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Abstract: Non-orthogonal multiple access (NOMA) plays an important role in achieving high capacity
for fifth-generation (5G) networks. Efficient resource allocation is vital for NOMA system performance
to maximize the sum rate and energy efficiency. In this context, this paper proposes optimal solutions
for user pairing and power allocation to maximize the system sum rate and energy efficiency
performance. We identify the power allocation problem as a nonconvex constrained problem for
energy efficiency maximization. The closed-form solutions are derived using Karush–Kuhn–Tucker
(KKT) conditions for maximizing the system sum rate and the Dinkelbach (DKL) algorithm for
maximizing system energy efficiency. Moreover, the Hungarian (HNG) algorithm is utilized for
pairing two users with different channel condition circumstances. The results show that with
20 users, the sum rate of the proposed NOMA with optimal power allocation using KKT conditions
and HNG (NOMA-PKKT-HNG) is 6.7% higher than that of NOMA with difference of convex
programming (NOMA-DC). The energy efficiency with optimal power allocation using DKL and
HNG (NOMA-PDKL-HNG) is 66% higher than when using NOMA-DC.

Keywords: non-orthogonal multiple access; power allocation; Dinkelbach algorithm; user pairing;
Hungarian algorithm

1. Introduction

The development of different multiple access techniques for each generation has brought many
advantages to wireless cellular communication, such as improving spectral and energy efficiency
and achieving a high data rate. The fifth-generation (5G) networks are expected to be used various
applications in the future “smart” era [1–3]; they are anticipated to serve a large number of mobile
cellular users with huge data traffic transmission. This makes spectrum allocation a challenging issue in
wireless communication [4]. Several advanced technologies have been developed to address this problem
and achieve high spectral efficiency, such as millimeter wave communication, machine-to-machine
communication, network virtualization technology and non-orthogonal multiple access techniques [5–7].

In this context, power domain non-orthogonal multiple access (PD-NOMA), known simply as
NOMA, has arisen recently as one of the promising technologies. NOMA ensures fairness between
users and connectivity of a huge number of mobile devices with low-latency transmission [8,9].
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It utilizes power domain or code domain multiplexing to allow many users to share the resources
of frequency or time. The assignment of different subchannels to different users allows adaptable
bandwidth allocation [10,11]. NOMA employs two main fundamental techniques for transmitting and
receiving user information: superposition coding (SC) and successive interference cancellation (SIC).
Since several users are allowed to use the same subchannel, inter-user interference may occur. Thus,
in NOMA, different power levels are assigned to the multiplexed users to reduce the interference by
allocating more power to the far user and less power to the near user [12].

The best NOMA performance can be achieved by utilizing effective resource allocation and user
pairing solutions. Nevertheless, determining efficient resource allocation is a challenging issue and
has received significant attention from researchers [13,14]. Different solutions have been proposed to
optimize the subchannel and power allocation in the downlink and uplink NOMA system. Most of
works in the literature have measured the achieved sum rate and weighted sum rate of the NOMA
system with suboptimal solution and without showing the closed-form solutions for the optimal
power allocation. In addition, the ideal energy efficiency of a NOMA system that allows achieving
optimal performance is not well studied in the literature. Hence, this paper focuses on proposing
optimal solutions for user pairing and power allocation to maximize the system sum rate and energy
efficiency performance.

This paper extends our work in [15] and proposes novel resource allocation techniques in a
downlink single-cell NOMA system using Dinkelbach (PDKL) and Hungarian (HNG) algorithms.
The base station (BS) is considered to have a knowledge about channel state information (CSI). To reduce
complexity at the receiver, SIC technique is applied for the multiplexed users. The HNG algorithm
first pairs two users in a subchannel. Then, equal power allocation is considered for each subchannel.
The optimal power allocation technique is applied to achieve the optimal power allocation for each of
the multiplexed users in the given subchannel. The major contributions of this work are as follows:

• An optimal user pairing approach based HNG algorithm is proposed that considers pairing of only
two users at each subchannel. This algorithm guarantees an optimal performance of both the sum
rate and energy efficiency maximization process in a downlink NOMA system. For comparison,
the performance of the proposed algorithm is compared with the center-based user pairing (CEB)
method proposed in [16].

• The sum rate maximization problem is formulated by considering SIC for each user in the
subchannel in which the constraints are the minimum acceptable data rate and the maximum
available transmission power at the BS. To solve this problem and obtain the optimal power
for each of the paired users in a subchannel, a power allocation solution is proposed based on
Karush–Kuhn–Tucker (KKT) conditions (PKKT). Then, the closed-form optimal power allocation
solution for the multiplexed users is obtained. The PKKT solution is applied after pairing users
based on HNG to obtain the optimal sum rate in NOMA. Thus, we refer to this technique
as NOMA-PKKT-HNG.

• The energy efficiency maximization problem is formulated with power constraint consideration,
and SIC is applied to reduce complexity at the receiver. To solve this problem and obtain
the optimal power for the multiplexed users, we propose a power allocation solution using
PDKL. The formulated objective function is in fractional form. Therefore, the DKL algorithm
is used to transform into linear form (subtractive function) and iteratively solve the problem
with considerable error tolerance. The PDKL solution is applied after pairing users based
on HNG to obtain the optimal energy efficiency in NOMA. Thus, we refer to this technique
as NOMA-PDKL-HNG.

