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Featured Application: The proposed cloud-based video encoding architecture could provide
a new encoding platform decreasing the encoding time while keeping the video quality.
This system could be used by any company dedicated to multimedia broadcasting, which is
booming these days.

Abstract: Nowadays, video coding and transcoding have a great interest and important impact in
areas such as high-definition video and entertainment, healthcare and elderly care, high-resolution
video surveillance, self-driving cars, or e-learning. This growing demand for high-resolution
video boosts the proposal of new codecs and the development of their encoders that require
high computational requirements. Therefore, new strategies are needed to accelerate them.
Cloud infrastructures offer interesting features for video coding, such as on-demand resource
allocation, multitenancy, elasticity, and resiliency. This paper proposes a cloud-based distributed
architecture, where the network and the storage layers have been tuned, to accelerate video encoders
over an elastic number of worker encoder nodes. Moreover, an application is developed and executed
in the proposed architecture to allow the creation of encoding jobs, their dynamic assignment,
their execution in the worker encoder nodes, and the reprogramming of the failed ones. To validate
the proposed architecture, the parallel execution of existing video encoders, x265 for H.265/HEVC
and libvpx-vp9 for VP9, has been evaluated in terms of scalability, workload, and job distribution,
varying the number of encoder nodes. The quality of the encoded videos has been analyzed for
different bit rates and number of frames per job using the Peak Signal-to-Noise Ratio (PSNR).
Results show that our proposal maintains video quality compared with the sequential encoding while
improving encoding time, which can decrease near 90%, depending on the codec and the number of
encoder nodes.

Keywords: cloud computing; video coding; hyperconvergence; video quality; jobs distribution

1. Introduction

Several high profile events, which are related to video traffic, occurred during the first half of
2019, namely the final season of Game of Thrones, the FIFA Women’s World Cup, releases of new TV
series and movies or new streaming services. Furthermore, the data from last year is speaking quite
clearly on the trends that define 2019 a great year for the Internet video traffic, which reached over 60%
of all IP downstream traffic even though 4K content streams are a drop in the bucket so far and 8K
is not yet a reality [1]. Moreover, due to the COVID-19 worldwide pandemic, which has drastically
affected network usage around the world, the video streaming traffic in early 2020 is 2.2% higher than
in 2019 [2].

According to big companies such as Cisco Systems, Google, Apple and Microsoft, video traffic
volume will account for 82% of traffic by 2022 [3]. Different types of IP video will contribute

Appl. Sci. 2020, 10, 5070; doi:10.3390/app10155070 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-5527-8091
https://orcid.org/0000-0003-2771-4073
https://orcid.org/0000-0003-2590-6370
https://orcid.org/0000-0002-9617-3453
http://dx.doi.org/10.3390/app10155070
http://www.mdpi.com/journal/applsci


Appl. Sci. 2020, 10, 5070 2 of 14

significantly to increasing this type of traffic as well as increasing processing and transmission
requirements to unprecedented limits. Examples are: Internet video, IP video on demand, video files
exchanged through file sharing, video-streamed gaming, video conferencing, high-definition video
and entertainment applications, new multimedia-based applications in the areas of healthcare and
elderly care, high-resolution video surveillance, self-driving car and e-learning.

Users consume video content by using different devices (i.e., smart TVs and phones, tablets,
laptops or desktop computers) that are connected to the Internet through different network
technologies (e.g., broadband, Wi-Fi, LTE, 3G, 4G, and 5G). Dynamic Adaptive Streaming over HTTP
has been adopted by video content distributors to deal with this hardware heterogeneity and network
conditions variability due to its adaptability, flexibility and ease to perform several encoding profiles
as quickly as possible in order to provide an early device-adapted video streaming, only requiring
an HTTP server [4]. However, the content preparation is characterized by high computation and
temporal load because it may require using different codecs with several resolutions and bit rates.
For example, in YouTube a 4 K video can be distributed in eight resolutions. Each resolution is encoded
using H.264/AVC [5] and VP9 [6] codecs with several bit rates, obtaining for a video 32 different
encoded videos.

