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Abstract: Health-related limitations prohibit a human from working in hazardous environments, due
to which cognitive robots are needed to work there. A robot cannot learn the spatial semantics of
the environment or object, which hinders the robot from interacting with the working environment.
To overcome this problem, in this work, an agent is computationally devised that mimics the grid and
place neuron functionality to learn cognitive maps from the input spatial data of an environment or an
object. A novel quadrant-based approach is proposed to model the behavior of the grid neuron, which,
like the real grid neuron, is capable of generating periodic hexagonal grid-like output patterns from
the input body movement. Furthermore, a cognitive map formation and their learning mechanism
are proposed using the place–grid neuron interaction system, which is meant for making predictions
of environmental sensations from the body movement. A place sequence learning system is also
introduced, which is like an episodic memory of a trip that is forgettable based on their usage frequency
and helps in reducing the accumulation of error during a visit to distant places. The model has been
deployed and validated in two different spatial data learning applications, one being the 2D object
detection by touch, and another is the navigation in an environment. The result analysis shows that
the proposed model is significantly associated with the expected outcomes.

Keywords: place cell neuron; grid cell neuron; grid code; cognitive map formation

1. Introduction

In robotics, the robust localization on an object is very crucial in the perspective of physical tasks.
Specifically, in navigation, the localization and path integration is really a big issue over which several
efforts have taken place for more than 20 years [1–3]. The very first approach proposed for the localization
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of an agent was the extended Kalman filter (EKF) [4]. The complexity of EKF is quadratic with respect
to the landmark’s number, and thus, it behaves badly in a large environment [5]. The localization is also
crucial for the object handling tasks, where body motion integration is required with a cognitive map
of an object. Several other cognitive tasks can be done using body motion integration like picking an
object, recognizing an object by touch, etc. In the context of object-handling tasks, the work is surely not
appropriate. In human brain research, it has been well established that the collaborative network of
grid and place cell neurons are responsible for learning the spatial semantics of an environment/object.
Moreover, the network integrates the body motion with the learned semantics and helps a human
in localization within an environment/object [6–16]. Using such localization, a human does several
physical tasks. Several bio-inspired modeling works have been published on localization that has used
the general idea of grid cell neuron. RatSLAM (Simultaneous localization and mapping) [17] is the most
popular among all. The model has shown the localization using a 3D continuous attractor network
of pose cells. The size of the network used in the model is dependent on the size of the environment;
therefore, the model is highly infeasible for large environments.

Numerous computational models of grid neurons have been published since 2005 that have
generated the hexagonal grid patterns, like the continuous attractor [18] and oscillatory interference
model [18], and hybrid oscillatory attractor network [19,20]. However, the models have not addressed
the problem of ambiguity in the interference of several grid patterns. Due to ambiguity, an agent can
localize to the wrong place and direction. In the direction of modeling a place neuron, a new robotic
architecture has merged the visual place cell with the grid cell to limit the angular drift of the path
integration [21]. Despite a huge amount of theoretical models, none of the models has used the grid
neuron and the place cell activities in performing the object-handling tasks. Moreover, the grid and the
place cell neurons play a crucial role in the episodic memory as well [22–24]. As an episodic memory
makes use of a place cell neuron in learning of procedures for making and recalling, predictions, and
planning. Although the robots in current scenarios are using advanced sensors and advanced vision
techniques to make actions [25–32], still the techniques are so erroneous. Somewhere, we need body
object integration along with the advanced vision and sensors for the smooth functioning and it may
have many applications in machine learning, smart grids, and the energy sector [33–42].

The article proposes a quadrant model for the grid neuron and an interference model for the place
neuron modeling to address the aforementioned shortcomings and the existing research gaps of grid
modeling. The quadrant model can generate the periodic hexagonal grid pattern from the navigational
input of an artificial agent. Furthermore, an interaction system of place and grid neuron has also been
proposed that can learn the cognitive map of an environment. The cognitive map learning is done
using the integration of a quadrant grid neuron’s activation pattern with the associated sensation of
a place neuron. The proposed computational mechanism for the place neuron is able to localize the
agent correctly in the mental representation of space and provides the ability to do path integration as
well. Furthermore, a place sequence learner is proposed in this research work that learns the sequence
of places in the context of current and goal locations. The learned trip gives the information of the next
nearby locations and the associated grid code and other learned parameters to reach the destination.
Since each trip is forgettable based on the frequency of their use, it is also space-efficient. Finally, the
proposed mechanism deployment of the model is shown in two different applications, one being the
object detection by touch, and the second is the navigation.

The rest of the paper is organized as follows. Section 2 discusses the modeling challenges. Section 3
describes the proposed computational modeling work of the grid and the place neuron. Also, the
deployment of the proposed work is shown in different applications in Section 4. Experimental results
are illustrated in Section 5. Finally, the paper is concluded in Section 6.

2. Issue and Modeling Challenges

The most obvious challenge in the grid neuron modeling is to generate the periodic hexagonal grid
patterns of different scales and orientations from body movement input. The grid neuron activation is
shown in the Figure 1.
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ring); otherwise, it remains off. The firing locations constitute the hexagonal grid pattern. The firing 
intensity of the neuron inside the rings depends on the distance of the agent from the center of the 
ring. At the center, the neurons firing intensity will be the highest and vice versa. Each grid neuron 
possesses different orientations and spacing of firing locations. In Figure 2, the hexagonal grid pattern 
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Figure 2. Grid activation patterns of different spacing and orientations. 