The proposed solutions have been evaluated and compared with NOMA with difference of convex
programming (NOMA-DC), NOMA with fractional transmitting power allocation (NOMA-FTPA) and
convectional Orthogonal Frequency-Division Multiple Access (OFDMA) in terms of sum rate, energy
efficiency and fairness. The rest of this work is organized as follows: Related works are explored
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in Section 2. In Section 3, the system model and performance metrics of the NOMA system are
described. Section 4 describes the proposed resource allocation techniques and shows the mathematical
formulation for the sum rate and energy efficiency optimization process. In addition, the HNG process
to obtain the optimal user pairing in the system is also presented. Then, the optimal power allocation
solutions are provided. In Section 5, the complexity analyses for the proposed algorithms are discussed.
The analysis of simulation results is presented and discussed, showing the significant improvement
made by the proposed algorithms. Lastly, in Section 6, the work is concluded.

2. Related Works

In the literature, the weighted sum rate and sum rate are the metrics most utilized to measure the
performance of NOMA. The weighted sum rate performance has been adopted by several research
studies [17–20]. The author in [17] proposed an optimal power allocation method to maximize
the weighted sum rate with quality of service (QoS) constraints for the downlink NOMA system.
The proposed method achieved lower computational complexity without consideration for the power
transmission constraint in the optimization process. A greedy search-based user pairing with optimal
power allocation method for maximizing the weighted sum rate was also presented in [18]. Although
high achievable weighted sum rate performance was obtained, the QoS constraints were not considered
in the optimization process formulation. In [19], single-carrier power control (SCPC) algorithm
and single-carrier user selection (SCUS) algorithm were adopted for user power and user selection
optimization process. The NOMA-FTPA technique that assigns the user’s power based on the channel
gain condition was used for comparison. The results showed that the proposed algorithms achieved
higher weighted rate with higher computational complexity when compared with the NOMA-FTPA
technique. The authors in [20] proposed an optimal joint subcarrier and power allocation technique in
a multicarrier multiple-input single-output NOMA (MISO-NOMA) network to maximize weighted
system throughput with the consideration of QoS requirements. The results showed that multicarrier
MISO-NOMA had a higher throughput than MISO-OMA.

The sum rate metric has also been utilized by several studies [21–26]. Fixed power allocation
(FPA) method was utilized for power optimization in order to improve the user’s data rate [21].
The proposed method does not guarantee an optimal performance, and thus it is not appropriate
for practical situations. The power allocation problem was analyzed in NOMA with the visible light
communication (NOMA-VLC) system [22]. The authors proposed using the equal power allocation
(EPA) technique to serve the users. In term of sum rate, the proposed technique outperforms the FPA
and gain ratio power allocation (GRPA); however, it is not an optimal solution. An optimal power
allocation technique with fairness constraints based on the Okumura Hata model was introduced
in [23] to maximize the sum rate performance. The proposed technique provides higher throughput
performance with higher computational complexity based on all available powers that satisfy the
stipulated fairness constraints. In [24], the power optimization technique with the QoS requirement
called improper Gaussian signaling (IGS) was presented, with the aim of maximizing the sum rate
of the NOMA system with imperfect SIC. The results showed that IGS achieved a high sum rate;
however, the power constraints were not considered in the optimization. The work in [25] proposed the
Lagrangian duality function to maximize the average sum rate for full CSI. Besides, the power allocation
problem was addressed analytically for partial CSI. The proposed function achieved higher average
sum rate performance; however, the authors did not consider any user pairing method to achieve
optimal performance. In [26], a price-based power allocation and user-pairing-based Stackelberg
game theory methods were proposed to maximize the sum rate lacking the QoS constraint for the
optimization process.

As the number of wireless users and the volume of data traffic increase, the energy consumption of
wireless systems will consequentially increase. Thus, attention must be paid to energy-efficient design
in next-generation wireless communication systems. In this context, the resource allocation problem has
been considered in the literature for the aim of achieving high energy efficiency performance in NOMA
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system design, as seen in research publications [27,28]. The authors in [27] formulated a resource
allocation problem to maximize energy efficiency using supermodular game theory. In comparison
with NOMA-FTPA and OFDMA, the proposed method has the best performance. The difference of
convex (DC) programming approach was proposed in [28] as a suboptimal solution to allocate the
user’s power and subchannel, improving the network energy efficiency and sum rate. The proposed
technique showed greater improvement than the OFDMA approach and the equal power allocation
method. The aforementioned suboptimal solutions have considered the sum rate and weighted sum
rate of the NOMA system without investigating the closed-form solutions for the optimal power
allocation. Additionally, the energy efficiency and sum rate of the NOMA system that could achieve
the optimal performance are not well studied in the recent works. Our previous conference work [15]
investigated the user pairing based on HNG and presented the closed-form optimal user power
allocation solution based on PKKT conditions to maximize system sum rate without considering energy
efficiency performance and fairness among users.

3. System Model and Performance Metrics

The resource allocation problem in the downlink single-cell NOMA system is the primary concern
to be investigated. The CSI is considered to be known to the BS. To ensure that the receiver complexity
is reduced, the SIC technique is applied for the multiplexed users. The HNG algorithm, which is an
optimal assigning tool for resource allocation problems, is first used to pair two users in a subchannel,
followed by equal power allocation consideration for assigning each subchannel. Thereafter, the optimal
power allocation technique is applied to achieve the optimal power allocation for each of the paired
users in the given subchannel. In this section, description of the utilized system model, step-by-step
mathematical formulation and definitions of the performance metrics are discussed.