Mainly due to the requirements of video resolutions demanded by new devices and society,
several video codecs have been proposed. The two primary contestants in the Ultra-High Definition
(UHD) space are H.265/HEVC [7] and VP9 [6]. H.265 was proposed with the aim of doubling data
compression and halving bit-rate as compared to H.264/AVC standard while preserving its equivalent
video quality [8], but H.265 contains patented technologies. Their developed encoders are capable of
compressing high-definition and ultra-high-definition video, but they present a high bit rate and long
encoding time due to its high computational complexity. For this reason, these encoders need to be
accelerated, as the previous H.264/AVC encoder, by using hardware solutions as GPU accelerators [9]
and multi-core platforms [10]. If more acceleration is needed, then distributed solutions where the
load is distributed among nodes are required.

The National Institute of Standards and Technology defines cloud computing as a model
for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable
resilient computing resources (e.g., networks, servers, storage, applications and services) that can
be elastically (scale rapidly) provisioned and released with minimal management effort or service
provider interaction to serve multiple consumers using a multi-tenant model [11]. According to this
definition, a cloud-based infrastructure can be a fundamental piece for storing and encode/transcode
multimedia content with a certain level of reliability and capacity [12]. For instance, Netflix uses
Amazon Web Services for nearly all its computing and storage needs, including video transcoding [13].

The main contribution of this paper is the design, implementation, and validation of a cloud-based
distributed architecture to accelerate video encoders. It also provides the specification of the required
nodes, the tune of the network and the storage, the specification of the jobs, the development of a
distributed application based on a message broker to dynamically perform encoding jobs, and the
validation of the proposal in a private cloud. In the proposed solution, a video is split in chunks of
fixed size, for each chunk to be encoded an encoding job is generated, and each job is consumed by a
worker virtual machine (VM) node that performs the encoding of the chunk.

Relevant features of the proposed solution are: elasticity (horizontal scalability), hyperconvergence
(software defined storage, computation, and networks that are deployed on top of off-the-shelf servers),
adaptability (can work with different codecs), fault-tolerance (if a node fails, then another node will
perform the job), and automation (when a node is started, no intervention is required to deploy,
configure, and start the application). Architecture and application have been tested with H.265 and
VP9 encoders with different chunks sizes (full video, 25, 50, 100, and 200 frames), and bit rates (0.75 Mb,
1.5 Mb, 3 Mb, and 4.5 Mb).

The rest of the paper is structured as follows. Section 2 reviews the state of the art in this field.
Section 3 explains both cloud-based architecture and application. Section 4 describes the experimental
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setup used to deploy the architecture and analyses its scalability and resource consumption, by varying
the number of virtual machines to encode videos, and quality metrics for different video chunk sizes,
bit rates and codecs. A qualitative comparison of the previous work with our proposal is discussed in
Section 5. Finally, some concluding remarks and future work are drawn in Section 6.

2. Related Work

In order to perform a correct analysis of the existing work related to the topic of the paper we must
emphasize the difference between encoding and transcoding videos. On the one hand, the process
of encoding involves taking raw, original and uncompressed source content and converting it to a
compressed digital format. On the other hand, the process of transcoding involves taking an encoded
video file in one of the digital formats and converting it to another digital format, size or bitrate.
Our proposal is focused on the encoding, activity that requires a greater computing capacity due to the
weight of RAW files, especially if we work with HD resolutions (720p, 1080p) or higher.

Taking into account the previous point and after an exhaustive search we can indicate that there
are few published papers related to RAW video encoding over cloud environments, and they are mainly
based on the MapReduce paradigm [14,15]. In [14], the authors propose the Split&Merge architecture
for deploying video encoding over cloud infrastructures. The proposal of this work is based on splitting
the video into several chunks and distributing these chunks in the cloud infrastructure to decrease
the coding time. They select the GOP size as an input to determinate the size of the chunks (it is
fixed on 250 frames). This paper does not provide quantitative measurements of the communication
overheads that the cloud execution entails and also completely bypass the effects on output quality.
The authors of [15] improve the performance of video coding with content-aware video segmentation
and scheduling over cloud. Their segmentation is based on several chunks with the same size, but it
considers the video content in order to schedule encoding them. They determine that each chunk may
contain a type of video content and therefore each chunk requires an encoding time. The chunks with
long encoding times are arranged first, and chunks with short encoding times are gradually arranged,
reducing the idle time. As with the previous paper [14], the authors only focus on the encoding time
without taking into account the processing time of each chunk to select the type of video content and
communication time are not valued either, aspect to bear in mind when we use UHD videos due to
their size.