As per the biological brain research, the grid neuron works in collaboration with the place 
neurons. The connectivity between the grid and the place neuron is shown in Figure 3. The place 
neuron learns the grid neurons activation value through forward connectivity and in turn activates 
the grid neurons during localization through backward connectivity. 

Figure 1. Grid neuron activation.

The neuron is like a bulb that turns on only when the agent comes within the firing range (grid
ring); otherwise, it remains off. The firing locations constitute the hexagonal grid pattern. The firing
intensity of the neuron inside the rings depends on the distance of the agent from the center of the
ring. At the center, the neurons firing intensity will be the highest and vice versa. Each grid neuron
possesses different orientations and spacing of firing locations. In Figure 2, the hexagonal grid pattern
of different spacing and orientation is shown.
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Figure 2. Grid activation patterns of different spacing and orientations.

As per the biological brain research, the grid neuron works in collaboration with the place neurons.
The connectivity between the grid and the place neuron is shown in Figure 3. The place neuron learns
the grid neurons activation value through forward connectivity and in turn activates the grid neurons
during localization through backward connectivity.

The task of a place neuron is to learn a unique location of a cognitive map in terms of code as it
is activated in a single location in an environment [15,21]. The challenge in the modeling of a place
neuron is to learn the interference pattern of grid neurons without any ambiguity. The interference of
two different activation patterns is shown in Figure 4, where a location is associated with a unique
combination of the activations of two different grid neurons. If a place neuron simply learns the
activation values of grid neurons as a grid code, then there can be the possibility of ambiguity. The case
of ambiguity is shown in Figure 5, in which the two different interference patterns are shown correspond
to the same grid code.
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In previous works on navigation, a robot always considered as a single entity, but in the case of
object handling tasks, there is a need to consider the motion of each individual body part. The integration
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of the sensory perception of each individual body part in a single semantic map of an object is a
challenging task.

3. Proposed Mechanism

The article proposes a quadrant-based mechanism for the modeling of grid neurons to address the
aforementioned problems. The mechanism generates the periodic hexagonal grid pattern. Furthermore,
an interaction system of place and grid neurons is proposed to learn the cognitive map of an environment.
Moreover, the deployment of the model is shown in context to different applications. The detailed
description of each proposed mechanism is given below.

3.1. Movement Representation

In the case of navigation, the entire body of an agent has been considered a unit. The agent
movement is defined as the turning angle and the displacement, as shown in Figure 6. The turning
angle is defined as the angle between the previous direction of movement and the direction of the
current movement. The distance between the current and the previous location of the agent is defined
as displacement.
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3.2. Quadrant Model for Grid Pattern Generation from the Body Movement

To track the agent for firing a grid neuron, we have used a reference grid point that keeps tracking
the agent coordinate in both x and the y dimension. Initially, while learning an environment, the starting
location will be the location of the reference points of all grid neurons. The reference grid point is not
having any physical coordinate. Instead, it is just a logical concept that keeps tracking the distance and
the direction of the agent until the grid neuron fires. The grid neuron fires only when the agent enters
within the vicinity of any other grid point or in any grid ring of the grid neuron. When the grid neuron
fires, the reference grid is reset to the new values of the agent tracking parameters. The new values will
be calculated with respect to the grid point under whose grid ring the agent is entered.

Each grid ring’s center (i.e., the grid point) has a certain relationship with its surrounding grid rings
center due to the periodicity of the firing pattern (calculation is shown in Section 3.2.2). The relationship
allows any reference grid point to check whether the agent is entered into the vicinity of any of its
surrounding grid point/grid ring or not. The relationship will be in terms of measured distances along
both dimensions (i.e., x and the y-axis) from the reference grid point. Whenever the agent’s measured
distances along both dimensions follow the relationship similar to any of the surrounding grid points
of the reference grid point, then the grid neuron will be fired. The grid point whose relationship is
matched with the agent will be considered as a new reference point. The old tracking parameters will be
reset to the new tracking parameters, i.e., the measured distance of the agent from the newly recruited
reference point. The same process will be repeated again and again until the agent stops movement.

Since the reference ring is not always the origin, therefore the agent can move any of the four
quadrants of the reference ring. Due to symmetry, the relation of the reference ring with the surrounding
grid rings is similar in all four quadrants, as shown in Figure 7. Every grid ring has a corresponding
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grid ring in all other quadrants, which has the same distances along both dimensions. The signs of the
agent’s coordinates tell the current quadrant number. The sign of the coordinates will be ignored while
matching with the surrounding grid rings as the grid rings follow the same relation in all quadrants.
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3.2.1. Finding the Coordinates of the Agent Based on the Magnitude and the Current Direction of
Movement from a Reference Point

The calculation of the agent’s coordinate with respect to the reference grid point is shown below
as Algorithm 1. The parameters used in the algorithm are illustrated in Figure 8. The parameter “θ3”
tells the rotation of the agent’s body in degree, “Direction” is the direction of movement, that is having
two possible values, one is left another is the right, “θ2” is the quadrant angle before movement and
“θ1” is the quadrant angle after movement.

