completely sealed, and with
the cables for the control board, their anchorage to the jellyfish body was made by means of thin
metallic joints that cross the SMA cover layer and the body, being fixed by pressure. The central SMA,
on the other hand was fused to the body, where it was placed during the drying process, laying the
cables for control on the outside.

SMA wrapped in a screw
R Termal

== » process Encapsu]ed

lateral

SMA

A - B : Metal Joint

(a) (b)

Figure 4. (a) Manufacturing of the SMAs. (b) Detailed section of encapsulated lateral SMA.
Source: Author.

3.4. Computational Simulation

Three types of analysis were carried out to verify robot functionality prior to its implementation;
these analyses allowed evaluation of, at first instance, the behavior of the material against the SMAs’
contraction. The second analysis was based on the volume displaced by the jellyfish during the
contraction, and the third analysis was complementary to the previous ones and had the purpose of
evaluating the pressure generated during the contraction inside the jellyfish bell and determining if
the pressure is necessary for a positive displacement.

Material Analysis

A simulation of the jellyfish body material behavior was carried out (Figure 5) to evaluate
the displacement generated and the amount of water that can be evacuated with each contraction.
The amount of water displaced was used as data for the CFD analysis. The SMA spring return to its
extended form is due to the design of the tensioned silicone body. After the contraction is generated
and the temperature in the SMA is reduced, its state becomes malleable, so that it is extended by the
silicone body itself.

Using Equation (1) [47,48] that relates the shear modulus of the SMA material (G) [N/ m?],
SMA diameter (d) [m], variation of displacement during contraction (x) [m], springs’ turn diameter
(D) [m] and the number of spring turns (N), we could calculate the maximum force that the central
SMA will make during the application of contraction.

(G xd* x x)
F=—>——7F"-—= 1)

(8« D3 N)
The equation only allows “estimating” the force, due to the complexity of modeling the entire
actuation system. Although the stress strain produced is directly considered, the term in the equation

“G” relates to both types of stress, since both are in function of the Y (Young’s modulus) as established
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by Pons [42]. When working with Nitinol, there is shear stress and normal stress, but since both
efforts are partially present at the same time, it is considered that G = Y. The calculated previous
force is represented by a cyclic force exerted by the central SMA and was applied to the CAD model
(the force is represented by the brown arrows for the two cases in central Figure 5b and lateral
Figure 5c), which is assigned the parameters of the material (Ecoflex Silicone 00-30): viscosity 300 cps,
shore hardness 00-30, breaking strength of 900%, tear resistance of 38 pli (6654 Nm/m), Shore hardness
00-, specific volume (26 cu.in/Ib), maximum temperature 450 °F (232 °C) [49]. Simulation results show
a maximum displacement of 70 mm in the central bell after contraction, which represents a volume
of displaced water equal to 557 cm>. The zones with a red color range represent the zones of greater
displacement, produced in the bell by the central SMA.

URES (mm)

7.0x10
6.4x10
- 5.8x10
- 5.2x10
- 4.6x10
- 4.0x10
3.5x10
. 29x10
- 2.3x10
- 1.7x10

@ g ®) ©

0.0

Figure 5. Simulation of the jellyfish body displacement when the central SMA contraction is applied:
(a) before contraction; (b) after the central contraction; (c) after lateral contraction Source: Author.

Figure 6 shows the behavior of jellyfish modeling; Figure 6a shows the contraction of the jellyfish
bell for a reference of 10 cm, where the system response is extremely fast, achieving the reference in
the first 2 s, and keeping it constant because of the fuzzy controller. For its part, Figure 6b shows the
response of the force generated by the SMA to a 5 N reference signal; here, the sudden increase of the
force is due to the sudden contraction of the SMA.

[cm] [M]
5

20

54 —
18 /

4

lE'I

1ath

12"

0 5 10 15[s] O 5 10 15 [s]

(@ (b)

Figure 6. Responses to parametric modeling to a reference. (a) Contraction of the jellyfish bell. (b) Force
produced by the SMA.