The applicability of the Function as a Service programming model to the problem of video coding
has been analyzed in [16]. This work adapts the VP8 algorithm to encode multiple chunks that are
further split, for instance chunks of 96 frames are divided in chunks of 6 frames executed in parallel
using 16 workers. Each worker is a function executed in AWS lambda and the 16 workers encoding a
chunk must be coordinated to produce only a keyframe per chunk. The proposal uses a coordinator
VM that starts jobs in workers and a VM that provide rendezvous for the communication among
workers encoding the same chunk. The main problem of this approach is that it requires to modify the
encoder, thus new and better encoders such as VP9 or AV1 must be adapted to run in the proposed
model. Besides, while lambda functions can scale with no prior allocation of resources, they have some
limitations. The most important ones are the limited execution time and storage capabilities. Therefore,
in scenarios where the function must perform long-running tasks (for example, if they must produce
multiple bitrate encodings to reduce data transfer or because the encoder is complex) or the chunk size
is increased this programming model is not appropriate. Finally, this model cannot be easily replied in
private clouds because of its reliance on provider services.

If we pay attention to video transcoding on cloud infrastructures, there are few works in the
literature that are directly related to the work proposed in this paper. Previous proposed architectures
for distributed video encoding/transcoding in the cloud has been proposed for H.264 [17–21].
These approaches rely on MapReduce or on cluster of machines to perform the encoding, therefore the
main difference with the proposed work is that the number of encoders cannot be modified dynamically
once the encoding is started.
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3. Proposed Architecture

This section introduces the proposed architecture, which is an elastic cloud-based distributed
approach to accelerate video encoding, and the application that is executed on the top to evaluate the
whole solution. Firstly, the logical view of the architecture is presented in Section 3.1 by describing
the adopted virtual infrastructure based on the open source private cloud OpenStack technology
(https://www.openstack.org): the type of VMs, networks, storage, and network tune to improve
performance. Finally, details of the application are given in Section 3.2.

3.1. Virtual Infrastructure

The logical view of the architecture is shown in Figure 1. Two networks are defined: a self service
job network used to send and receive messages that encapsulate video encode jobs and a provider
media network used to transfer video data.

RAW
video

chunks
Encoded

video
chunks

RAW &
encoded
videos

Job messages

Worker
Video

Encoder

Chunk
processing

Attached
local
disk

Worker
Video

Encoder

Chunk
processing

Attached
local
disk

. . .
Media
Storage

Attached
local
disk

Master
Video

Message
broker External

network

Media
network

Job
network

Job messages Job messages

Figure 1. Logical view of the proposed virtual infrastructure.

Besides, three types of VMs have been defined: a Master Video (master), Worker Video Encoders
(workers), and a Media Storage (media). The roles of these VMs are the following:

• Master VM has installed a message broker, RabbitMQ (https://www.rabbitmq.com/) in our
deployment, and a Java Runtime Environment (JRE) (https://www.oracle.com/java). This node
hosts a Java application that allows the user to specify: the video to be encoded, the encoder,
the location of the video in media, the bit rates, the chunk size, or the total number of frames,
among others. The number of chunks is calculated, and for each chunk a message with all the
information to encode that chunk (chunk number, bitrates, location of the video, where to put the
encoded videos, the encoder, etc.) is sent to the message broker.

• Each worker VM has installed a JRE and ffmpeg [22] with support for H.265/HEVC using the x265
encoder [23] and for VP9 using the libvpx-vp9 encoder [24]. These nodes run a Java application
that subscribes to the queue where video job messages are stored. When the application in a
worker node receives a message to encode a particular chunk, it downloads the video chunk from
the media and starts an encoder process using the configuration specified in the message. Finally,
the encoded chunk is uploaded to the media.

• Media VM contains the videos to be processed, provides chunks of these videos, and stores the
encoded chunks.

With respect to the networking, the Media Network uses Single Root I/O Virtualization (SR-IOV)
in order to achieve near native performance in the transference of video chunks. Before starting a
new VM connected to the Media Network, a new OpenStack neutron port is created in this network.
This port creates a new Virtual Function in a SR-IOV capable network interface at the compute node.
This port is assigned at boot time to the VM. Each worker is connected to two networks: the Media
Network, to access the media VM, and the Job Network to connect to the master VM. The media VM is

https://www.openstack.org
https://www.rabbitmq.com/
https://www.oracle.com/java
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connected to the Media Network and to the Job Network. The master VM only requires a connection to
the Job Network.