3.1. System Model

The system model examines a downlink cellular wireless NOMA architecture with a BS located
at the cell center, as shown in Figure 1. The signal of BS is assigned consistently to M users within
the cell radius R with S subchannels. The symbols w = {1, 2, . . . , W} and s = {1, 2, . . . , S} denote the
groups of users and subchannels, respectively. UEw,s represents the wth user in the sth subchannel
within the NOMA system. Bw is the system bandwidth, and Bsch = Bw/S is the assigned bandwidth for
each subchannel. Pmax and the Ps denote the maximum transmit power for BS and the assigned power
for each subchannel, respectively. With the assumption that the BS has an ideal knowledge of CSI,
Ms represents the number of the paired users on sth subchannel and Si represents their superposed
signals. The superposition of the user‘s modulated symbols takes place in each of the S subchannels.
Hence, the BS transmission symbols are expressed in Equations (1) and (3).
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Figure 1. The proposed downlink NOMA system model for single-cell transmission. 
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xs =
M∑

q=1

√
Pq,ssq (1)

Sq represents the modulated symbol of qth user, in which E [|Sq|
2 = 1]. The transmit power

allocated to the qth user on the sth subchannel is denoted by Pq,s. The received signal for UEw,s is given
as in [28].

yw,s = hw,sxs + zw,s (2)

=
√

Pw,shw,ssw +
M∑

i=1,i,w

√
Pi,shw,ssi + nw,s (3)

where hw,s = gw,s(dw)
−β represents the channel gain from the BS to the wth user, gw,s denotes the

Rayleigh fading coefficient, dw is the distance between wth user and the BS, β is the path-loss exponent
and nw,s ∼CN

(
0, σ2

s

)
represents the additive white Gaussian noise (AWGN), with zero mean and

variance σ2
s . The power spectral density is symbolized by N0. The power constraints for each subchannel

and the BS are limited to
∑Ms

i=1 Pw,s = Ps and
∑S

s=1 Ps = Pmax, respectively, where Pw,s is the power of

UEw,s. Let Hw,s =
∣∣∣hw,s

∣∣∣2/N0 be the channel gain-to-noise ratio (CNR) of UEw,s. The arrangement of the
users in a subchannel is based on their CNR as shown in Equation (4).

H1,s ≥ H2,s ≥ H3,s ≥ · · · ≥ HM,s (4)

Basically, high transmission power is allocated to users with low channel gain, and low transmission
power is assigned to users with high channel gain [29]. For two users pairing with H1,s ≥ H2,s, the BS
allocates the power as P1,s < P2,s. The SIC process is deployed for the signal separation in a multiplexed
user’s subchannels considering the available user channel information. Hence, the strong user (UE1,s)
decodes first and removes the weak user (UE2,s) signal before decoding its signal. On the contrary,
the weak user (UE2,s) directly decodes its signal without adopting SIC. With the consideration of SIC
at the receiver, the received signal to interference plus noise ratio (SINR) for UEw,s is represented in
Equation (5).

SINRw,s =
Pw,sHw,s

1 +
∑w−1

l=1 Pl,sHw,s
(5)

3.2. Performance Metrics

Different performance metrics are usually deployed to evaluate every wireless communication
system’s performance. In this paper, three performance metrics are evaluated and analyzed: throughput
(achievable data rate), energy efficiency and fairness index.

3.2.1. Throughput

Throughput is the rate of effective transmission of a signal in a wireless communication system,
which is measured in bits per second (bps). To obtain the individual UEw,s achievable rate in the
NOMA system, the following mathematical representation is applied [27]:

Rw,s = Bschlog2

1 +
Pw,sHw,s

1 +
∑w−1

l=1 Pl,sHw,s

(bps) (6)

The NOMA system sum rate is obtained by adding the corresponding individual throughputs as
in Equation (7).

Rsum =
S∑

s=1

W∑
w=1

Rw,s (7)
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3.2.2. Energy Efficiency

In a wireless communication system, energy efficiency is the ratio of throughput to the total power
consumption. It is measured in bits per Joule and expressed as follows [30]:

EE =
Throughput(bps)

Total Power Consumption(Joule/s)
(8)

The UEw,s energy efficiency (EEw,s) in a NOMA system can be determined with Equations (9) and (10).
Accordingly, the sum of energy efficiency of the corresponding NOMA is estimated with the use of
Equation (11).

EEw,s =

Bschlog2

(
1 + Pw,sHw,s

1+
∑w−1

l=1 Pl,sHw,s

)
Pc +

∑M
w=1 Ps

(9)

EEw,s =
Rw,s

Pc +
∑M

w=1 Ps
(10)

EEsum =
S∑

s=1

W∑
w=1

EEw,s (11)

3.2.3. Fairness

The fairness evaluation of the proposed power allocation and user pairing methods, their gain
index (or simply fairness index), is calculated and compared with the OFDMA scheme. In this aspect,
the mathematical formulation of the fairness index is as follows [31]:

F =

(
M∑

w=1
Rw,s

)2

M
M∑

w=1
(Rw,s)

2
(12)

where 0 ≤ F ≤ 1. The fairness performance of a resource allocation method is higher when its F value
is closer to one.