θ1 =

{
θ2 + θ3, |Direction == LEFT
θ2− θ3, |Otherwise

(1)

X_coordinate = X_coordinate + (magnitude × cos (θ1)) (2)

Y_coordinate = Y_coordinate + (magnitude × sin (θ1)) (3)
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3.2.2. Grid Neuron Activation

Generating a hexagonal grid like activation pattern needs to know the geometry of a hexagon
which is shown below in Figure 9. In the figure, the distance between any two grid points sharing
the same edge is of the same length, which is the grid spacing of a hexagon. There are two or more
other parameters that describe the hexagon, which is the height and the width, whose calculations are
shown in Equations (4) and (5). Parameters of the equations are illustrated in Figure 9.Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 25 
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Height of a hexagon:
H = 2 × d (4)

Width of a hexagon:
W= Sqrt (3) × d (5)

where H is the height, W is the width, and d is the grid spacing of a hexagon.
Each grid point is having a specific relation with all other grid points of the grid pattern. If we

consider any of the grid points as a reference point and measures the distance of all other grid points
along the x and y-axis direction from the reference point, then we obtain two categories of grid points.
First are those whose distance along the x-axis is the integer multiple of the width of the hexagon, and
distance along the y-axis is the 0.5 multiple of the height. Second, are those whose distance along the
x-axis is the (odd number/2) multiple of width and distance along the y-axis is the (odd number/4)
multiple of height. In case the agent’s measured distance from the reference point follows any one of
the above categories of the grid points, then it shows that the agent is at one of the grid points and
as a result of this the grid neuron will be fired or activated with the activation value of 1. There can
be a possibility that the agent lies within the grid ring of a grid point instead of a grid point. In that
case, the grid neuron will be activated but the activation would be less than one and will be inversely
proportional to the distance from the center of the grid ring which equals (1-D/R) where D is the
distance from the grid point under whose firing range the agent is present, and R is the radius of the
firing range. The value for the activation will be zero when the distance D is larger than R.

Since the grid points are infinite in a 2D space, therefore we need a mechanism that selects only a
few grid points, to check whether the agent is within the vicinity of the grid point or not. As we know
the relation of the grid points, therefore, it is easier to choose the grid points.

Here, two sets of grid points can be chosen. First are those grid points whose X coordinate
(XCORD)is equal to the (W × ROUND (Ax/W)) and Y coordinate (YCORD) lie in the range from
(H × (CEIL (Ay/H) − 1)) to (H × (CEIL(Ay/H)). The Ax and the Ay are the coordinates of the agent
along the x and y-axis, respectively. The CEIL is a function that returns the smallest integer value that
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is bigger than or equal to a number, and ROUND is the round-off function that rounds off the value to
the nearest integer.

Second are those in which x-axis coordinate of the grid point lies into the range from (ROUND
(Ax/W) − 0.5) to (ROUND (Ax/W) + 0.5), and the y-axis coordinate would lie into the range of (FLOOR
(Ay/H) + 0.25) to (FLOOR (Ay/H) + 0.75). Here, FLOOR is the largest integer function that returns
the greatest integer less than or equal to a given number. The whole pseudo code to calculate the
activation of a grid neuron is given below.

Algorithm 1: Calculation for the grid neuron activation

1: I← ROUND (XCORD/width) // ROUND is the round off function
2: J← CEIL (YCORD/ H) −1 // CEIL is ceiling function
3: while J < CEIL (YCORD/H) do
4: J← J +0.5;
5: Gx← I ×W// Gx is the X coordinate of the chosen grid point;
6: Gy← J × H// Gy is the Y coordinate of the chosen grid point;
7: D← EUCLIDEAN ((XCORD,YCORD), (Gx, Gy));
8: // Euclidean to find the distance between agent and the chosen grid point
9: if D < R then
10: activation← 1 − (D/R);
11: else
12: activation← 0;
13: end
14: if Y is the 0.5 multiple of the height (h) then
15: activation← 1;
16: else if X is the 0.5 multiple of the W(width) then
17: If Y is the 0.25 multiple of the height (h) then
18: activation← 1;
19: else
20: activation← 0;
21: end
22: end
23: end

3.3. Grid Code Learning and ItsRecalling

Here we hypothesized two states for a place neuron. One is the hyperpolarized state, in which
a place neuron is always ready to learn the input grid neuron’s activation values. A place neuron
comes in the hyperpolarized state only when the sensory input to the neuron matches with its sensory
template, as shown in Figure 10 Another is the pseudo-polarized state in which the place neuron recalls
their sensory template and matches it with the input sensory values. The pseudo-polarized state comes
to the place neuron only when the input grid code matches the learned grid code of the place neuron.
The pseudo-polarized state of a place neuron states the location of an agent in an environment.

Since similar grid activations can occur in many places in the environment, it is highly prone
to error. Sometimes the grid neuron’s activation is not enough to tell the location, and this thing is
shown in Figure 4 with example. Therefore, a place neuron needs to learn grid activations along
with interference patterns of grid rings of different grid neurons. The interference pattern is a set of
distances between the reference points of each grid neuron. The interference pattern is always unique
in an environment, which is why it locates any area correctly in an environment, and the grid code
states the exact location within the inferred area.

