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Abstract: The main aim of the current study is to determine the effects of the temperature dependent
viscosity and thermal conductivity on magnetohydrodynamics (MHD) flow of a non-Newtonian
fluid over a nonlinear stretching sheet. The viscosity of the fluid depends on stratifications. Moreover,
Powell–Eyring fluid is electrically conducted subject to a non-uniform applied magnetic field. Assume
a small magnetic reynolds number and boundary layer approximation are applied in the mathematical
formulation. Zero nano-particles mass flux condition to the sheet is considered. The governing
model is transformed into the system of nonlinear Ordinary Differential Equation (ODE) system
by using suitable transformations so-called similarity transformation. In order to calculate the
solution of the problem, we use the higher order convergence method, so-called shooting method
followed by Runge-Kutta Fehlberg (RK45) method. The impacts of different physical parameters
on velocity, temperature and concentration profiles are analyzed and discussed. The parameters
of engineering interest, i.e., skin fraction, Nusselt and Sherwood numbers are studied numerically
as well. We concluded that the velocity profile decreases by increasing the values of St, H and M.
Also, we have analyzed the variation of temperature and concentration profiles for different physical
parameters.

Keywords: variable viscosity and thermal conductivity; eyring-powell fluid; binary chemical reaction
and activation energy; shooting method

1. Introduction

Now a days the investigation of the MHD boundary layer behavior of different kind of fluids
take a tremendous attraction due to its vast practical usage in industrial processes and engineering
applications. These application includes petroleum industries, geothermal engineering, crystal growth,
aerodynamics, nuclear reactors metallurgical processes, liquidating metals space technology, casting
and spinning of fibers etc. In order to examine the rheological assents of fluids, the Navier Stokes
equations are insufficient alone. Therefore, rheological models are implemented to reduced this
problem. The description of non-Newtonian fluids does not exist in single constitutive relationship
between stress and strain. Few examples of non-Newtonian fluids are drilling mud, plastic
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polymer, hot rolling, optical fibers, metal spinning, paper production and cooling of metallic plates.
The investigation of the flow due to extending surface in a moving liquid is important in advanced
industry, e.g., the expulsion of metals and plastics, glass blowing, cooling or drying of papers, etc.
The problems of linear stretching sheet for many events of fluid have also been investigated by many
number researchers; detail review for this article is explained as bellow.

Sakiadis [1] analyzed the boundary layer flow over a stretching surface. Various authors has
been discussed the different feathers of the flow over a stretching surface. Vleggaar [2] studied
the boundary layer on the stretching surface almost proportional to the distance from the orifice.
Mahmood [3] et al. analyzed the un-uniform heat source or sink on MHD non-Darcian flow in a
convective micropolar fluid over a stretching sheet with radiation. Crane et al. [4] evaluated the
consequences of Newtonian fluid over a stretching sheet on the uniform stress. Haritha et al. [5]
analyzed the effect of chemical reaction on convective boundary condition of a Maxwell fluid over a
stretching surface in the appearance of thermal radiation. Zeb et al. [6] studied the effect of thermal
radiation on time dependent fluid flow over a stretching sheet with variable thermal conductivity.
Zeb et al. [7] studied the effect of thermal radiation and slip boundary condition on time dependent
fluid flow over a stretching sheet along with variable thermal conductivity. Ghahderijani et al. [8] using
the numerical solution of magnetohydrodynamics flow inside the Constricted Channels with local
symmetric constrictions. Karimipour et al. [9] investigated the numerical solution of laminar MHD
forced convection flow of carbon nanofluid in the microchannels with uniform heat flux. The combine
effects of viscous dissipation and Heat transfer flow of pseudo-plastic nanofluid over a moving
permeable surface with heat absorption/generation was studied by Maleki et al. [10]. The variation of
thermal radiation on time dependent of a non-Newtonian Maxwell nanofluid over a stretching surface
is carried out by Madhu et al. [11] via finite element method.

Magnetohydrodynamic (MHD) flow is the study of magnetic assets on electrically conducting
fluids. Due to wide useful applications of MHD in industrial processes such as petroleum industries,
plasma studies, manufacturing of heat exchangers, design for cooling of nuclear reactors, MHD
power generator designing, and on the performance of many other processes. Soid et al. [12] was
found the dual Solutions of time dependent flow over a shrinking sheet. Jamalabadi et al. [13]
analyzed the formulation of subcooled boiling flow of nanofluid under the effect of a magnetic field.
El-Dabe et al. [14] studied the characteristics of heat and mass transfer on MHD boundary layer flow
of non-Newtonian fluid on a moving wedge. Khan et al. [15] also found the numerical assets on MHD
laminar boundary layer flow past a wedge with the effects of, heat generation, thermal radiation and
chemical reaction.