4. Proposed Resource Allocation Techniques

The NOMA performance depends mostly on power allocation and user pairing, which are joint
optimization problems. To solve these problems, we analyze the power allocation and user pairing
separately to reduce complexity. After that, the user pairing approach based on the HNG algorithm,
power allocation solution using KKT (PKKT) and power allocation solution using DKL (PDKL) are
determined. The hybrid NOMA-PKKT-HNG technique refers to applying PKKT solution after pairing
users based on HNG to obtain the optimal sum rate in NOMA. On the other hand, NOMA-PDKL-HNG
refers to using PDKL solution after pairing users based on HNG to get the optimal energy efficiency
in NOMA.

4.1. User Pairing Approach Based on HNG Algorithm

We utilize HNG algorithm to maximize the sum rate and energy efficiency of the strong and
weak users by finding their maximum available transmission power and minimum acceptable data
rate. HNG algorithm is an accurate combinatorial optimization method for finding the corresponding
optimal matching between users that need to be assigned in a subchannel. It is well known for its use in
solving resource allocation problems. O(N3) is the computational complexity of the algorithm, which
is especially high in a large-scale scenario; however, it ensures an optimal global performance [32,33].
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Suppose there are two sets of users, with u = {1, 2, . . . , U} and v = {1, 2, . . . , V} denoting strong and
weak users representing rows and columns, respectively. Therefore, a cost matrix (cost function) is
formulated as m = u × v to attain the best optimal match for both sets of users. The element in the uth
row and vth column characterizes the sum rate or energy efficiency of the cost matrix in the NOMA
system. The proposed HNG solution is presented in Algorithm 1.

Algorithm 1. User pairing based on Hungarian algorithm

Step 1: Formulation of cost matrix.
a) Formulate the cost matrix m.
b) Find the largest possible value from the entire cost matrix and subtract it from each cost matrix element.

Step 2: Reduction of row and column.
a) Find the lowest value from each row and subtract it from every value of the same row.
b) Find the lowest value from each column and subtract it from every value of the same column.

Step 3: Optimization procedure.
a) Checking of row.

i If exactly one zero in any row is found, mark the zero with a circle and draw a vertical line across
it, but if not, skip that row.

ii If all zeros are traversed with lines, then proceed to Step 4. But if not, do column checking.
b) Checking of column.

i If exactly one zero in any column is found, mark the zero with a circle and draw a horizontal line
across it, but if not, skip that column.

ii Make confirmation whether all the zeros are traversed with lines.
Step 4: If the number of circles is equal to the number of cost matrix rows, then proceed to

Step 5, but if not, proceed to Step 3.
Step 5: The marked circles are the objective function solutions for all marked users pairs.

In the first step, the cost matrix m is formulated. Each user data rate or energy efficiency is first
calculated, accompanied with the estimation of the total data rate (Mbps) or total energy efficiency
(Mbits/Joule) that is assigned to the two users within the cost function (Ws,w represents the total data
rate, and Es,w represents the total energy efficiency for strong and weak user pairings). The main aim is
to maximize the user’s sum rate and energy efficiency. Therefore, the largest possible value is first
determined and then deducted through the whole cost matrix (Ws,w or Es,w). Tables 1 and 2 illustrate
the Ws,w and Es,w for 10 Users (UEs) available in the BS. The size of rows and columns is decreased by
determining the minimum value in each of them in the second step. The determined value is deducted
from corresponding row or column.

Table 1. User pairing description in the Hungarian algorithm for sum rate maximization.

# UE6 UE7 UE8 UE9 UE10

UE1 4.9913 5.1440 4.9890 5.1128 4.9877
UE2 0.0469 0.1997 0.0446 0.1684 0.0433
UE3 0.3331 0.4859 0.3307 0.4546 0.3294
UE4 0.0218 0.1746 0.0195 0.1433 0.0182
UE5 0.2218 0.3746 0.2194 0.3433 0.2181

Table 2. User pairing description in Hungarian algorithm for energy efficiency maximization.

# UE6 UE7 UE8 UE9 UE10

UE1 25.759 31.111 25.769 30.725 25.769
UE2 0.0057 5.3476 0.0054 4.9617 0.0053
UE3 6.8344 1.2176 6.8341 11.79 6.8339
UE4 0.0025 5.3444 0.0022 4.9585 0.0021
UE5 5.8915 11.233 5.8912 10.847 5.891



Appl. Sci. 2020, 10, 5892 8 of 19

The determination of the zero-element value in each row and column commences as the next
optimization procedure in step 3. If any row has only one zero, a circle is drawn around the zero with
a vertical line through it. A circle is drawn around the zero with a horizontal line through it if only one
zero element appeared in a column. However, a row/column containing multiple zeros is skipped to
proceed to the next row or column. For verification, the numbers of circles and rows are compared in
the cost matrix in step 4. An equal number in the matching procedure is an indication of the optimal
solution, while the contrary result takes the process back to step 3. The resulting marked circles are the
optimal solutions for all marked users’ pairs with maximized sum rate or energy efficiency. Figure 2
shows an example of the user pairing process based on the proposed HNG solution to maximize the
system rate with six users available at the BS. The aforementioned steps are conducted to find the
optimal user pairing, which is (UE1, UE6), (UE2, UE9) and (UE3, UE8).
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4.2. Power Allocation Solution Using KKT Conditions (PKKT)