The interference of grid rings is shown below in Figure 11. In the figure, the blue-colored dots are
representing the current reference points of their respective grid neurons. The orange-colored dot is
representing the center of the firing field (grid ring) of a place neuron. The place neuron is present
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in the interference region of the grid rings. The yellow-colored dot represents the agent’s current
location with regard to the interfered region of rings. The learning is necessary along with the grid
point distances quadrant and the quadrant angles of every grid. Therefore, along with the reference
points concerning learned place location, their orientation axis can also be recalled correctly, and that
would help in further navigation after localization.
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A place neuron can only be pseudo active when the agent enters the vicinity of a place neuron.
The level of activation depends on the distance of the agent from the location of the neuron. Each place
neuron calculates (for pseudo-activation) the match between their learned interference pattern with the
agent’s current interference pattern as per Equation (6). The place neuron having the highest match
will be the winner, and this winner place neuron recalls the distances of reference points and their
activation values. The recalled values allow us to find their location with respect to all reference points
of all grid neurons and then map the agent in the interference pattern to obtain their distance from the
agent. Afterward, the place neuron will become pseudo active as per the Equation (7).

winner = Max
(
mk

)
mk =

∑
∀ i, j ∈ Grid Neuron

di, j

n2−n(1+2p)

di, j =

 0,
∣∣∣LDi, j , CDi, j

(1−|Lacti −Cacti|) +
(
1−

∣∣∣Lact j −Cact j
∣∣∣), ∣∣∣∣Otherwise

(6)
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where, LD (i,j) is the learned distance between the ith and jth grid neuron’s reference points. The CD is
the current distance between the ith and the jth grid neuron’s reference point. Lacti is the activation of
an ith grid neuron while learning the place. ‘p’ is the number of grid neurons having activation is zero
while learning. mk is the match score of a kth place neuron di, j is the distance between the current and
the learned interference pattern correspond to ith and jth grid neuron.

Pseudo− activation (i) = 1−
r
r2

(7)

where r1 is the calculated distance between the agent and the winner place neuron, r2 is the radius of
the place neuron.

The mechanism of locating the agent and the place neuron with regard to the interference pattern
is very simple. But, here there is a constraint, the location can be found only when the number of
interfered rings is more than two. To find the location, from each reference point, draw a circle of
radius proportional to the activation value, and then an intersecting point will be found, which will be
the location of the place neuron, a similar process for the agent. This is how the distance between the
agent and the place neuron can be calculated.

3.3.1. Calculation of Grid Point Distances of the Interfered Rings

In the aforementioned mechanism of place neuron activation, the mechanism of calculating the
inter grid point distances is crucial and complex as well. The calculation of a distance between the
centers of any two interfered grid ring is shown below in Equation (10). The parameters of the equation
are illustrated in Figure 12.

Xtranslated
j = X jCosα−Y jSinα+(dold

i, j × cosθ4) (8)

ytranslated
j = Y jSinα−Y jCosα+ (dold

i, j × sin eθ4) (9)

dnew
i, j =

√(
Xi −Xtranslated

j

)2
+

(
Yi −Ytranslated

j

)2
(10)

where, dold
i, j is the distance of the reference points of ith and jth grid neuron, dnew

i, j is the calculated

distance between the reference point of ith and jth grid neuron, Xtranslated
j and Ytranslated

j are the translated
X and Y coordinate of jth grid neuron into the coordinate system of another grid neuron (i.e., i), and ∝
is the angle between the orientation axis of interfered rings.
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3.3.2. Role of Grid Spacing in the Localization Accuracy

The accuracy of localization depends not only on the number of grid neurons but also on the
value of the grid spacing value of a participating grid neuron. The grid neuron has a large grid spacing
fire only on 2–5 sites in an environment that helps in marking the sub-area in the environment where
the agent is present. Whereas the grid neuron of smaller grid spacing fires from 50–80 sites in an
environment that helps to locate the exact location in the marked sub-area. Therefore, we need to take
both types of grid neuron in an appropriate ratio so that the accuracy can be increased, results related
to this are shown in the result section.

3.4. Modelling of Place and Grid Neuron Interaction System to Perform Predictions and Recognition

The grid and place neurons deal with two types of information, one being the internal information,
which is the movement of body parts like hand movement, eye movement (eye saccade). Second is the
external information, which is the information observed by the human sensory organs. Here, grid
neuron and place neuron interaction system are supposed to predict the external information based on
the internal input information to recognize objects, environments.

The working of the proposed mechanism is shown in Figure 10. In the mechanism, the quadrant
model (i.e., grid neuron) takes internal information as input, i.e., body movement. The interference
model (i.e., place neuron) takes the input from the grid neurons (grid code) as well as from the sensory
neurons (externally sensed information) through weighted connections. A place neuron is assumed to
be an ART (adaptive resonance theory) network [22]. Here, a place neuron takes the input from several
sensory neurons through weighted connections. The weight vector corresponds to a place neuron acts
as its sensory template. The place neuron is activated only when the input sensory vector matches
the template vector within the threshold limit. If none of the place neurons becomes activated, a new
place neuron is recruited. The synaptic weights of the newly recruited neuron are initialized with the
current sensory values. Moreover, the random grid neurons are connected to the newly recruited place
neuron through weighted connections. The value of the weights of grid neurons associated with the
recruited place neuron is initialized with the activation value of the grid neurons.
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The mechanism of sensory information prediction is shown in Figure 13. The mechanism starts
with the sensing of external information by the place neurons through the sensory neuron’s input. The
place neuron matches within the threshold limit will be activated and recall their learned grid weight
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template. The grid weight template is the grid code that would tell the location in the environment or
object. Once the agent obtains the location in the internal representation, it can generate the new grid
code by the integration of recalled grid code with their body movement. The generation of new grid
code would activate the place neuron whose grid weight template matches with the newly generated
grid code (according to Equation (12)). The pseudo active place neuron will recall the associated
sensory weight template, i.e., the prediction of sensory information from the body movement.