Figure 7 shows a comparison of the diameter variation for two contractions. During the first 0.7 s,
it quickly shrinks in size due to the force of contraction exerted by the SMA. After that, it returns to its
relaxed state again while the SMA is cooled. The curve shown in red differs slightly from the red one,
mainly due to the data capture and filters applied in the vision system.
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Figure 7. Diameter of the jellyfish bell variation comparison.
3.5. Computational Fluid Dynamics

The Jellyfish displacement is produced by its propulsion system generated by contractions.
When these happen, their body generates a vortex, which is forcefully expelled, and produces a thrust
that generates a reaction that drives it forward. To keep the movement constant, a series of pulsations
must be generated. To validate the geometry model, all forces involved in the displacement of a body
in the water, such as drag coefficient, added-mass coefficient and Reynolds number, are analyzed [50].
Together with the data obtained from the CFD, they allow evaluation of the instantaneous acceleration
produced by the contraction and determine if jellyfish can advance [45].

During the development of the simulation, gravity has been used as an active parameter,
because its use implies the action of buoyancy. Figure 8a,b shows the fluid displacement (water)
during the vertical and lateral contraction respectively represented by spheres, where there is a
variation in the sphere color according to the velocity generated during the process, the spheres being
red for high-speed areas and blue for negative velocity areas. The accelerations are shown with lines
in Figure 8c,d for vertical and lateral contraction, respectively.

0.005
-1.354e-004
-0.006
-0.011
-0.017

-0.022
-0.027

Velocity (V) (m/s)
Global Coordinate System
Flow Trajectories 1

Acel (Fluid)[emish2)

| FlowTrajectories 1

Figure 8. Representation of fluid displacement during jellyfish contraction using the Solidworks-Flow
Simulation plug-in: (a) vertical displacement—speed (m/s); (b) lateral displacement—speed (m/s);
(c) vertical Acceleration (cm/s2); (d) lateral acceleration. Source: Author.
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The verification of simulation is performed based on Equation (2) [51], which evaluates the
average acceleration in order to determine if a positive displacement is generated. This expression
involves the water jet thrust under the hood (T;) [g-cm/ s?], the drag force (D;) [g-cm/ s?], the weight
(W) [N] and the effective mass of the jellyfish (E;) [g]. This equation does not consider the presence
of tentacles, because of the complexity of modeling for them; for that reason, a known model was
considered to represent the most relevant part of the body (around 92% of the body is modeled as
a bell shape). The calculation without including the tentacles shows that there will be a positive
displacement, while the simulation corroborates that tentacles generate an additional impulse because
of the positive vortices generated at the ends after each contraction. In this study, the robot presents
a slow motion, and the positive feedback on thrust associated with “added-mass variation” is very
small and has not been considered [52].

P LEICESY)) o
1
which are calculated, respectively, from the expressions: Equation (3) for (T;), Equation (4) for (D;),
Equation (5) for (E;) and Equation (6) for («;) [51,53-55].

T, = (Az,).oc.jl-2 ©)
1 d;
D; = E-P-U%-(Tf-hi-j)'cﬂi @)
Ei = Vpip.[1+a] ®
d‘
w; = 05—"— ©)
()™

The variables involved are bell hole area (A,) [cm?], water density at 25 °C (p) [g/ cm?],
fluid velocity (j;) [cm/s] instant jellyfish speed (u;) [cm/s] jellyfish bell height (i;) [cm], jellyfish
diameter (d;) [cm], drag coefficient (Cp ;), volume inside the jellyfish bell (V) [cm3] and the added
mass («). Equations (7)—(9) were used to calculate the previous values:

, 1. .dV,;
ji= (o) () 7)

For Equation (3), where j; [cm/s], is the jet speed at time i, A, [cm?] is the umbrella’s whole area
and V;; [cm?3] is the instantaneous volume under the umbrella.

(xi+1 ; xzel) ®)

In Equation (4), where u; [cm/s], is the speed at time i, x [cm] is the position for the respective
time and t [s] (time)

u; =

24
Cp,i = 1o ©)

For Equation (5), Cp , is the drag coefficient, Re the Reynolds number and “n” depends of the
value of Re, with n =1 if Reless than 1 and n = 0.7 if 1 < Re < 500.

Based on these expressions, an acceleration equal to 3.38 cm/s? has been determined, similar to
the CFD result of 3.8 cm/s? (Figure 8c). Therefore, the displaced fluid, the result of the contraction,
will generate an acceleration greater than zero, and consequently, the displacement will generate
progress and not regression.
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Figure 9 shows a comparison between the displacement of the given volume for the
quasi-analytical simulation (modeled on Equations (2)-(9)) and the CFD output volume for a
contraction, where the accumulated volume was included as reference to see how it changes during
the contraction. Figure 9 shows the displaced volume at each moment and the total accumulated
volume for each defined case. Thrust modeled with CFD is higher from the analytical model, because
viscous effects associated with the formation of the vortex ring and added-mass-variation effects are
neglected in the analytical model.