Another type of fluid is nano-fluids which is measured by dispersing of small sized materials such
as nanotubes, nanofibers, nanowires, droplets, nanosheet and nanorods. The nano-fluids are nanoscale
colloidal suspensions containing condensed nanomaterials. The productivity of polymerase chain
reaction can be enhanced with the procedure of graphene based nano-fluid. Nanofluids require tunable
optical assets, and due to these effects, they are used in solar collectors. Moreover nanofluids are also
used in microfluids, biomedical, solid-state lighting, transportation, and manufacturing. The study
of nano-fluids has been a topic of intense research during the last one decade due to their interesting
thermophysical properties and anticipated applications in heat transfer. Angayarkanni et al. [16]
evaluated the influence of particle size, volume fraction and particle morphology nanoparticles on
the temperature dependent specific heat capacity of metal oxide nano-fluids via differential scanning
calorimeter. Malvandi et al. [17] theoretical investigated the MHD mixed convective in a water
nanofluid in a vertical annuler pipe. Nanofluid and heat transfer of water silver nano-particle
inside a microchannel was studied numarically via finite element approach by Forghani et al. [18].
The numerical study of nanofluid flow over a streching sheet with heating joule effect was studied
by Zeb et al. [19]. In the fluid suspensions, nano-materials have shown many exciting properties
and the characteristic features present unparalleled potential, analyzed by Hua et al. [20]. Heat and
mass transfer of a non-Newtonian fluid over a permeable surface with suction and injection effects
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was calculated by Maleki et al. [21]. The extremely huge thermal conductivity can be report via
inverse micellar templating and nanofiller. During melting and freezing the of the thermal features
of n-hexadecane containing inverse micelles of volume fractions was studied by Philip et al. [22].
Lu et al. [23] evaluated the combined effects of non-linear radiation and zero mass flux surface on the
axisymmetric steady carreau nano-fluid induced by a radially stretching sheet.

The Powell-Eyring has several advantages of using at low and high shear rates and can be reduced
to Newtonian fluid by the derivation of kinetic theory of liquids. Hayat et al. [24] investigated the
flow of Powell- Eyring model via asymptotic boundary condition through numerical approach. In last
several decades the Powell-Eyring (PE) model got the attention of scientists in fluid dynamics due to
its applications in both sciences and technological machinery. 3-D case of Powell- Eyring fluid past
a stretching sheet was discussed by Palumbo et al. [25]. Also the evaluation of thermal radiation
and convective boundary condition on Powell-Erying fluid over a moving sheet was discussed by
Akbar et al. [26]. Hayat et al. [27] calculated the effect of zero mass flux of nanoparticles on (MHD)
flow of Powell–Eyring nanofluid toward a nonlinear stretching sheet. A numerical approach for the
effect of Cattanneo–Christov heat flux model in MHD flow of Williamson fluid toward a stretching
sheet with viscosity effects was found by Salahuddin et al. [28]. Hayat et al. [29] performed the
investigation of Cattaneo––Christov heat flux in stagnation point flow of temperature dependent
viscosity toward a nonlinear stretching sheet under the effect of double stratification.

Chemical reaction and thermal diffusion plays an important role on heat and mass transfer
phenomena. The concentration difference produces qualitative and quantitative changes in the rate of
heat transfer. Moreover, many chemically reacting processes consist of the species chemical reactions
with finite Arrhenius activation energy. The phenomenon of Activation energy is mostly helpful in
the fields of geothermal engineering or oil reservoir and in oil, water combinations. The relation
between chemical reactions and mass transport are usually very difficult, and can be witnessed in
the consumption and manufacturing of reactant species at different rates in fluid and mass transfer.
Bestman [30] was published the boundary layer flow in heat and mass transfer under binary chemical
reaction. The study of binary chemical reaction and activation energy was analyzed by Awad et al. [31]
whose presented the solution via perturbation to shoe the effect of natural convection in a porous
medium. The investigation of binary chemical reaction and activation energy on the time dependent
rotating flow of heat and mass transfer was studied by Shafique et al. [32]. The effects of activation
energy and binary chemical reactions was analyzed by [33–35].

Stratification depends upon on temperature, concentration differences or existence of fluids with
different densities. Double stratifications play a vital role in engineering, industries, and sciences.
The applications of stratifications include such as thermal stratification of reservoirs, processing rivers,
oceans, manufacturing, different heterogeneous mixtures, ground water reservoirs, condensers of
power plants, density stratification of atmosphere, etc. The biological processes occurring in reservoirs
make the water in the bottom anoxic. The problem can be reduced with the implication of thermal
stratification. Mukhopadhyay [36] was published a numerical study for double stratification on MHD
heat and mass transfer fluid flow over exponential stretching surface along with suction and junction.
The numerical aspects for the consequences of variable viscosity and dually stratification on Casson
fluid toward a nonlinear stretching surface was studied by Animasaun et al. [37]. The effects of
joule heating and thermal radiation on MHD flow of Cosson fluid due to nonlinear stretching sheet
embedded by double stratifications was evaluated by Daniel et al. [38].