3.5. Place Sequence Learning

In hippocampal research, it has been found that the place neuron is activated earlier before
reaching to the corresponding place of the place neuron. I also found the change in the activation
pattern based on changing the current task and the goal location. This behavior shows the learning of
the activation sequence of place neurons with respect to tasks or the goal location. Our proposed model
has been incorporated with the same using the place sequence learner. The place sequence learner is
shown in Figure 14. The sequence learner can recall the next sequential place neuron and its associated
grid code. Since the recalled place neuron will always correspond to one of the neighboring places of
the current activated one. Therefore, in navigation through neighboring place neuron’s grid code, the
chances of error would be muchless. A place sequence learner is used to reduce the accumulation of
errors while moving to a distant location. The learner recalls the grid code of the next place that is
learned during the trip. The grid code can tell the movement direction exactly and the magnitude to
obtain the location of the recalled grid code from the current grid code. Since the recalled place always
is the local one in place sequence learner, therefore, the accuracy would be very higher compared to
using the grid code of a destination place to move towards its corresponding place of the grid code.
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Furthermore, a trip layer is used in sequence learners, which contains the neurons/nodes
corresponding to each individual trip, which can be seen as an episodic memory of a trip. Here each
trip is forgettable based on the frequency of recalling like the episodic events. Second is the place layer,
which contains place neuron nodes. The third one is the grid layer contains the grid neurons. The grid
layer nodes send the grid code to the place layer neurons, and the place layer nodes send the activation
sequence to the trip layer nodes for learning. Each trip node has a weighted connection with each
place neuron. The lowest is the weight earliest will be the position of the place neuron in the trip and
vice versa. Initially, when the agent has not yet made any trip, no trip node will be there. With every
new trip, a trip will be created whose weights with all place neurons will be initialized to zero; while
navigation, the weight with the currently activated place neuron will be set to 1, and the weights with
all other place neurons reduced by a factor (1 − β), as shown in the Equation (11).

Wi, j = 1
Wi,k = Wi,k(1− β)∀k , j

(11)
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where, Wi, j is the weight of jth place neuron with an ith trip node, j is the currently activated place
neuron and β is the decaying factor.

During a visit to any goal location, the agent tries to find the trip node that is not having a null
weight value with the goal location’s place neurons and the current location. If any such trip node
is found, then it means that the trip is having a path from the current to the goal location. In case,
if the weight value of the current place neuron is higher than the goal place neuron, then it shows
that the path is from the goal to the current location, i.e., backward path. In the case of a forward
path, the recalling starts with the place neuron having the next lowest weight value. In the case of the
backward path, choose the next highest weight value. The process will be repeated until the place
neuron corresponding to the goal location is recalled.

Trip strength is suggested to manage memory efficiently. If a trip frequently used, the trip strength
for that trip increases with a learning rate; otherwise, it decreases. Let TSi ε [0, 1] be a trip strength for
the ith trip node. The calculation for the trip strength is shown below in Equation (12).

TSi(new) =



TSinitial, Created

TS(old)
i +

(
1− TS(old)

i

)
r, Reactivated TS(old)

i + TS(old)
i

(1−TS(old)
i /β)

(1− e), TS(old)
i < 1

TS(old)
i , TS(old)

i == 1

 , Otherwise

(12)

where, β = 10, e is the emotion factor belongs to [0, 1] TSi is the memory strength of ith trip, which is
initialized to the value of TSinitial (0.5) at the time of trip creation and strength reinforces with each
reactivation, r is the reinforcement rate, and strength decreased when the participated places of the trip
get activated, and the event does not get reactivated. If TSi falls below a threshold µ ∈ [0, 1], the ith trip
node will remove from the memory.

4. Experimental Detail

The model is deployed in two different applications to assess the performance of the proposed
mechanism, as discussed in the subsections.

4.1. Object Identification

In the experimental work of the object identification task, 100 different 2D objects have been
taken. Each object is having a unique spatial allocation of sensations, i.e., each object is a permutation
and combination of different sensations. The object is shown in Figure 15, where each sensation is
represented by a unique color. Similar sensations are present in different objects but at different locations.
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The object identification is made through navigating of fingers over the object whose results are
shown in the results section. Three sensors are placed on each finger, whereas one of the sensors is
considered as a base sensor. At every movement, each sensor generates a grid code in a parallel way.
Each sensor except the base sensor generates the grid code from the current grid code of base sensor
and its relative position from the base sensor.

This parallel exploration of any environment reduces the number of palm movements in learning
and recognition as well.

If the size of an individual sub-region in a 2D object is bigger, then multiple grid codes can be
allocated to the same sensation. As a result of that, during the recognition by touch, the observed
sensation from a sub-region can recall multiple grid codes. The multiple grid codes create ambiguity
in making the comparison. The ambiguity problem can be solved using the following steps:

1. Observe the sensation of the base sensor, and recall the grid code corresponds to the observed
sensation.

2. Other sensors observe their sensations and recall their corresponding grid codes called sensed
grid code.

3. Next, each sensor integrates their relative position of the base sensor with the grid codes of base
sensors to generate new grid codes called path integrated grid code.

4. The next comparison will be made between the path integrated grid codes and the sensed
grid codes. Those sensed grid codes found similar will be chosen to activate their associated
place neurons.

5. The objects which are associated with the activated place neurons will be in the list of the active
object, and others will be inhibited for future activation.