5[}[} T T T T T T
—#=— quasi-analytical simulation relative
450 F |—=— CFD Output relative e -
quasi-analytical simulation accumulated Tl
400+ |—=— CFD Output accumulated s E

]

«_" 350

300

250

200

Ejected volumen [cm

150

100

50

time [s]

Figure 9. Comparison of the volume ejected, using CFD and the analytical model.

4. Results

4.1. Data Acquisition and Control System

The experimental system shown in Figure 10 allows the execution of robot movements, acquisition
of location data and monitoring of thermal data. It consists of 6 stages. Stage 1 is responsible for
acquiring the images of the robot through a wireless camera (in a real situation, in deep waters, there is
a project developed and tested by the Monterrey Bay Aquarium Research Institute (MBARI) based on
a vision system. This control system tracks marine animals with an autonomy of 89 min, and it was
tested with the Plychogena medusa) [56], which are sent to the central computer.

Stage 2 corresponds to the control interface for movement control and establishment of virtual
points. Data monitoring is carried out with the temperature sensor that the robot carries on board,
and the sensor was placed on the robot’s top because according to the CFD, the displacement of fluids
in this area is less than in any part of the body, acquiring a more reliable measurement. Then, through
the vision system (Stage 3), which applies object segmentation and digital image processing techniques,
the robot is located inside the aquatic environment.

In Stage 4, based on the current position and virtual path points, errors are calculated and
provided to the fuzzy controller that through Stage 5 (power stage) supply the current in a controlled
manner to contract the SMAs. The potency card shown has been designed and implemented based on
the power requirement to handle currents of up to 6 Amps with 36 Volts.

Finally, Stage 6 corresponds to the robot within the aquatic testing environment and the execution
of movements.
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. .
S
4 [3] [2]

Figure 10. Experimental assembly of the system for the execution of tests. Source: Author.

4.2. Monitoring Interface and Fuzzy Control System

For the development of movements, a MATLAB interface was developed through which the
robot is monitored, and different parameters are calibrated (Figure 11). It has two modes of operation.
The first one is a manual method and allows the robot to be teleoperated, through the threshold
configuration for PWM value and image threshold.

UNIVERSIDAD POLITECNICA DE MADRID
CONTROL INTERFACE - SOFT JELLYFISH

Y(+)
VALOR PWM 0

cicLico ~

Umbral =

ENVIAR

SMA 1

|
JF |
sMA2
SMA3

SMA 4

SMA &

|
o |

: | o EX(0)
O SELECCION DESTINO CONTROL AUTOMATICO

°C
TEMPERATURA Gradiente de Temperatura

Figure 11. Interface for control and configuration in MATLAB. Source: Author.

The independent movements are executed by the operator using the buttons on the panel (forward,
backward, right, left, ascent), and the temperature values are acquired as required by the user;
the results of the manual movement were captured on video and examined in MATLAB.

The second mode is autonomous and requires the establishment of virtual points placed so that
they form a monitoring path. Figure 11 shows the location of four virtual destination points (P1, P2, P3,
P4) so that the robot forms a square trajectory and performs thermal monitoring in that area, with an
established uniform sampling time of 500 milliseconds.

A fuzzy control system was implemented because a control (PID) is not feasible due to the lack
of a precise model because the body does not have a rigid structure, and due to the nonlinear and
discrete relationship between SMA control and resulting contraction.
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The control loop (Figure 12) has as its input the virtual destination point consisting of two
coordinates (X.f, Yref). These values (given in millimeters according to the previously performed
calibration) are subtracted from the current values of the robot position given by the vision system,
determining an errory and an errory, respectively. These values are sent to a fuzzy controller with two
inputs and generate three outputs, whose rules are detailed in Table 2. The variables in the table are
defined as (e+) positive error, (e—) negative error, (z) zero, (SMARr_c_1) right, center and left SMA
actuator, respectively.

PWM Current
t
+ error_x Fuzzy o Mosfet 1 —» SMA .
X_ref — Z Controller Right
T - L » SMA Displacement
OO | ™ Mosfet 2 —» >
—> Central
+
Y _ref — Z — » Mosfetd —» SMA
error_y Left

Y Position Camera
X_Position @

Figure 12. Fuzzy Control loop, two inputs and three outputs. Source: Author.