Previously, Khan et al. [39] analyzed a numerical approach change in viscosity of the Williamson
nano-fluid flow over a nonlinear stretching sheet embedded in a double stratified medium.
The viscosity depends on double stratification. The aims of current study is extend to the effects
of change in viscosity and conductivity on Eyring Powell nano-fluid over a nonlinear stretching
sheet along with chemical reaction and activation energy. Viscosity of the fluid depends on double
stratification. We use similarity transformations for the transformation of governing model in to
nonlinear coupled ordinary differential equation. We successfully compute the solution of this coupled
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ordinary differential equation via numerical scheme (shooting method followed by Runge-Kutta
Fehlberg method). The variations of different physical aspects are presented through graphs. Also,
we obtained the numerical results of the local skin fraction, heat transfer rate and Sherwood number
for various physical parameters through tables.

2. Mathematical Model

We have consider a mathematical model for MHD steady flow of change in viscosity on
Eyring-Powell nano-fluid flow over a nonlinear stretching sheet along with double stratification.
The flow is produced by a nonlinear stretching sheet. Moreover, the highlights of thermal conductivity
and zero mass flux condition are taken into account. The sheet is stretched with velocity uw(x, y) =
U0(x + c)m−1, assume the sheet is designated with profile y = A(x + c)

m−1
2 here U0 stretching rate,

c dimensionless constant, A represents constant, m represents stretching index. Moreover, it is
supposed that the model needs to be satisfied individual for m 6= 1, because for m = 1, it decreases to
flat surface. A magnetic field Bo is applied normal to the sheet, vertical to the surface (see in Figure 1).
The assumption of rate process is used to obtained the Eyring Powell model (1994) in order to explain
the shear of non-Newtonian flow. Akber et al. [26] evaluated the shear stress of in Eyring Powell
model as

τi,j = µ
∂ûi
∂ûj

+
1
β1

sinh−1
(

1∂ûi
c∂ûj

)
(1)

here µ represents the dynamic viscosity, c and β1 are represents parameters of the fluid. We take the
second order approximation as

sinh−1
(

1∂ûi
c∂ûj

)
∼=
(

1∂ûi
c∂ûj

)
− 1

6
(

1∂ûi
c∂ûj

)3 (2)

Under the above assumptions and boundary layer approximation leads to the governing
expressions [26,37–39] (Eyring Powell nano-fluid model, energy and concentration formulation) are
stated from operation (3)–(6) as follows:

∂û
∂x

+
∂v̂
∂y

= 0, (3)

û
∂û
∂x

+ v̂
∂û
∂y

=
∂

∂y
(µ(T)

∂û
∂y

) +
1

ρδc
∂2û
∂2y
− 1

2ρδc3 (
∂û
∂y

)2(
∂2û
∂y2 )− σ

B2
0 û
ρ

, (4)

û
∂T̂
∂x

+ v̂
∂T̂
∂y

=
∂

∂ŷ

(
k(T̂)

∂T̂
∂ŷ

)
+ τ[(

DT̂
T̂∞

)(
∂T̂
∂y

)2 + DB(
∂C
∂y

∂T̂
∂y

)] (5)

û
∂C
∂x

+ v̂
∂C
∂y

= DB(
∂2C
∂2y

) + τ(
DT̂
T̂∞

)(
∂2T̂
∂y2 )− kr(

T̂
T̂∞

)n exp(
−E
ςT̂

)(C− C∞). (6)

Subjected to boundary condition

û(x, y) = ûw(x) = U0(x + c)m, v(x, y) = 0 (7)

T̂(x, y) = T̂w(x, y) + N
∂T̂
∂y

,(
DB

∂C
∂y

)
+

(
DT̂
T̂∞

)(
∂T̂
∂y

)
= 0, at y = A(x + c)

1−m
2 , (8)

û(x, y)→ 0, T̂ → T̂∞ C → C∞ as y→ ∞. (9)
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Figure 1. Geometry of the problem.

In the above expression the velocity components û and v̂ are in the x and y - directions, respectively,
µ(T) denotes viscosity, ρ the density of the nanoparticle, T̂ denotes the temperature of the nanofluid,
Ĉ represent the concentration of the nanofluid, Cw and T̂w the concentration and temperature and
along the stretching sheet. Ĉ∞ and T̂∞ the ambient concentration and temperature, (ρc) f the heat
capacitance of the base fluid, DT̂ the thermosteresis coefficient. The Arrhenius law in Equation (6)
was obtained by Arrhenius [40], ( Ť

Ť∞
)n exp(−E

ςŤ
)(Č− Č∞) represents the modified form of Arrhenius

function in which ς = 8.61× 10−5 eV denotes the Boltzmann constant, n is the unit less exponent fitted
rate constant typically lies in range −1 < n < 1 and E represents the activation energy. The variation
in viscosity and thermal conductivity due to internal friction between the stretching surface and fluid
paretical have to be taken into account, it is appropriate to assumed the mathematical formulation of
the thermal conductivity and viscosity depends on temperature was investigated in [37–39] together
with useful similarity variables as follows:

µ(T̂) = µ̌(a + b1(T̂w − T̂)), k(T̂) = µ̌(a1 + b2(T̂ − T̂∞)),

θ(ζ) =
T̂ − T̂∞

T̂w − T̂o
, φ(ζ) =

C− C∞

Cw − Co

(10)