6. A similar process will be repeated again and again until a single object survives in the activation list.

4.2. Prediction during Navigation, and Navigation towards a Goal Location

Here place decoding mechanism is followed to self-localize (current location) in the internal
representation of the environment. Further localization, there are two ways to reach the goal location.
The first is through tracking the goal grid code. The second is the use of the trip to get the path consists
of place sequence between the current and the goal location grid codes.

In the first way, there is a need to find the direction and distance of the goal location with regard
to the current grid code. The mechanism is described below in the next Section 4.2.1.
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Figure 16. Depth image conversion: (a) original image, (b) depth image.

While navigating towards the goal location, obstacles may occur. The agent can avoid the obstacles
using the monocular image depth processing [32]. The depth image suggests the direction of a clear
path, as shown in Figure 16. Figure 16a representing the environment’s original image. Figure 16b
represents the processed depth image. In the monocular depth image of an environment, objects that
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are in color closer to orange represents the obstacles or the objects that are closer to the agent, whereas
the objects in colors closer to violet represent that the object is far from the agent. The agent always
chooses the direction of violet color to move forward in the environment

The experimental environment has been created in UNITY, which is a 3D space where walls are
placed to create an environment. The monocular depth processing [32] is used to find the obstacles in
the path of the agent.

4.2.1. Finding the Direction of a Goal Location

By using the mapping as mentioned above of the environment into a grid code, the agent can
obtain both current and the goal grid code. But here, the agent does not know which direction to
choose to move forward so that the goal grid code can be reached. The agent solves this problem while
it finds the activation grid points, which are closer to the current activation site for each participated
grid neuron. The direction in which the overall match between the activation of each grid neuron with
their corresponding activations in the goal grid code will be chosen by the agent to move forward. If
none of the directions gives the match higher than the threshold, then test for the next activation site,
first change the lowest scale grid neuron.

For all participated grid neurons in all directions, the direction in which the distance between
the activation of each grid neuron founds closer to their corresponding activation goal grid code (as
shown in Figure 17) will be the direction of movement for the agent. But in real scenarios, mostly the
goal location will be hidden to the agent. Therefore, the agent needs to consider the walls, objects
encountered in the path of the agent, which can change the direction of movement. Here, image depth
is used to find out whether an object or the wall is there or not in the path if anything is encountered
then the agent would change their direction to move forward and recalculate the direction.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 16 of 25 

Figure 16. Depth image conversion: (a)original image, (b)depth image. 

4.2.1. Finding the Direction of a Goal Location 

By using the mapping as mentioned above of the environment into a grid code, the agent can 
obtain both current and the goal grid code. But here, the agent does notknow which direction to 
choose to move forward so that the goal grid code can be reached. The agent solves this problem 
while it finds the activation grid points, which are closer to the current activation site for each 
participated grid neuron. The direction in which the overall match between the activation of each 
grid neuron with their corresponding activations in the goal grid code will be chosen by the agent to 
move forward. If none of the directions gives the match higher than the threshold, then test for the 
next activation site, first change the lowest scale grid neuron. 

For all participated grid neurons in all directions, the direction in which the distance between 
the activation of each grid neuron founds closer to their corresponding activation goal grid code (as 
shown in Figure 17) will be the direction of movement for the agent. But in real scenarios, mostly the 
goal location will be hidden to the agent. Therefore, the agent needsto consider the walls, objects 
encountered in the path of the agent, which can change the direction of movement. Here, image depth 
is used to find out whether an object or the wall is there or not in the path if anything is 
encounteredthen the agent would change their direction to move forward and recalculate the 
direction. 

  

(a) (b) 

Figure 17. Illustration of agent navigation. 

4.2.2. Navigation UsingPlace Learner 

The chances of error can be very high if the agent chooses grid codes to move toward the distant 
goal grid code. The calculation of the correct direction of a distant goal location can be error-prone 
due to ambiguity. Instead, an agent can search for the nearby locations/grid codes repeatedly to move 
towards a goal location. The mechanism would be less error-prone and more accurate in navigation. 
Which nearby grid code to choose will be obtained through alearned trip having both the current and 
the goal location in their learned sequence. 

5. Results and Discussion 

The experimental tests were carried out using the artificial agent in an environment of size 100 
× 100 cm2 for validating the proposed quadrant model. Here, the step size of the movement of the 
agent was fixed, but it could move in all directions randomly. The different grid patterns of different 
scales and orientations generated during different walks are shown in Figure 18.The trajectory of the 
agent is shown using black color and the red color showing the firing locations of a grid neuron. The 

Figure 17. Illustration of agent navigation.

4.2.2. Navigation Using Place Learner

The chances of error can be very high if the agent chooses grid codes to move toward the distant
goal grid code. The calculation of the correct direction of a distant goal location can be error-prone
due to ambiguity. Instead, an agent can search for the nearby locations/grid codes repeatedly to move
towards a goal location. The mechanism would be less error-prone and more accurate in navigation.
Which nearby grid code to choose will be obtained through alearned trip having both the current and
the goal location in their learned sequence.
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5. Results and Discussion