Table 2. Rules for the fuzzy controller, with two inputs (errors) and tree outputs SMAr_c_.

Error “x”

e-Big e-Small z e+Small e+Big

SMAR nullpWM nullpWM ﬂullpWM MedeM nghPWM
SMAR YlullpWM YZMleWM l’lu”pWM YlullpWM TlullpWM
SMAR nghPWM MedeM HM”PWM ”””PWM ”””PWM

Y7

Error “y

SMAR nullpWM nullpWM TlLillpWM nullpWM nullpWM
SMAR nullpWM nullpWM TlullpWM MedeM nghPWM

SMAR nullpWM nullpWM l’lullpWM nullpWM nullpWM

The PWM output values have been raised based on the observation and analysis of the robot’s
behavior through manual operation, determining that pulse width modulation values greater than 200
(78% of the cycle) generate a quick contraction response in the SMA, where Highpy corresponds to
255, Medpw s is 175 and nullpyyy is 0, in a range of [0-255] of the duty cycle.

Based on the fuzzy conclusion generated from the rules, the respective output of the PWM is
generated, toward one of the Mosfet in potency card: (Mosfet 1) for displacements to the right, which
acts on the respective lateral SMA, (Mosfet 2) for vertical displacements, which acts on the central
SMA in the form of a ring and (Mosfet 3) for displacements to the left, by means of the respective
lateral SMA.

The maximum peak current operated by the potency card is up to 6 Amps, which is applied for a
maximum time of 500 milliseconds—enough time to produce the molecular state change in the SMA,
returning to its initial form of contracted spring, generating the displacement of water by compressing
the respective area in the jellyfish body.

After that, there is a recovery time of 2 s, in which the jellyfish passes to the state of relaxation;
during this time, the SMA, with the help of the low water temperature (24 °C), reduces its temperature
and changes its state again, before executing the closed-loop control again.

The controller is conditioned by external programming to correct the errors “x” or “y” one by one,
since according to the CFD analysis, the impulse generated after each contraction would be lost if it is
performed in a combined lateral way and vertical or first lateral and then vertical. Therefore, the best

7o a7

option was to correct first in “x” then in “y” or conversely.
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4.3. Movement Execution

The proposed experiments consist of establishing trajectories through virtual points through
the developed interface, so that the robot can follow them due to the motion controller and perform
periodic temperature measurements in order to generate thermal maps and analyze the parameters of
the jellyfish movement. The tests and results are available in the annexed video link (Appendix A).

The environment of tests to carry out the experiments was a pool with measures of
1.30 x 1.50 x 2.50 m. Table 3 shows in its three sections the results of the three types of movement
tests and movements carried out, as well as the main variables measured during the execution of the
monitoring movements.

Figure 13, graphically shows the result of the visual system location, where the points in red show
the jellyfish centroid for each moment, while the blank areas correspond to the jellyfish segmented and
superimposed for each moment, so that the path of passage is defined.

[mm] [mm] [mm]
1000
800 - 500 1000
400 800 |
S:: ’ . o0 PO
200 P2 w0 P3
0 ‘ 100 p1 == 200l 4
0
800 Pl . &0 . o
400 '\\\\ o — ';; 1000 }‘\ 7/./«800/ 1000 wm[mr;‘ \,\)\
mm 20 } T ) [mm] #° Y{ 600 [mm] 500
Y
b, @ (b)

Figure 13. The three figures show the jellyfish overlap during the movement along the entire trajectory,
and the central point of the jellyfish in each moment. Movements developed: (a) vertical displacements;
(b) lateral displacements; (c) trajectory composed of several points. Source: Author.

Over the trajectory in Figure 13a—c, the points established for the path are shown, all starting
from P1. In Figure 13a, an ascent movement has been made starting from the pool bottom and a
destination point at the top; Figure 13b has its starting point on the left side and concludes in the right
area; and Figure 13c shows the lower right central area of the pool and begins its trajectory towards
the established trajectory points that conclude in the upper right.

Table 3 contains three subsections: a (vertical movements), b (lateral movements), and c (trajectory
composed. Tthe results of different representative movement tests are shown in Figure 13, emphasizing
the measurement of times, number of contractions of the SMAs involved, speeds and average
accelerations, for trajectories made based on the establishment of virtual destination points. In this
way, several individual tests were carried out with different destination points for each case.