Transform governing model into ODEs by using following similarity variable as fellows:

T̂w = T̂o + n1(x + c)
1−m

2 , T̂∞ = T̂o + n2(x + c)
1−m

2 ,

Ĉw = Ĉo + n3(x + c)
1−m

2 , Ĉ∞ = Ĉo + n4(x + c)
1−m

2 .
(11)

Using Equation (11) we obtained

T̂w − T̂ = (1− θ)T̂w − T̂o − n2(x + c)
1−m

2

Ĉw − Ĉ = (1− φ)Ĉw − Ĉo − n4(x + c)
1−m

2

(12)

From Equations (10) and (11) can easily obtained as follows

b1(T̂w − T̂o) = b1n1(x + c)
1−m

2 , b1(T̂∞ − T̂o) = b1n2(x + c)
1−m

2

b2(Ĉw − Ĉo) = b3n1(x + c)
1−m

2 , b2(Ĉ∞ − Ĉo) = b4n2(x + c)
1−m

2

(13)
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in the above expression T̂o and Ĉo are reference temperature and concentration respectively.
Form Equation (13) we obtained

b1(T̂w − T̂o) = d, b1(T̂∞ − T̂o) = dSt, St =
n2

n1
,

b2(Ĉw − Ĉo) = d, b2(Ĉ∞ − Ĉo) = dSc, Sc =
n4

n3
, (14)

ε = b2(T̂∞ − T̂o) εSt = b2(T̂w − T̂o) (15)

Introducing the following similarity transformations

ζ =

√
(m− 1)Uo(x− c)(m−1)

2v
y, ψ =

√
2vUo(x− c)(m+1)

m + 1
F(ζ), (16)

û = Uo(x + c)mF′(ζ), Θ(ζ) =
T − Tw

Tw − T∞
, Φ(ζ) =

C− Cw

Cw − C∞
(17)

v̂ =

√
(m− 1)vUo(x− c)(m−1)

2
[F(ζ) + ζ

m− 1
m + 1

)F′(ζ)], (18)

by substituting the above similarity transformation Equations (3)–(6) reduces into the following system
of ODEs:

(a + d(1−Θ− St))F′′′ − (m + 1)
2

HλF′′′(F′′)2 − dΘ′F′′ + FF′′ − 2m
m + 1

F′
2 − 2M

m + 1
F′ = 0, (19)

a1 + εΘ
Pr

Θ′′ − m− 1
m + 1

ΘF′ − St
m− 1
m + 1

F′ − FΘ′ +
ε

Pr
Θ′

2
+ NbΦ′Θ′ + Nt(Θ′)2 = 0, (20)

Φ′′

PrLe
− m− 1

m + 1
ΦF′ − Sc

m− 1
m + 1

F′ +
Nb

PrLeNt
(Θ′′)− FΦ′ − Kr((1 + δΘ)n exp(

−E
(1 + δΘ)

)Φ = 0. (21)

Subject to boundary condition

F(ζ) + α
m− 1
m + 1

F′ = 0, Θ(α) = 1 + LtΘ′(α), F′(α) = 1 NbΦ′(α) + NtΘ′(α) = 0, α = 0.

F′(α) = 0, Θ(α) = 0, Φ(α) = 0, at α→ ∞.
(22)

Further more considring F(η) = f (ζ − α) = f (η), Θ(η) = θ(ζ − α) = θ(η) ans Φ(η) =

φ(ζ − α) = φ(η), Equations (19)–(21) with bondary conditions 22 as follows:

(a + d− dθ − Std) f ′′′ − dθ′ f ′′ − (m + 1)
2

Hλ f ′′′( f ′′)2 + f f ′′ − 2m
m + 1

f ′
2 − 2M

m + 1
f ′ = 0, (23)

a1 + εθ

Pr
θ′′ − m− 1

m + 1
θ f ′ − St

m− 1
m + 1

f ′ − f θ′ +
ε

Pr
θ′

2
+ Nbφ′θ′ + Nt(θ′)2 = 0, (24)

φ′′

PrLe
− m− 1

m + 1
φ f ′ − Sc

m− 1
m + 1

f ′ − f φ′ +
N(b)

PrLeNt
(θ′′)− Kr((1 + δθ)n exp(

−E
(1 + δθ)

)φ = 0. (25)

Subject to boundary condition

f (η) + α
m− 1
m + 1

f ′ = 0, f ′(η) = 1, θ(η) = 1 + Ltθ′(η), Nbφ′(η) + Ntθ′(η) = 0, η = 0. (26)

f ′(η) = 0, θ(η) = 0, φ(η) = 0, at η → ∞. (27)

where f ′ is the dimensionless velocity, θ denotes the temperature, φ represents the concentration η

denotes the similarity variables where M = σ(Bo)2

ρU0(x+c)m−1 is magnetic parameter, α = A((Uo(1+m)
2ν ))1/2

represents the wall thickness parameter, Pr = µCp
k∞

is Prandtl number, Rey =
uw
√

y
ν Reynolds number,
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H = 1
µβ1c and λ = ρuw