To obtain the optimal power allocation solution, the optimization problem is formulated to
maximize the system sum rate in Equation (13). The considered constraints are power and minimum
data rate, as shown in (14) and (15).

max
P

Bsch

M∑
w=1

log2

1 +
Pw,sHw,s

1 +
∑w−1

l=1 Pl,sHw,s

 (13)
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C1 :
M∑

w=1

Pw,s ≤ Pmax, Pw,s ≥ 0, ∀w ∈M (14)

C2 : Bschlog2

1 +
Pw,sHw,s

1 +
∑w−1

l=1 Pl,sHw,s

 ≥ Rw, ∀w ∈M (15)

where C1 ensures the maximum transmit power constraint and C2 guarantees the minimum data
rate constraint. The index Rw indicates the minimum achieved data rate as the quality of service
(QoS) requirement for the corresponding user. The objective function in Equation (13) is a convex
problem [28]. To find the solution of this problem, the KKT conditions are proposed to obtain the
optimal power for the multiplexed user in a closed-form solution [34]. The corresponding Lagrange
function of the problem expressed in Equation (13) is determined as illustrated in Equation (16).

L(Pw,λ, ζw) =Bsch

M∑
w=1

log2

1 +
Pw,sHw,s

1 +
∑w−1

l=1 Pl,sHw,s

− λ
 M∑

w=1

Pw,s − Pmax


−

M∑
w=1

ζw

Rw − Bschlog2

1 +
Pw,sHw,s

1 +
∑w−1

l=1 Pl,sHw,s


(16)

where ζw and λ are the Lagrange multipliers, and Rw is the target data rate. Let that,

ψw =
Hw,s

1 +
∑w−1

l=1 Pl,sHw,s
(17)

Then, substitute Equation (17) into Equation (16) to obtain Equations (18) and (19).

L(Pw,λ, ζw) = Bsch
M∑

w=1
log2(1 + Pw,sψw) − λ

(
M∑

w=1
Pw,s − Pmax

)
−

M∑
w=1

ζw(Rw − Bschlog2(1 + Pw,sψw)) (18)

= Bsch(1 + ζw)
M∑

w=1

log2(1 + Pw,sψw) − λ

 M∑
w=1

Pw,s − Pmax

− M∑
w=1

ζwRw (19)

The KKT conditions can be achieved in Equations (20)–(24):

∂L
∂Pw

=
Bsch(1 + ζ∗w)ψw

ln2
(
1 + P∗w,sψw

) − λ∗ = 0, ∀w ∈M (20)

λ∗
 M∑

w=1

P∗w,s − Pmax

 = 0, ∀w ∈M (21)

ζ∗w
(
Rw − Bschlog2

(
1 + P∗w,sψw

))
= 0, ∀w ∈M (22)

λ∗ ≥ 0 (23)

ζ∗w ≥ 0, ∀w ∈M (24)

Lemma 1. If ζ∗w and λ∗ are larger than zero, the optimal solution is achieved. Thus,

M∑
w=1

P∗w,s = Pmax, ∀w ∈M (25)

Rw = Bsch log2

(
1 + P∗w,sψw

)
, ∀w ∈M (26)
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The closed-form optimal power allocation can be obtained from Equation (22) as represented in Equation (27).

P∗w,s =
1
ψw

(
2

Rw
Bsch − 1

)
, ∀w ∈M (27)

From Equation (21), setting w = 1, we obtain Equation (28). See Appendix A for a detailed proof.

P∗1,s = Pmax −

M∑
w=2

P∗w,s (28)

As stated in Lemma 1, the optimal power allocation for sum rate maximization of the multiplexed
users under the target data rate and minimum power constraints can be obtained by assigning high
power to weak channel gain users first, and then assigning the remaining power to strong channel
gain users. This consideration will make sure that the achievable data rate of the weak users is at least
equal to the minimum target data rate. Furthermore, the strong channel gain users seem to contribute
more sum rate in a given subchannel.

4.3. Power Allocation Solution Using DKL Algorithm

To optimize the power allocation in terms of energy efficiency, the energy efficiency maximization
problem for the downlink NOMA system is firstly formulated, then the optimization solution based on
the DKL algorithm is presented [35]. Equation (29) represents the energy efficiency maximization under
the BS power constraint. It is noted that the considered optimization problem is nonconvex due to its
fractional nature, and it is challenging to obtain the global optimal solution [28,36]. Therefore, the DKL
algorithm, which is an efficient iterative algorithm, can be used to deal with fractional programming
problems and tackle them as a sequence of subproblems, as shown in [35,37]. The system energy
efficiency can be expressed as a maximization problem in Equation (29):

max
Pw,s>0

Bsch
M∑

w=1
log2

(
1 + Pw,sHw,s

1+
∑w−1

l=1 Pl,sHw,s

)
Pc +

∑M
w=1 Ps

(29)

subject to the constraint in Equation (30):