A future research line proposed for the SMA control is the control loop feedback through
temperature (currently performed through the vision system) to generate inclined movements with
the jellyfish, in order to keep the SMA contracted for long periods of time without generating short
circuits that damage the control board or the power card.
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Table 3. Variables measured from a data set of experimental tests, of Figure 13 movements.
(N° CT = Number of Contractions)

Distance SMA_L SMA_C SMA_R Time Peak Speed Peak
Traveled [etm] N°CT N° CT N° CT [s] Medium [cm/s]  Acceleration [cm/s?]

a 114 0 14 0 61.6 2.51 5.01
a 116 0 16 0 64.8 2.53 5.20
a 120 0 15 0 68.2 247 5.34
a 117 0 15 0 65.2 2.52 5.21
b 91 0 0 15 41.4 1.28 4.86
b 92 0 0 16 43.1 1.14 492
b 95 14 0 0 44.2 1.08 5.04
b 93 16 0 0 42.4 1.35 4.89
C 245 4 12 8 142.2 2.14 6.72
C 241 5 13 7 136.3 2.07 7.01
C 239 5 13 8 148.2 2.10 6.82
C 242 4 12 9 139.6 2.24 6.92

4.4. Experimental Results

The results of the kinematic parameters of experiments developed to validate the controller and
movement of the jellyfish are shown. Data concerning speed were filtered using the Savitzky—Golay
method. in Sections E and F for Figures 14 and 15, red points represent data captured by the vision
system at each moment, and the blue curves were used to represent the peaks of data with a higher
value produced by contractions. Experiments developed are shown in Appendix A.

Traveled trajectory 3D
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Figure 14. Experimental kinematic parameters based on vertical displacement. (A) Shows the 3D
traveled trajectory; (B) Shows the jellyfish positions along the path; (C) Shows x position; (D) Shows y
position; (E) Corresponds to x speed; (F) Shows y speed.

Figure 14 shows vertical movement developed to travel a distance of approximately 1 m,
Figure 14F shows the speed peaks generated with each contraction (22 in total) and Figure 14D
shows the ascent path, in which after each contraction there is a slight increase in the ascent, which is
due to the propulsion generated after the expulsion of the water. Figure 14E shows a small variation
of the x speed after each contraction. Figure 15 shows horizontal movement to travel a distance
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of approximately 25 cm, Figure 15E shows as red rectangles the electrical pulses to produce the
contractions (5 in total) and as blue curves the speed peaks and Figure 15F shows the acceleration,
where the peaks coincide to the instants where the contractions were executed.

Traveled trajectory

y[mm,/s] aceleration vs time [s]

A Traveled trajectory 3D B
SO0 -
600
00 T —— -
2 = e a0 00 o
g a00 0
300 X
. x[mm] movement vs time [s] - y[mm] movement vs time [s]
800 B
500 R — T 600
400
400
200
200
o s 10 15 20 Pl 0 as o 5 10 15 20 5 ] 35

a I'n.. L]} kL AL |

i,
o ] 10 15 20 25 0 a5 o ] W 15 20 25 ol 35

Figure 15. Experimental kinematic parameters based on horizontal displacement. (A) Shows the 3D
traveled trajectory; (B) Shows the jellyfish positions along the path; (C) Shows x position; (D) Shows
y position; (E) Corresponds to x speed and red rectangles are the electrical pulses given; (F) shows
y acceleration.

4.5. Thermal Maps Generated through Path Tracking

One of the possible applications for the Soft Jellyfish Robot proposed is to monitor not only
temperature but also other environmental variables (pH, contamination (turbidity)). Temperature was
chosen to demonstrate this due to its ease of management and the fact that it is reversible,
not contaminating the water and thus allowing us the opportunity to repeat the experiments without
having to change it; additionally, this is a low-cost robot. Thermal maps are a representation of the
monitored data.

During the trajectory journey, through the virtual points given by means of the interface shown in
Figure 11, temperature measurements were carried out at different points along the path that traveled
with a sampling interval of 500 milliseconds, to subsequently generate a thermal map of the area, based
on the temperature gradient and the focused position of each measurement in an instant. To carry out
these tests, boiled water (around 90 °C) poured from the test pool top was used, so that a heat source
was generated that disperses and allows the water temperature to be modified uniformly.