2xc2µ
are fluid parameters. Nb = τDB

ν (T̂w − T̂∞) the Brownian motion parameter,

Le = ν
Db

the Lewis number, Kr =
ko
b the reaction rate parameter, Nb = τDB

ν (Ĉw − T̂∞) the Brownian

motion parameter, E = Ea
ςĈ∞

, denotes activation energy, δ = T̂w−T̂∞
T̂∞

represents temperature relative
parameter. The quantities Cg, Nux̂ and Shx̂ are define by

C f =
τw

ρu2
w

, (28)

Nux =
xqw

k(T̂w − T̂∞)
, (29)

Shx =
xqm

DB(Cw − C∞)
, (30)

where τw represents the skin friction along the stretching surface, qw the heat flux and jm the
concentration flux from the surface and are given by

τx = µ(T̂)
[
(1 +

1
βc

)
∂û
∂y

+
1

βc6 (
∂û
∂y

)3
]

y=0
qw = [−k

∂T̂
∂y

]y=0 jm = [−DB
∂C
∂y

]y=0, (31)

where uw qm and qw, represents the wall shear stress, mass flux and heat transfer respectively. The skin
fraction, local Nusselt and Sherwood numbers are transform in dimensionless form as follows

C f
√

Rex = (a + d− dθ − Std)
(√

m− 1
2

(1 + H) f ′′(0)−
√

m− 1
2

Hλ

3
(

f ′′(0)
)3
)

,

Nux√
Rex

= −
√

m− 1
2

[
1 + εθ(0)

]
θ′(0),

Shx√
Rex

= −
√

m− 1
2

φ′(0).

(32)

3. Numerical Method

Equations (19)–(21) are the system of nonlinear, 3rd order in f , 2nd order in θ and 2nd order in φ

respectively. First of all these non-linear ODE’s are reduce into a system of first order ODE’s and then
solved by using shooting method. The Equations (19)–(21) can be written as:

f ′′′ = −
[ −dθ′ f ′′ + f f ′′ − 2m

m+1 f ′
2 − 2

m+1 M f ′

a + d− dθ − Std + H − 0.5(m+)Hλ( f ′′)2

]
, (33)

θ′′ = − Pr
a1 + εθ

[
−m− 1

m + 1
θ f ′ − St

m− 1
m + 1

f ′ − f θ′ +
ε

Pr
θ′

2
+ Nbφ′θ′ + Nt(θ′)2

]
, (34)

φ′′ = −LePr
[

m− 1
m + 1

φ f ′ − Sc
m− 1
m + 1

f ′ − f φ′ − Kr((1 + δθ)n exp(
−E

(1 + δθ)
)φ)

]
−Nb

Nt
(θ′′) (35)

To convert these higher order nonlinear ODE’s into system of first order ODE’s, let

f = u1, f ′ = u2, f ′′ = u3 and f ′′′ = u′3, (36)

θ = u4, θ′ = u5 and θ′′ = u′5 (37)

φ = u6, φ′ = u7 and φ′′ = u′7 (38)

The nonlinear coupled ODE’s are converted into a system o first order simultaneous algebraic
form, which can be defined as form as
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u′1 = u2, (39)

u′2 = u3, (40)

u′3 = −
[ −du5u3 + u1u3 − 2m

m+1 u2
2 −

2
m+1 Mu2

a + d− du4 − Std + H − 0.5(m+)Hλ(u3)2

]
, (41)

u′4 = u5, (42)

u′5 = − Pr
a1 + εu4

[
− m− 1

m + 1
u4u2 +

ε

Pr
u2

5 − St
m− 1
m + 1

u2 + u1u5 + Nbu7u5 + Nt(u5)
2
]

(43)

u′6 = u7, (44)

u′7 = −LePr
[

u7u1 −
m− 1
m + 1

u6u2 − Sc
m− 1
m + 1

u2 − Kr((1 + δu4)
n exp(

−E
(1 + δu4)

)u6)

]
− Nb

Nt
(u′5).

boundary conditions are

u1(0) + α
m− 1
m + 1

u2(0) = 0, u2(0) = 1, u4(0) = 1 + Ltu4(0), Nbu6(0) + Ntu4(0) = 0, (45)

u2(∞) = 0, u4(∞) = 0, u6(∞) = 0 (46)

To determine the solution of system of seven ODE’s (39)–(45) by using shooting method, seven
initial assumptions are required, but in system (46) two initial guesses are given in f one in θ and one
in φ and the other three conditions are defined as η → ∞. These three conditions generate result in
three unknowns. The subsequent and foremost step of this method is choosing the estimated values of
η at ∞, solution process is initiated with certain initial guesses and finding out the solution of (BVP)
including governing model. The method of solution with a new values of η at η → ∞ and the method
is repeated until two consecutive values of f ′′(0), θ′(0) and φ′(0) are different only after the significant
digits. Thus final values of η is considered as η → ∞.