The experimental tests were carried out using the artificial agent in an environment of size 100 ×
100 cm2 for validating the proposed quadrant model. Here, the step size of the movement of the agent
was fixed, but it could move in all directions randomly. The different grid patterns of different scales
and orientations generated during different walks are shown in Figure 18.The trajectory of the agent is
shown using black color and the red color showing the firing locations of a grid neuron. The observed
firing locations in the figure constituted the perfectly periodic hexagonal grid pattern as expected.
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Similarly, in the place neuron results, shown in Figure 19, the activation of a place neuron is
perfect, and they have shown excellent silence in all over the field except the activation field of the
place neuron (no false positive).
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The experimental detail of different grid patterns shown in Figure 18 are as follows: (a) grid
pattern generated corresponding to the 2000 steps of the agent, where the grid spacing is of 15 units
and the radius of the grid circle is of 3 units; (b) representing the grid pattern corresponding to the grid
spacing of 35 unit, where the radius of the grid circle is of 10 units; (c) spacing of 25 units, radius 3
units and orientation of 30 degrees; (d) spacing of 25, radius 3 unit and orientation of 10 degrees; (e)
spacing of 55 and radius of 10unit, the orientation of 0 degrees; (f) representing the overlapping of
firing patterns of two different grid neurons.

The result for the grid code is shown in Figure 20, where, the activations of 20 different grid
neurons are shown using the heat map corresponds to a random location, whose coordinates are
mentioned in the figure.
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The performance of the proposed place and grid neuron interaction system is assessed in the task
of object recognition and navigation. The results of the proposed model with regard to the different
model parameters are given in the below subsections.

5.1. Results of Object Recognition

Since each object is a permutation of spatial sensations, therefore in the initial touch, the observed
sensation will be present in almost every object. In the initial touch, every object will be activated. By
the touch, the location in each active object will be obtained in the form of a grid code. The agent may
even receive multiple locations in a single object having similar sensations that are present at multiple
locations. The next touch would integrate the previous recalled grid code of each object with the hand
motion, and predicts to be observed sensations. Next, the observed sensation will be compared with
the predicted sensation of each object. The object which is having the same predicted sensation as
observed will remain active, and others will be deactivated. In this way, after a few more touches, the
number of objects converges to 1, and that single active object will be the recognized object. Similarly,
in the observed results, the number of active objects is reduced to one with the increase of touches,
as shown in Figure 21.The results are shown for three different starting locations, and each one took
different numbers of touches to recognize the given object.
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Figure 21. Object recognition.

5.2. Self-Localization Accuracy

Self-localization gives information on the location of the agent in the internal representation of the
environment. Afterward, the localization, an agent, performs prediction based on the current location
and movement. If the self-localization gives an erroneous location, then it will directly affect the
above-performed recognition task accuracy results. The self-localization is dependent on the number
of grid neurons used because fewer grid neurons prone to ambiguity problem as a result of this wrong
location can be predicted. The result for the self-localization accuracy is shown below in Figure 22
with the help of a line graph, where the vertical axis represents the error percentage, the horizontal
axis represents the number of grid neurons.
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Figure 22. Error in self-localization.

The experimental result of the models validates the theory as the error rate has been decreased
drastically with the increase of the grid neurons. Here, the used environment is unambiguous.
By unambiguous, we mean that every unique sensation is present at only one location in the environment.

5.3. Trip Forgetting

The memory space is managed efficiently by incorporating a trip-forgetting mechanism in the
place sequence learner. The results are shown in Figure 23. In the figure, it has been shown that strength
gains an increase in the occurrence of relevant trips and a decrease in the occurrence of irrelevant trips.
The rate of decrease is inversely proportional to the strength that the trip has attained. As the graph
illustrated, the memory strength decay with every new irrelevant trip. The decay rate of the memory
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strength will be higher at a lower strength and vice versa. Three different colored curves correspond to
different emotion levels. The trip has a lower level of emotion while making a trip will have a higher
decay rate and vice versa. In the graph, on a continuum of irrelevant trips, the forgetting rate is higher
for a trip that has less memory strength and vice versa.
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5.4. Comparison between the Navigation Using Tracking Goal Grid Code and Using the Place Sequence (Trip)

The difference between both navigational approaches is the time complexity and the accuracy
because in the navigation through tracking of distant place grid code, only a single time direction, and
the distance is required to calculate. However, in the case of obstacles, an agent may have to change its
current path resulting in recalculating the distance and direction from the changed path. In contrast to
grid code, in the case of a trip, this corresponds to each recalled place neuron of the learned trip, the
direction, and the distance is required to calculate to move forward, which makes it time inefficient
in processing.

As far as accuracy is concerned, if the target grid code is far, then in case of tracking using goal
grid code will be lower compared to using a learned trip for navigation. The results of the accuracy of
both cases are shown in Figure 24, where the vertical axis representing the goal-tracking accuracy, and
the horizontal axis represents the number of grid neurons used.
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Figure 24. Performance comparison on localization.

The accuracy for tracking the goal location through the goal grid code is observed to be highly
error-prone at a smaller number of grid neurons, due to the possibility of ambiguity in a large conjunctive
grid pattern from a current to a goal location, but the accuracy has increased almost exponentially on
increasing the number of grid neurons. The accuracy for the tracking using place sequence learner is
observed to be less error-prone compared to the tracking through goal grid code. The reason behind
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this is the less ambiguity between the current and the nearby place grid code in comparison to the
current and the goal grid code.