The average time required to travel a trajectory at an average speed of 2 cm/s is 52.3 s; during this
time, a constant flow of water was maintained from the top with a manually reduced flow, which is
why it reaches the lower part with a temperature of around 33 °C in the lower areas.

The movement of the jellyfish bell affects in part the uniform distribution of the water, but the
sensor has been placed on top just where the movement of the water is greatly affected.

Thus, Figure 16a refers to a map generated from real measures taken by Robotic Jellyfish with a
thermal focus on the upper central part, while for Figure 16b, it has two thermal sources of dispersion
in the upper corners. Water was poured in each spot with a high temperature at 90 °C, and the graph
shows the temperature transfer tendency to the lower temperature zones, reaching a maximum of
50 degrees and a minimum of 25 in the areas where there was no temperature transfer.
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Figure 16. Thermal maps generated from the thermic measurements with the robotic jellyfish: (a) map

with a thermal focus on the upper central part; (b) map with two thermal bulbs in the upper corners.
Source: Author.

5. Discussion

5.1. Biomimetic Behavior and Movements

To make this analysis, the vertical jellyfish displacement has been taken as a reference, since it is
the movement typically performed by the species, with which we can make a comparison. Figure 17
shows in the first column the results of velocity, displacement and acceleration of the developed
jellyfish actuated with SMA, while the other three columns correspond to the research developed by
Sean Colin in the study of morphology, to develop a model of propulsion called “hydromedusa” [51].
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Figure 17. (Column A) Comparison of movements and variables of robotic jellyfish developed,
compared to jellyfish species: (Column B) Sarsia sp.; (Column C) Proboscidactyla flavicirrata;
(Column D) Mitrocoma cellularia. Sources: Author (Column A). Column (B-D) [40].

The displacement made by the robotic jellyfish presents oscillations for the rise and fall with each
contraction. The slight downward displacements are mainly generated by the weight and recovery
time of the SMAs after heating to generate the contraction, while the ascending curves of the real
jellyfish show great similarity, showing a similar decrease after contraction. The velocity curves are
highly similar in all four cases; the soft robot reaches an average peak velocity of 2.54 cm/s, while the
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second, third and fourth reach 2.53, 1.95 and 1.24 cm/s, respectively; acceleration behavior in the same
way in all cases presents a great similarity.

On the other hand, the use of equations for CFD and model of bell selected gave satisfactory
results, showing similar values for the acceleration value that is reflected with an acceleration of
3.8 cm/s? using the CFD and 3.38 cm/s? in the calculated values. This difference is due to the tentacle
presence, because CFD shows that after each contraction, the tentacles generate an additional impulse
because of the positive vortices generated at the ends. This means that tentacles contribute an 11.05%
of the total acceleration.

One of the methods aimed to minimize the wiring effect. To partially reduce the influence of the
cables, an experiment was carried out by introducing plastic with air to improve buoyancy and reduce
the effect of the cables; however, the results were not good, since it generated instability after each
movement. For this reason, there is no buoyancy compensator; it is also important to indicate that the
consumption of the robot is 0.185 W for the trajectory in Figure 17A.

A future line of research has been proposed, which by means of a ZigBee/XBee module or similar
allows the jellyfish to be completely wireless, which would eliminate the influence of the cables entirely.

5.2. Analysis of Implemented Controller

Based on the results in Table 3, an analysis of accuracy and controller repeatability was performed
determining as a result an accuracy of £2.165 cm and a repeatability of 0.973 for vertical movements
and an accuracy of 1479 cm and a repeatability of 0.944 for lateral movements. Figure 18 shows a
compendium of results (3 tests of the whole dataset from Table 3a are shown); the results of the analysis
made by MATLAB are shown when establishing a target point (in blue) for all cases, to evaluate the
results and obtain the values of accuracy and repeatability.

Figure 18. Comparison of movements and variables of robotic jellyfish developed. Source: Author.

On the other hand, within the work done previously related to jellyfish, the information on
controllers is not detailed, while within a few works, there is a PD control system made with arduino
to control the jellyfish microvalves developed by J. Frame in 2018 at Naval Surface Warfare Center
Carderock Division.

Although this work presents the control loop, it does not fully specify the parameters used, or the
accuracy and repeatability; this controller also focuses on regulating the tentacles deformation but not
on the robot’s position control with respect to a trajectory.