4. Results and Discussions

The system of the governing Equations (19)–(21) are solved numerically by using shooting
method. We have taken4(η) = 0.02 also the boundary condition ∞ has been replaced with 5 due to
the requirement of the shooting method. The convergence has been obtained at tol ε = 10−5, while
the thickness of the boundary layer η∞ is taken between 2 and 15. Morever the current result is
compared with previusaly published data see in Table 1. The variation of different physical aspects
are presented through graphs (as shown in Figures 2–23). The distribution of horizontal velocity
on (thermal stratification St) shown in Figure 2. It is viewed that the velocity gradient reduces by
enlarging values of St. Figure 3 is sketches for the distribution temperature gradient for unlike values
of St. it is clear that temperature gradient increases for higher values of St Plotted Figure 4 is for the
variation of velocity and temperature distribution for unlike values of M. Decrease variation of velocity
and temperature profiles increases by enlarge values of M. According to the Lorentz’s force theory,
the behavior of magnetic field and velocity fraction is inverse. Therefore the velocity distribution is
reduced by the higher values of M. Plotted Figure 5 is plotted for the distribution of concentration and
temperature profiles for the distinct values of (Prandtl number Pr). The temperature profile decreases
and concentration profile increases by increasing values of Pr. The physical reason behind that the
fluids contain a little number of Pr have a higher thermal diffusivity, and this behaviour is inverse for
larger values of Prandtl numbers. Figure 6 indicates that the significance of velocity for various values
of material fluid parameter H. By increasing H the velocity decreases, hence velocity and momentum
boundary layer thickness are increased.
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0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

θ(
η)

η

 

 
St=0.0
St=0.3
St=0.6
St=0.9

E=0.6; d=0.1; Nb=0.3; m=0.6;Nt=1.0;
Pr=0.8; H=0.1;Kr=0.3;a=0.2;a1=0.2;
M=0.3; Le=1.6;Sc=0.1;n=3.0;
ε=1.0; Lt=0.2; λ=0.1;α=0.2;δ=0.9;

Figure 3. The f ′ and θ for distinct values of St.

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f′ (η
)

η

 

 
M=0.0
M=0.3
M=0.6
M=0.9

E=0.2; del=0.2; d=0.2; Nt=0.2;
Pr=0.71; Nb=0.4; a=0.3;
a1=0.3; M=0.9; H=0.3; Le=1.2;
Kr=0.3; m=0.1;St=0.1;
sc=0.1; n=1.0; ε=0.3; Lt=0.2;
λ=0.3;α=0.2;δ =0.2.

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

θ(
η)

η

 

 
M=0.0
M=0.3
M=0.6
M=0.9

E=0.2; del=0.2; d=0.2; Nt=0.2;
Pr=0.71; Nb=0.4; a=0.3;
a1=0.3; M=0.9; H=0.3; Le=1.2;
Kr=0.3; m=0.1;St=0.1;
sc=0.1; n=1.0; ε=0.3; Lt=0.2;
λ=0.3;α=0.2;δ =0.2

Figure 4. Variation of f ′ and θ for distinct values of M.



Appl. Sci. 2020, 10, 708 10 of 21

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

θ(
η)

η

 

 
Pr=1.0
Pr=1.2
Pr=1.4
Pr=1.6

E=0.2; d=0.1; Nb=0.3; m=0.6;Nt=1.0;
H=0.1;Kr=0.3;a=0.2;a1=0.2;
M=0.3; Le=2.0; St=0.1;Sc=0.1;n=1.0;
ε=0.3; Lt=0.2; λ=0.3;α=0.2;δ 0.2;

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

φ(
η)

η

 

 
Pr=1.0
Pr=1.2
Pr=1.4
Pr=1.6

E=0.2; d=0.1; Nb=0.3; m=0.6;Nt=1.0;
Pr=0.71; H=0.1;Kr=0.3;a=0.2;
M=0.3; Le=2.0; St=0.1;Sc=0.1;n=1.0;
ε=0.3; Lt=0.2; λ=0.3;α=0.2;δ 0.2;

Figure 5. Variation of θ and φ.

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f′ (η
)

η

 

 
 H=0.0
 H=0.5
 H=1.0
 H=1.5

E=0.2; d=1.0; Nb=0.3; m=1.0;Nt=0.2;
Pr=1.2;Kr=0.3;a=1.0;a1=0.2;
M=0.2; Le=1.0; St=0.1;Sc=0.1;n=1.0;
ε=0.3; Lt=0.2; λ=0.3;α=0.2;δ=0.2;

Figure 6. The behaviour of H on f ′.

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f′ (η
)

η

 

 
λ=0.0
λ=1,0
λ=2.0
λ=3.0

E=0.2; d=1.0; Nb=0.3; m=1.0;Nt=0.2;
Pr=1.0; H=3.0;Kr=0.3;a=1.0;a1=0.2;
M=0.7; Le=1.0; St=0.1;Sc=0.1;n=1.0;
ε=0.3; Lt=0.2; λ=0.3;α=0.2;δ 0.2;

Figure 7. The behaviour of λ on f ′.