C1 :
M∑

w=1

Pw,s ≤ Pmax, Pw,s > 0 (30)

where C1 ensures the maximum transmit power constraint available at the BS. To achieve the optimal
solution, the DKL algorithm is proposed to solve this problem [35]. The objective function of
Equation (29) is a fractional programming problem; it needs to be transformed to an equivalent
problem, and then the equivalent form must be iteratively solved with a tolerance of convergence error
ε. Hence, Equation (29) can be represented as shown in Equation (31):

max
Pw,s>0

(Z(qw) = T(Pw,s) − qwB(Pw,s)) (31)

subject to the constraint in Equation (32):

M∑
w=1

Pw,s ≤ Pt, Pw,s > 0 (32)

where
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T(Pw,s) = Bsch

M∑
w=1

log2

1 +
Pw,sHw,s

1 +
∑w−1

l=1 Pl,sHw,s

 (33)

B(Pw,s) = Pc +
∑M

w=1
Ps (34)

and qw is a real number, which can be written as in Equation (35):

qw =
T(Pw,s)

B(Pw,s)
(35)

The optimal results obtained from the DKL algorithm can be proved by using the following
fractional programming theory. See Appendix B for a detailed proof.

Proposition 1. Let S ∈ Rn, T(Pw,s), B(Pw,s) : S→ R with T(Pw,s) > 0 and B(Pw,s) > 0. The problem can
be solved by max

Pw,s>0

{
T(Pw,s)/B(Pw,s)

}
with equivalent formulation as finding the unique zero of the Z(q∗w) =

max
Pw,s>0

(T(Pw,s) − q∗wB(Pw,s)) if and only if q∗w = T
(
P∗w,s

)
/B

(
P∗,s

)
which implies that q∗w = T

(
P∗w,s

)
/B

(
P∗,s

)
=

max
Pw,s>0

{
T(Pw,s)/B(Pw,s)

∣∣∣Pw,s ∈ S
}
.

The results obtained from Proposition 1 indicate that solving the energy efficiency maximization
problem from Equation (29) is equal to finding the Z(q∗w) = 0 values that satisfy q∗w. The step-by-step
detail of the proposed DKL solution is shown in Algorithm 2.

Algorithm 2. Dinkelbach method for energy efficiency maximization

Step 1: Initialize qw = 0, iteration number w = 0 and ε = 0.01
Step 2: while Z(qw) = T(Pw,s) − qwB(Pw,s) > ε do
P∗w,s ← argmax

Pw,s>0

(Z(qw))

qw+1 ←
T(P∗w,s)
B(P∗w,s)

w← w + 1
Step 3: If

∣∣∣Z(qw)
∣∣∣ ≤ ε

break
end if

end while
Step 4: Output

(
P∗w,s, qw

)
5. Results and Discussion

For evaluation, the simulation results are obtained using MATLAB software (8.5.0, MathWorks,
Natick, Massachusetts, USA). The single-cell downlink NOMA system with the BS’s transmission
power (Pmax) of 41 dBm and the circuit power consumption (Pc) of 1 W is considered. The BS is located
at the center of a circle with radius R = 500 m, and there is a random distribution of M users in the cell
coverage. To reduce computational complexity, NOMA assigns only two users to each subchannel,
and OMA assigns a single user to each subchannel. The CSI is known at the BS. The minimum distance
between BS and users is 50 m, and the minimum distance between users is 40 m. The bandwidth of
the NOMA system (Bw) is 5 MHz and the path-loss exponent β = 2. The noise power σ2

s = BwN0/S,
and the power spectral density N0 = –174dBm/Hz. The obtained results are compared with OFDMA,
FTPA [11] and the DC algorithm [28].
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5.1. Complexity Analysis

The computational complexities of the Hungarian and Dinkelbach algorithms are described in
this section. In the Hungarian algorithm, the time complexity is O(N3), where N refers to the number
of users available in the NOMA system that need to be paired to achieve their maximum sum rate or
energy efficiency. However, this algorithm shows a higher complexity in large-scale scenarios with a
great number of users. In the Dinkelbach algorithm, the computational complexity is mainly based on
both the convergence rate of the sequence of the subproblem and the individual complexity of each
individual subproblem. It is noted that the Dinkelbach algorithm shows superlinear convergence.
Based on this optimization problem expression of Equation (31), it is assumed that the convergence is
achieved with M1 and M2 iterations for outer and inner loops, respectively, with the computational
complexity of variables (Q1) and constraints (Q2) due to polynomial characteristics. Therefore,
the inner loop complexity corresponds to O(M1M2(Q1+Q2)). The updates of qw require O(K) operations.
Hence, the total computational complexity for the proposed Dinkelbach algorithm corresponds to
O(M1(M2 (Q1+Q2) + O(K))).

For comparison purposes, the complexity of the exhaustive search algorithm is also illustrated,
in which O(2S!/2S) is needed to achieve all possible user pairing processes. S refers to subchannels
available in the network. It is concluded that the proposed algorithms have lower complexity than
the exhaustive search algorithm. The complexity comparison between the proposed and exhaustive
search algorithms is summarized in Table 3.

Table 3. The complexity comparison between the proposed and existing algorithms.

Algorithm Complexity

Hungarian algorithm O(N3)

Dinkelbach algorithm O(M1 (M2(Q1+Q2) + O(K)))

Exhaustive search O(2S!/2S)

5.2. Performance Evaluation

This section assesses and validates the efficiency of the proposed techniques. Their performance
is compared with the user pairing CEB method [16] and the power allocation FTPA method [11]. In the
CEB method, the users in the network are paired according to their channel conditions. For instance,
considering that the BS serves 10 active UEs, their channel conditions arrangement is shown in
Equation (36).