Regarding storage, when the media or a worker is started, a new disk volume is created in the
compute node where the VM is allocated and, using virsh in the compute node, the disk is attached
to the virtual machine. In this way, we achieve locality between data and computation.

All the VMs started in the infrastructure are configured using a cloud-init (a multi-distribution
package that handles early initialization of the cloud instance) script provided at boot time.
These scripts format the attached disk volume, initialize directories, obtain and install compressed file
artifacts from a web server, and finally run the application. VMs have access to the Internet through
the external network, but only master and media can be reached from outside.

3.2. Dynamic Distributed Execution of Encoding Tasks

The application deployed on the top of the virtual infrastructure creates a direct exchange in
RabbitMQ named Video, which performs load balancing among message consumers, with two queues:

• Jobs Queue that stores VideoJob messages sent by the master and consumed by a worker.
A VideoJob message contains all the information and parameters needed to retrieve and encode a
video chunk, and the sort of encoders that has to be used.

• Times Queue that stores ProcessingTimes sent by the workers and consumed by the master.

Firstly, the application in the master node parses the command line arguments, obtains a channel
associated to RabbitMQ to create the exchange and the queues, and performs the bindings. Then,
for each chunk to be encoded a VideoJob message is created and sent (serialized in JSON format) to
the RabbitMQ exchange.

Secondly, the application deployed in each worker carries out according to Algorithm 1. Initially,
it obtains a RabbitMQ channel and subscribes to the Jobs queue. Thus, after a VideoJob message is
received, it is deserialized. Then, a port number is selected and a netcat, nc, process is started in
localhost to receive the chunks of video from the previously selected port. After that, a nc process in
the media is started to extract and send the video chunk from the RAW video to the worker. Note that,
as each frame has a fixed size, it is possible to extract the portion of the video using for instance the dd
command from the number of chunk and the number of frames per chunk. When the chunk has been
completely downloaded in the disk volume attached to the VM, ffmpeg is used to encode each chunk
for each value of bit rate. Each encoded chunk is uploaded to the media server. If the encoding process
has terminated in the worker node and the encoded chunks have been uploaded to the media server,
the message is acknowledged and a message with the time data is sent. On the contrary, when an error
occurs, a message is sent informing about the error, so the master node can send the corresponding job
message with higher priority.

Finally, the new encoded videos are obtained by joining the encoded video chunks.
Notice that, our proposal is able to work with other codecs. The required adjustments are:

• Creating a new worker VM image with the libraries required for the new codecs and ffmpeg
recompiled to support them.

• Creating a new script with the call to ffmpeg for the new encoder.
• Adapting particular parameters to the new encoder.
• Changing the call to the application running in the master node to pass the name of the new

encoder as an argument.
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Algorithm 1: Worker video encoder code

Obtain a channel from RabbitMQ in Master node;
Create exchanges, queues, and bindings;
/* To receive just one message */;
Set prefetch to 1;
Subscribe to RabbitMQ Jobs queue;
for ( each received message ) {

Deserialize VideoJob from message payload;
port← Select a port number;
Start nc in localhost and listen in selected port;
Start a nc process in media to send video chunk, using direct access, to worker;
Wait for video chunk to download;
for ( each bit rate ) {

Start a ffmpeg process to encode the video chunk
; Wait for encoding process to finish;
Upload encoded video to media server;

}
Send a message to Times exchange with processing times;
if not error then

ACK the message;
else

NACK the message;
end

}

4. Experimental Setup and Results

This section describes the experimental setup (testbed, measured metrics and experiments) used
to validate the proposed architecture. Then a scalability and resource usage study is performed varying
the number of worker encoder nodes. Finally, the quality of the encoded videos is obtained for different
chunk sizes and bit rates.

All the experiments have been performed applying the H.265/HEVC and VP9 codecs to a Sintel
raw video with a resolution of 1080p and YUV 4:2:0 format [25]. This video has a duration of 236.30 s
with 6144 frames at 25 fps and a file size of 19.1 GB. The libraries used for each codec have been
x265 [23] for HEVC/H.265 and libvpx-vp9 [24] for VP9. The parameters used in the encoding process
for each codec is shown in Table 1.