Table 1. Comparison of − f ′′(0) at H = 1.0, m = β = St = a = λ = ξ = 0. for distinct values of M
with perviously published data.

M Akbar et al. [41] Malik [42] Hussain [43] Rehman et al. [44] Present Result

0.0 −1 −1 −1 −1 −1

0.5 −1.1180 −1.11802 −1.1180 −1.1180 −1.1180

1.0 −1.41421 −1.41419 −1.4137 −1.4142 −1.4141

5.0 −2.44949 −2.44945 −2.4495 −2.4495 −2.4497



Appl. Sci. 2020, 10, 708 11 of 21

Figure 7 demonstrated for velocity profile for unlike values of λ parameter. It is seen that the
variation is enhancing λ is to increase both the film thickness and the free surface velocity f ′(η).
The distribution of velocity profile for power law index m is shown in Figure 8. Decreases momentum
and velocity boundary layer thickness by improving values of m. Here m = 1 linear represent the
surface case and m 6= 1 corresponds to nonlinear stretching surface. Figure 9 exhibits the variation
of m on the temperature field. It is noticed the temperature profile reduces by enhancing values
of m. Figure 10 designates for the distribution of the concentration profile for various values of Le.
The results shows that decreases in concentration profile is noticed for large valves of Lewis number
Le. This is because of the fact that there is a reduction in the nano-particle volume fraction boundary
layer thickness with the raise in the Lewis number. The variation of the concentration profile for
the distinct values of Nb shown in Figure 11. It is noticed that reduction in concentration profile
noticed by incrementing value of Brownian motion Nb. The effect of Nt on the concentration shown
in Figure 12. It is seen that the concentration decreases as the thermosteresis parameter increases.
Figure 13 is plotted to represents the variation (activation energy E) on concentration field φ. it is
concluded that E is diminishing function of φ. The results shows that increases in concentration profile
is noticed for large valves of E. Figure 14 designates for the distribution of the concentration profile
for various values of (Lewis number Le). The results shows that decreases in concentration profile is
noticed for large valves of Le. This is because of the fact that there is a reduction in the nano-particle
volume fraction boundary layer thickness with the raise in the Lewis number. Figure 15 indicates the
variation of concentration profile for the chemical reaction parameter Kr. The result has shown that
concentration profile reduces by enhancing the values of Kr, a decreases in concentration is observed
with increasing values of Kr. Figure 16 designates the temperature profile for the unlike values of the
(Brownian motion parameters Nb). The result has shown that temperature distribution reduces by
incrementing values of Nb. Figure 17 represents the distribution of the temperature profile for the
various values of the Nt. The result has shown that temperature profile decreases by increasing values
of thermophoresis Nt. The impact of (wall thickness parameter α) on velocity gradient is plotted in
Figure 18. It is found that the velocity profile is increases for higher values of α. Figure 19 represents
the effects of and fitted rate constant n on the nano-particle volume fraction. The antiparticles volume
fraction profile decreases with an increasing value of fitted rate constant n which leads to considerable
thinning with in the boundary layer. Figure 20 is plotted to represent the distribution of concentration
profile for (temperature difference parameter δ). The result has shown that concentration profile is
reduces by improving values of δ. Figure 21 is the distribution of temperature profile for different
values of (variable thermal conductivity ε). The temperature profile increases by increasing values of ε.
Figure 22 is plotted for the distinction of the temperature profile for the different values thermal slip
parameter Lt The result has shown that the temperature profile increases by increasing value of Lt.
Figure 23 is plotted for the impact of thickness parameter d on velocity gradient. For steps up values
of thickness parameter d the velocity distribution enhances.

Next we calculate the numerical variation for different physical parameters through tables.
Tables 2 and 3 are calculated to show the numerical aspects of skin fraction, Nusselt and Sherwood
numbers for unlike values of different physical parameter. Tables 2 and 3 shows that the skin friction
behavior increases for unlike values of M, m, β, St and λ. Skin friction steps down by the incrementing
values of H, d (is shown in Tables 2 and 3). Nux increases with an increase in d, Lt, M, Pr and St.
Nux steps down by increasing values of ε, m and R. Sherwood number Shx enhancement by steps up
values of ξ, and Kr. Sherwood numbers Shx reduces by enlarging values of M δ, Pr, E m and Lc.
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Figure 8. Influence of m on f ′.
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Figure 15. Variation of f ′.
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Figure 16. The behaviour of Nb on θ.
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Figure 20. Variation of φ for distinct values of δ.
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Figure 21. Variation of θ for distinct values of ε.
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Figure 23. The temperature profile for distinct values of Lt.

Table 2. Effects of A, M, Pr, λ, ε, Υ, δ, and β on − f ′′(0), −θ′(0) and −φ′(0).