5.5. Accuracy Results on Different Grid Spacings and Size of the Activation Field

The larger grid spacing grid neurons are those that fire from 2–5 sites in an environment. The grid
neuron fires at more than five sites are considered as smaller grid spacing grid neurons. We checked
different numbers of smaller and larger grid neurons that are defined as a value, which is a ratio of the
number of larger grid spacing grid neurons to the total number of grid neurons. The results for the
localization accuracy with respect to the ratio value are shown in Figure 25. The figure has shown poor
accuracy at lower ratio value. The poor accuracy is observed due to higher ambiguity in the smaller
activation field size grid neuron. In a small activation region, the firing pattern repeats several times in
an environment, so it fails to predict the correct sub-area in the environment. On a higher ratio value,
the accuracy has reached to its optimum level. The reason behind the optimal accuracy is the correct
prediction of the sub-area by the larger grid spacing neurons and the correct location in the sub-area
by the smaller grid spacing grid neurons. On the further increase of the ratio value, the accuracy has
decreased from the optimal level but not much compared to the lower ratio value. The reason behind
this phenomenon is the large grid spacing grid neurons. The large grid spacing neuron predicts the
correct sub-area but fails to locate the correct location in a sub-area. Finding the correct location in a
sub-area is the task of smaller grid spacing neurons.
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5.6. Localization Accuracy in Ambiguous Field

With reference to the previous section, the results for localization error in an unambiguous
environment does not require the sequence of touches or further exploration in the environment
to localize itself. Furthermore, similar stimuli are present at multiple locations in an ambiguous
environment, which confuses the agent to choose a single one in multiple predictions. Therefore the
agent must integrate its current path with several previous forecasts until the agent predicts only
one location.

The proposed model has outperformed the RatSLAM [17], as depicted in Figure 26, where there
were compared in two ambiguous environments. In the first ambiguous environment, on the first
sensory input, the model has recalled two different places. That is why the model is confused in the
very first decision, and it has chosen randomly one from the two. It results in a poor success rate of
around 0.5 in the first decision. However, as it missed the reward due to the first wrong decision, the
model has resolved the confusion, and one true place is activated. Thereafter, the only active correct
place neuron will activate the correct neuron on path integration so the agent will only make the right
decision. On the other hand, the second environment, which is highly ambiguous despite the fact that
the model has resolved the confusion using the trip sequence learner (it is an episodic memory). It can
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store the grid code of the places along with the event activities, which helps in recalling the decisions.
Even in the second environment, the first decision is filled with ambiguity, but later the agent resolves
the ambiguity using the location sequence learner so that further decisions are all correct.Appl. Sci. 2020, 10, x FOR PEER REVIEW 22 of 25 
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Figure 26. Localization in an ambiguous environment.

5.7. Space and Time Complexity

The proposed mechanism has modeled a grid neuron that acts like a bulb whose light intensity
increases and decreases in 2D space as per the hexagonal grid sites exactly like grid neurons. At the
same time, the other models like RatSLAM [17] have modeled grid neuron as a cell which is spatially
placed in a hexagonal pattern in a two-dimensional space. In this view, these multiple hexagonal
grids are used to learn places using a Mexican hat function. Since each cell covers a small space of
the environment; therefore, their numbers depend on the size of the environment and makes them
highly space inefficient. Whereas, in the proposed mechanism, a single grid neuron can generate
a hexagonal pattern for any size environment, here, multiple grid neurons are used to increase the
accuracy of localization, where the number is dependent on the accuracy level of localization, not on
the environment size.

Since the number of grid neurons is much less compared to the RatSLAM, therefore the proposed
mechanism is highly space-efficient. The time complexity of the grid models directly dependent on
the number of grid cells, which are much less in our case. That is why the proposed model would
be superior in the time complexity as well. In RatSLAM, for a task of localization in an environment
of size 10 × 10 m2 the model has required 36 layers of hexagonal grids with 0.25 × 0.25 area for each
grid cells. Thus the total number of grid cells in RatSLAM will be 57,600 [17]. Therefore correspond to
each place in RatSLAM, activation values of 57,600 grid cells are required to be stored, whereas in the
proposed model:

‘n’ is the number of grid neurons
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n × (n − 1)/2 distance values,
n—activation value
n—quadrant angle of each grid neuron

In this view, n = (n + 5)/2, for n = 29 (at which the highest accuracy has been achieved), the total
number of parameters stored will be 493, corresponding to a place neuron.

6. Conclusions and Future Work

Computational modeling of the grid and the place neuron’s interaction system has given rise to a
unique quadrant and interference pattern learning model to mimic the functionality of the grid and
the place neuron, respectively. The model is advantageous over the other grid neuron models as it
provides the unique functionality of body parts movement tracking to use in several spatial cognitive
tasks in addition to navigation. The model is deployed in a virtual agent to work in a 2D virtual
environment, and further behavior of the agent is analyzed. The analysis shows that the proposed
model is significantly associated with all biological findings and theories related to the grid and the
place neuron. Moreover, it seems that activation patterns observed from the quadrant model and the
interference model are similar to the activation patterns of a biological grid neuron and place neuron.
Computational modeling has uncovered many unseen challenges, like learning an unambiguous grid
code to localize with higher accuracy. As the localization accuracy of 92.27% is reported using the
proposed mechanism, this shows the applicability of the proposed mechanism in several real-world
problems related to spatial semantics.

The human brain can localize body parts on a 3D object that shows a biological grid neuron that
can divide any object or environment into a 3D regular hexagonal grid. The proposed quadrant model
can only work in a 2D environment, which limits the applicability of the model. However, in the future,
the number of quadrants in the quadrant model can be increased from four to eight, so that the model
can generate 3D grid patterns in a 3D environment.
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