Table 1. Parameters used in the encoding process.

Codec Tool Input Resolution Encoder Preset Threads fps Bit Rate (Mbps)

H.265 ffmpeg RAW video 1080p libx265 slow 4 25 {0.75, 1.5, 3, 4.5}VP9 libvpx-vp9 -cpu-used 1

The encoding has been carried out increasing the number of workers from 1 to 15 to analyze
the scalability of the proposed architecture. On the server side, load metrics (CPU and memory
utilization) and executed jobs metrics (e.g., number of executed jobs, job execution time, etc.) have
been collected for each worker VM during the experiments. Video quality results are evaluated for
different video chunk sizes, bit rates, and codecs, and the total codification time has been obtained for
each combination.
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4.1. Testbed Overview

The experiments have been performed in a private cloud based on OpenStack Ocata
(https://docs.openstack.org/ocata) hat has been deployed on five physical nodes with 2 Intel XEON
CPU E5-2630-v3@2.40GHz processors with 8 cores per processor, 32 GB DDR3-2200 SDRAM, and a
2 TB HD. Therefore, 16 virtual CPUs (vCPUs) are available per node.

OpenStack controller and network nodes are VMs running in one of the physical nodes [26].
Both VMs are configured with 8 vCPUs, but the controller has 10 GB of RAM while the network node
has 6 GB.

During the experiments, VMs of the proposed architecture are distributed among the other four
physical nodes as follows. The master and the media VMs are hosted by the same node, while the other
three nodes allocate the same amount of workers. Each worker VM is started with 4 GB of RAM and
4 vCPUs and, as stated in Section 3, a local disk of 4 GB is attached to it at boot time. The Management
and Overlay networks use a 1 GbE while the Media network use a 10 GbE connection.

4.2. Scalability and Resource Usage

The first experiment evaluates the scalability of the proposed solution. With this purpose,
the Sintel video is encoded at a requested bit rate of 1.5 Mb/s with a chunk size of 50 frames with 1, 3, 6,
9, 12 and 15 workers for each codec. The workers are distributed evenly on the compute nodes in order
to balance the workload. The master node generates 123 VideoJob messages in this configuration.
Each message is processed by a worker, which invokes ffmpeg with appropriate parameters to apply
the two encoders.

4.2.1. Time to Encode and Speedup

Table 2 shows execution time for each codec as the number of workers increases. VP9 is almost
5.5 times faster than H.265, which is maintained when the number of workers increases. Results denote
a significant decrease of the execution time in comparison to the sequential version (1 worker),
which ranges from 63% to 89% when using from 2 to 15 workers.

Table 2. Execution time (minutes) as the number of workers increases.

Workers H.265 VP9

1 131.40 23.98
3 45.67 8.80
6 24.93 4.72
9 17.37 3.28

12 15.81 2.73
15 14.41 2.44

Figure 2 depicts the speedup as the number of workers increases, which is obtained from data
in Table 2 as the ratio of the sequential version using one worker to the time taken by increasing the
number of workers. The speedup is almost ideal until the use of 9 workers (using a total of 12 vCPUs
per compute node out of 16 physical cores) with an efficiency greater than 80%. However, there is a
reduction for 12 and 15 workers, although the efficiency in these cases is still equal or greater than
70% for 12 workers and greater than 60% for 15 workers. For 12 workers, there are 4 workers per
compute node demanding the use of 16 vGPU among the 16 physical existing cores, therefore some
of them will be shared with the operating system and the applications running in the compute node.
This is even worse for 15 workers, as there are 5 workers per compute node demanding the use of
20 vCPUs of the only 16 physical existing cores, thus some of them will be shared with the operating
system, applications, and other encoding processes. A more detailed view of this effect is analysed in
the next subsection.
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Figure 2. Speedup as the number of workers increases.

Figure 3 shows the number of executed jobs by each worker when encoding using 15 workers.
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Figure 3. Number of executed jobs per worker with a configuration of 15 workers for the two codecs
with chunks of 50 frames, which generates 123 jobs.

This number depends on the computational load of the chunk encoding. Although the chunk size
is uniform in all jobs, the encoding time will depend on its content. For example, one worker encodes
5 chunks for H.265, while other encodes 12.