ξ M Pr E λ St ε Υ β m δ R Kr Dt Lt − f ′′(0) −θ′(0) −φ′(0)

1 1.2 0.8 0.4 0.3 0.5 0.3 1.0 90 0.0 0.4 0.7 0.5 0.3 0.6 0.7622 0.5753 0.6718

0.0 1.1116 0.2136 0.1957

0.3 1.0340 0.2157 0.1961

0.6 0.9713 0.2178 0.1965

0.0 0.5419 0.5436 0.6598

0.3 0.6317 0.5655 0.6571

0.6 0.7429 0.5880 0.6497

0.75 0.5945 0.4833 0.6567

1.0 0.5938 0.6452 0.5350

1.3 0.6843 0.7643 0.4534

0.0 0.8331 0.1892 0.2332

0.2 0.6327 0.4780 0.2311

0.4 0.5237 0.3893 0.2291

0.0 0.5701 0.4863 0.6588

0.3 0.5729 0.4859 0.6587

0.6 0.5748 0.4845 0.6578

0.0 0.8056 0.1520 0.2308

0.2 0.8236 0.1765 0.2297

0.4 0.8494 0.1892 0.2291

0.0 0.6580 0.5769 0.6515

0.3 0.6605 0.5760 0.6517

0.6 0.6785 0.5729 0.6524
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Table 3. Effects of A, M, Pr, λ, ε, Υ, δ, and β on − f ′′(0), −θ′(0) and −φ′(0).

ξ M Pr E λ St ε Υ β m δ R Kr Dt Lt − f ′′(0) −θ′(0) −φ′(0)

1 1.2 0.8 0.4 0.3 0.5 0.3 1.0 90 0.0 0.4 0.7 0.5 0.3 0.6 0.7622 0.5753 0.6718

0.0 0.9763 0.1810 0.2260

0.3 0.9778 0.1787 0.2261

0.6 0.9797 0.1760 0.2261

0.0 0.9539 0.1781 0.2266

45 0.9797 0.1760 0.2261

90 1.0457 0.1739 0.2256

0.0 0.9539 0.1801 0.2334

0.2 0.9684 0.1719 0.2193

0.4 0.9515 0.1638 0.2071

0.0 0.9515 0.1638 0.2016

0.2 0.9515 0.1638 0.2032

0.4 0.9515 0.1638 0.2049

0.0 0.9985 0.1778 0.2278

0.2 0.9987 0.1746 0.2291

0.4 0.9996 0.1731 0.2299

0.0 0.9705 0.1632 0.2015

0.3 0.9705 0.1632 0.2017

0.6 0.9705 0.1632 0.2019

0.0 0.9505 0.1638 0.1638

0.3 0.9505 0.1638 0.1548

0.6 0.9505 0.1638 0.2409

0.0 0.8338 0.0000 0.2032

0.3 0.9515 0.1638 0.2032

0.6 1.0126 0.2055 0.2032

5. Conclusions

In this article we presents change in viscosity and temperature on incompressible flow of Eyring
Powell nano-fluid in the attendance double stratification of induced by a non-linear stretching sheet.
Moreover the effects of zero mass flux condition, activation energy nd binary chemical reaction
are taken into account. We use similarity transformation for the transforming nonlinear coupled
ordinary differential equations. Successfully computed the solution of coupled ordinary differential
equations via numerical scheme through shooting method followed by Runge-Kutta Fehlberg method.
The behaviour of various parameters on velocity, temperature and concentration profiles are shown
graphically. The behaviour of the local skin friction coefficient, local Nusselt number and local
Sherwood number are shown numerically through table. The major conclusions are listed bellow.

• There is a decreases in velocity profile f ′(η) with increasing values of λ, m, St and M
• There is a increases in velocity profile f ′(η) with increasing values of H and α.
• The temperature profile increases θ(η) with the exceeding values of M, R, m, H, L, Nt and ε.
• Decrease in temperature θ(η) profile is noticed for the increasing values of Pr, St, Nb, n and M.
• The concentration profile φ(η) increments for large values of M, E and H.
• The concentration profile φ(η) reduces with the steps up values of Le, Kr, n, δ and Nb.
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Nomenclature

The following abbreviations and notations are used in this manuscript:

ODE Ordinary Differential Equation MHD Magnatohydrodynomics
BVP Boundary value problem k(T̂) Thermal conductivity
IVP Initial value problem k∞ Free stream conductivity
m Velocity power index parameter Kr Reaction rate parameter
α Wall thickness parameter µ Temperature dependent viscosity parameter
E Activation energy n Fitted rate constants
C f Local skin friction λ, H Fluid parameters
Cp Specific heat δ Temperature relative parameter
g Dimensionless velocity St, Sc stratification parameters

wm Local wall couple stress Nb Brownian motion parameter
Nux Local Nusselt number Nt Thermophoresis parameter
Pr Prandtl number Le Lewis number
Kr Reaction rate parameter Lt Thermal Slip parameter
qw Wall heat flux M Magnetic parameter
Shx Sherwood number η Plate surface
Re Reynolds number ε Variable thermal conductivity
τ Thermo-phoretic parameter d Temperature dependent viscosity parameter
T̂∞ Ambient temperature T̂w Wall temperature
u Velocity component in x–direction v Velocity component in y –direction

µ Viscosity B0 Magnetic induction
ς Boltzmann constant
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