H1 ≥ H2 ≥ · · · · · · ≥ H5|︸                        ︷︷                        ︸
Group1: Strong channel gain users

≥ H6 ≥ · · · · · · ≥ H10︸                ︷︷                ︸
Group2: Weak channel gain users

(36)

The pairing process starts by pairing the user that has strongest channel gain with the user that
has weakest channel gain user; then, the user that has second strongest channel gain is paired with the
user that has second weakest channel gain. The process is complete upon successfully pairing all users,
(i.e., (UE1, UE6), (UE2, UE7), (UE3, UE8), (UE4, UE9) and (UE5, UE10)). In FTPA, the allocated power is
obtained based on the condition of the user’s channel. Hence, the transmission power of the wth user
on the sth subchannel (UEw,s) is expressed as in Equation (37).

Pw,s = Ps
H−αw,s∑M

l=1 H−αl,s

(37)

where Hw,s denotes the channel gain normalized by the noise of user UEw,s, Ps represents the
subchannel’s power and α is the decay factor with a value between 0 and 1. Increasing α indicates that
high power is assigned to user with weak channel gain. The user with poorer channel gain is allocated
with a greater α, which means a high power increase. This approach exhibits a low computational
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complexity, with degraded performance as a result of a user’s allocation power instability in proportion
to the path loss [28]. The default simulation parameter values are given in Table 4.

Table 4. Parameter specifications [28].

Parameter Default Value

Radius of the cell (R) 500 m
Maximum BS transmit power (Pmax) 41 dBm

Circuit power consumption (Pc) 1 W
System bandwidth (Bw) 5 MHz

Noise power spectral density (N0) −174 dBm/Hz
Decay factor (α) for FTPA 0.4

Path-loss exponent (β) 2 [8]
Minimum data rate for strong user 200 Kbps
Minimum data rate for weak user 20 Kbps

Figure 3 demonstrates the effect of the BS’s transmission power on system sum rate with
10 users considered in the BS and with transmission power variation from 1 to 12 W. The sum rates
of NOMA-PKKT-HNG and NOMA-DC are considerably higher than those of NOMA-FTPA and
conventional OFDMA due to the power optimization. The results show that the system sum rate
increases upon increasing the BS’s transmission power for all applied methods. The NOMA-PKKT-HNG
technique achieves a higher sum rate than NOMA-DC [28], NOMA-FTPA [11] and conventional
OFDMA. Figure 4 shows the system sum rate performance with different UE numbers (10–60 users
per BS that has 1 W transmission power). The results confirm that the system sum rate increases
as the number of users increases. For comparison, the NOMA-PKKT-HNG is compared with
NOMA-PKKT-CEB, a centralization-based approach [16]. The proposed technique outperformed
other techniques (NOMA-PKKT-CEB, NOMA-FTPA and OFDMA) under the same applied method
for power allocation in both proposed NOMA-PKKT-HNG and NOMA-PKKT-CEB techniques with
similar sum rate for all users available at the BS. Once 20 users exist at the BS, the NOMA-PKKT-HNG
has the highest performance when compared to other techniques.
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Figure 5 expresses the relationship between the system energy efficiency and the number of
users available in a cellular system. The BS transmitting power is fixed at 1 W, and the system
energy efficiency increases with the increasing number of users across all methods. The proposed
NOMA-PDKL-HNG method is more energy-efficient than NOMA-DC, NOMA-FTPA and OFDMA.
With 20 users at the BS, the system energy efficiency of the NOMA-PDKL-HNG technique is greater
than those of NOMA-DC [28], NOMA-FTPA [11] and OFDMA by 0.66, 1.44 and 5.85 times, respectively.
The system energy efficiency performance versus the BS transmit power to circuit power (PBS/Pc)
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ratio is shown in Figure 6. The BS transmit power is set at 12 W and the circuit power is set at 1 W
with only 10 users available at the BS [28]. The results show that the energy efficiency decreases
gradually as the power ratio increases because the energy efficiency is inversely proportional to power.
NOMA-PDKL-HNG achieves higher energy efficiency when the power ratio is low and decreases
faster upon power ratio increment 17 of 22 
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Figure 7 shows the effect of the varying the number of users on fairness performance. The BS
transmit power is set to 41 dBm with only 10 users available at the BS [28]. In a two-user case,
the NOMA-PKKT-HNG has the highest fairness compared to all other schemes. The fairness trend
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decreases as the number of multiplexed users in the subchannel increases. With four users, the fairness
of NOMA-PKKT-HNG shows better performance than NOMA-DC [28] and NOMA-FTPA [11] by
1.94%, and 8.51%, respectively. However, the fairness performance of OFDMA remains constant
regardless of the variation of the number of users in the system because the power is always assigned
equally between the users.
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Figure 8 illustrates the fairness index with BS power variation from 1 to 5 W. The BS power
with 10 users is considered. In contrast to other approaches, the fairness of the NOMA-PDKL-HNG
technique increases as power transmission increases. This is due to the increment of the allocated
power per user, which increases their data rate and fairness. In NOMA-DC, it can be shown that
fairness is unstable: the fairness is the same from 2 to 4 W and increases at 5 W. The fairness of
NOMA-FTPA is slightly higher than that of conventional OFDMA, with almost the same fairness even
upon the increment of transmit power. Figure 9 depicts the system energy efficiency with a different
number of iterations. The system has a 1 W BS power and a maximum number of 10 UEs. It is shown
that NOMA-PDKL-HNG achieves high energy efficiency at all iterations compared to other methods.
This is because the pairing process is achieved with optimal pairing process, and power is assigned to
the users with less complex mathematical formulation. The optimal performance for all methods is
obtained immediately after the first iteration.
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6. Conclusions