5.3. SMAs as Actuators and Results Comparison

The SMAs are encapsulated in a silicone layer so that external temperature has little influence
on the alterations in the SMAs’ state. Temperature monitoring with SMAs would be a future line of
research, since crystal structure modification happens within austenite to martensite and vice versa,
and two additional changes occur: The first one takes place with the change of its modulus of elasticity,
and the other has to do with the alteration of its electrical resistance value, values that are directly
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proportional to the change in temperature. The resistance change value could be used to estimate water
temperature using the SMA. SMA can then be deformed and heated 10 million times before failing.

Among the advantages of using robotic jellyfish as a means of monitoring are mainly the quick
contraction for propulsion, its low weight and the cost of implementation which is highly reduced
compared to that of an underwater exploration structure or the hiring of diving equipment, with a
constant and reliable monitoring.

A comparison has been made between the displaced water volumes, with data obtained with
CFD and quasi-analytical modeling, obtaining as main results that there is a difference between
them, although both follow the same trend shown in Figure 9. In CFD, ejected volume is higher
than in analytical model, because viscous of the effects associated with the vortex ring formation and
added-mass-variation effects are neglected in the analytical model. A similar situation occurs with
other parameters, such as the Reynolds number.

The experimental results displayed in Figures 14 and 15 and Table 3 show the kinematic
parameters evolution of the jellyfish. Where based on pulsations, modification in the displacement
and the peaks of speed and acceleration for each case are shown.

6. Conclusions

This article shows the design and implementation of a soft autonomous robot actuated by SMA,
capable of performing vertical and horizontal movements, to travel along given paths in the water,
this robot is controlled by a fuzzy visual control and is applied in thermal monitoring, representing
measured data as thermal maps.

Robot development has an analytical background, beginning with the analysis of the jellyfish
Chrysaora hysoscella, from which a CAD model was obtained, the basis for this model. A CAE and
CFD analysis were done, validating the design, along with CFD equations showing similar values
for the acceleration that is reflected with a value of 3.8 cm/s? using the CFD and 3.38 cm/s? in the
calculated values. The jellyfish body implemented was made with flexible silicone and consists of
five spring-shaped SMAs: a central one in a circular shape and four lateral springs radially separated
90 degrees anchored from the center to one end of the bell.

To control the robot movements, a fuzzy controller was implemented because the jellyfish body
is made of soft material. In addition, the behavior of the SMA has bidirectional hysteresis when
changing phase, so finding an exact model is highly complex, and the fuzzy controller implemented
generated a low error range, generating an accuracy of £2.165 cm and a repeatability of 0.973 for
vertical movements and an accuracy of £1.479 cm and a repeatability of 0.944 for lateral movements,
after tests were applied. Data from the controller (PWM output 0-255) were used as input for the
control board and power control board (specifically the Mosfets IRF540-N) that regulate the current
supplied to the respective SMA, generating the movement.

The kinematic parameters produced during the movement of the jellyfish show that after each
contraction, there are peaks of velocity, increases in movement and acceleration, and also the jellyfish
bell diameter shows a fast variation during the first 33% of the total contraction time. Comparing
the displacement data (vertical movements) of the robotic jellyfish against jellyfish of the species
Sarsia sp. and Proboscidactyla flavicirrata, it can be emphasized that in the curves generated with
the results for displacement, speed has a highly similar behavior, achieving speeds of up to 2.5 cm/s
(Robotic Jellyfish), compared to 2.8 cm/s of the mentioned species.

The use of MATLAB as an interface allowed temperature data acquisition, robot location, control of
autonomous movements and generation of thermal maps, as well as identifying the jellyfish state and
monitoring its temperature status.

The Jellyfish robot is proposed as a means to monitor not only temperature but also other
environmental variables (Ph, contamination (turbidity)). Temperature was chosen to demonstrate it
due to its ease of management and the fact that it is reversible, not contaminating the water and thus
allowing the opportunity to repeat experiments without changing it.
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Abbreviations

The following abbreviations are used in this manuscript:

SMA  Shape-memory alloy

CFD Computational Fluid Dynamics
CAD  Design assisted by a computer
CAE Engineering assisted by a computer
IPMC  Ionic polymer metal composites
ICPF  Conductive ionic polymer film
HDPE High-density polyethylene

Appendix A
Experimental Results of the Soft Underwater Robot video https://youtu.be/a-vFVyM9uBk.

Appendix B
GitHub documentation https://github.com/ChristyanCruz11/Soft-Jellyfish-Robot.git.
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