In this paper, the user pairing and power allocation problems for the NOMA downlink systems
have been studied, with the consideration of BS power transmission and minimum user rate constraints.
First, the sum rate maximization problem was formulated, then the optimal power allocation in
closed-form solutions for the multiplexed users was derived using KKT conditions. Second, the energy
efficiency maximization problem was formulated in a fractional programming form, in which the global
optimal power allocation solution was not guaranteed. Accordingly, the optimal power allocation
solution was obtained using the DKL algorithm. Moreover, to get the optimal user pairing, the HNG
algorithm paired two users in the subchannel to maximize their sum rate and energy efficiency
performance. The results of the simulation have shown that the proposed NOMA-PKKT-HNG achieves
high sum rate and provides more fairness. In comparison, NOMA-PDKL-HNG achieves higher energy
efficiency performance and better fairness among users when compared to the other techniques. It can
be concluded that NOMA-PKKT-HNG and NOMA-PDKL-HNG techniques are promising solutions
for 5G NOMA systems.
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Appendix A

Proof of Lemma 1. The Lagrange variable λ* is obtained from (20) as displayed in Equation (A1)

λ∗ =
Bsch(1 + ζ∗w)ψw

ln2(1 + Pwψw)
(A1)

When w = 1, then substitute to ζ∗w in the equation above to produce Equation (A2)

λ∗ =
Bsch

(
1 + ζ∗1

)
ψw

ln2(1 + Pwψw)
> 0 (A2)
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From Equation (20), substitute w = 1, 2, 3, to all variables to produce Equations (A3) and (A5)

∂L
∂P1

=
Bsch

(
1 + ζ∗1

)
ψ1

ln2
(
1 + P∗1ψ1

) − λ∗ = 0 (A3)

∂L
∂P2

=
Bsch

(
1 + ζ∗2

)
ψ2

ln2
(
1 + P∗2ψ2

) − λ∗ = 0 (A4)

∂L
∂P3

=
Bsch

(
1 + ζ∗3

)
ψ3

ln2
(
1 + P∗3ψ3

) − λ∗ = 0 (A5)

The relation between ζ∗1 and ζ∗2 can be obtained from Equations (A6) and (A8)

∂L
∂P1

=
∂L
∂P2

= 0 (A6)

Bsch
(
1 + ζ∗1

)
ψ1

ln2
(
1 + P∗1ψ1

) =
Bsch

(
1 + ζ∗2

)
ψ2

ln2
(
1 + P∗2ψ2

) (A7)

Arranging Equation (A7) to obtain Equation (A8),

ζ∗2 = 1−
ψ1

(
1 + P∗2ψ2

)(
1 + ζ∗1

)
ψ2

(
1 + P∗1ψ1

) > 0 (A8)

Similarly, the relation between ζ∗1 and ζ∗3 can be obtained in Equations (A9) and (A10)

∂L
∂P3

=
∂L
∂P1

= 0 (A9)

Bsch
(
1 + ζ∗3

)
ψ3

ln2
(
1 + P∗3ψ3

) =
Bsch

(
1 + ζ∗1

)
ψ1

ln2
(
1 + P∗1ψ1

) (A10)

Arranging Equation (A10) to obtain Equation (A11),

ζ∗3 = 1−
ψ1

(
1 + P∗3ψ3

)(
1 + ζ∗1

)
ψ3

(
1 + P∗1ψ1

) > 0 (A11)

According to the above expressions, it can be concluded that the closed-form optimal power
allocation can be obtained from Equation (22) as shown in Equation (A12).

P∗w,s =
1
ψw

(
2

Rw
Bsch − 1

)
, ∀w ∈M (A12)

From Equation (21), setting w = 1, we obtain Equation (A13).

P∗1,s = Pmax −

M∑
w=2

P∗w,s (A13)

�
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Appendix B

Proof of Proposition 1. Let P∗w,s ∈ S be an optimal solution of max
Pw,s>0

{
T(Pw,s)/B(Pw,s)

∣∣∣Pw,s ∈ S
}

together

with q∗w as the value of an optimal response, q∗w = T
(
P∗w,s

)
/B

(
P∗w,s

)
≥ T(Pw,s)/B(Pw,s), ∀Pw,s ∈ S. Since

D(Pw,s) > 0 then have T(Pw,s) − q∗wB(Pw,s) ≤ T
(
P∗w,s

)
− q∗wB

(
P∗q,s

)
= 0,∀Pw,s ∈ S. This acknowledges

that P∗w,s is the optimal response of max
Pw,s>0

{
T(Pw,s) − q∗wB(Pw,s)

∣∣∣Pw,s ∈ S
}
. �
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