Figure 4 depicts the job scheduling for H.265 when encoding using 15 workers.
As can be seen in this figure, worker 4 performs 5 time-consuming encoding, while worker

12 performs 12 shorter encoding jobs. The total encoding time is determined by the last ending worker.
In order to avoid congestion in the media network, when the workers download their video chunks,
the master generates job messages at a rate of 1 message per second (this value is provided when the
master application is started). Therefore, as can be seen in Figure 4, not all workers start simultaneously.
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4.2.2. Download, Coding and Upload Times

Mean download, coding and upload times for 3, 9 and 15 workers are shown in Table 3.

Table 3. Mean time in seconds to perform different stages depending on the number of workers, with a
chunk size of 50 frames, for H.265 and VP9.

Stage Workers H.265 VP9

Download

3 1.70 1.72

9 1.77 1.80

15 1.87 1.91

Coding

3 63.66 10.29

9 68.80 11.03

15 92.82 13.0

Upload

3 0.66 0.66

9 0.65 0.68

15 0.66 0.71

The download time increases with the number of workers as the as it is more likely to have more
than one worker simultaneously downloading chunks. The time required to encode the chunks also
increases with the number of workers. In the 15-workers configuration (5 workers per compute node
allocating 20 vCPUs) per compute node so the physical system is subject to a higher overload than in
the 9-workers configuration (3 workers per compute node allocating 12 vCPUs). This has an impact
in efficiency reduction, as commented in the previous subsection, and specially for an encoder with
high computational demand as H.265, but it could be solved increasing the number of nodes in the
infrastructure. Upload times show that, the number of worker nodes does not have such a big impact
as the download times. The reason is that the quantity of data to be uploaded is much lower compared
to the quantity of data to be downloaded.
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4.2.3. Resource Usage

During the experiments, the workers were monitored to obtain CPU and memory usage. All the
data collected from the workers is concatenated to obtain the sample Probality Density Function (PDF).

Table 4 shows the CPU usage and memory consumption for the two codecs with 15-workers
encoding the video at 1.5 Mb/s. As can be seen, x265 uses all the CPU available, being the encoder
with the more intensive CPU use of the two encoders, while libvpx-vp9 uses around a 73% of the
available CPU. Moreover, both encoders are similar in terms of memory consumption.

Table 4. Mean memory and CPU usage for 15 workers to encode at a bit rate of 1.5 Mb/s.

Encoder Memory (MB) CPU (%)

x265 1213.7 99

libvpx-vp9 1012.4 77.5

4.3. Quality Evaluation

This section analyzes the impact of the chunk size on the final size and quality of the coded video.
All the experiments in this section were carried out using 15 workers. The video has been encoded
using two codecs H.265 and VP9, four bit rates {0.75, 1.5, 3, 4.5}Mb/s, and the frames per chunk varies
in the range {25, 50, 100, 200}. In this experiment, each worker downloads its assigned video chunk
only once and encodes it at the four requested bit rates. The goal is to minimize data transference
between media and workers.

To analyze the quality of the encoded videos, we have selected the PSNR [27] full-reference metric.
It computes the quality by comparing the original video signal against the encoded video signal.

Table 5 shows the PSNR values in dB when the encoding process is done sequentially (without
splitting the video) by one worker, while Figure 5 displays the measured quality using PSNR of the
coded videos for different chunk sizes.

Table 5. Average PSNR (dB) encoding the video sequentially in one worker at several bit rates with
x265 and VP9 encoders.

Encoder 0.75 Mbps 1.5 Mbps 3 Mbps 4.5 Mbps

x265 33.1818 33.4019 33.4218 33.4799

libvpx-vp9 44.7656 47.0066 49.1259 51.2586

(a) (b)

Figure 5. PSNR for the two encoders and four video chunk sizes (25, 50, 100, and 200 frames): (a) PSNR for
x265 (b) PSNR for VP9.
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According to the presented information, we can say that the qualities obtained, in general terms,
are suitable for H.265 codec and very good for VP9. The difference between PSNR values in both
codecs is due to the coding process, since H.265 uses I, P and B frames while VP9 only uses I and P
frames, which will introduce more information in each frame and therefore more quality. Besides,
in our experiments we have used the x.265 implementation of HEVC, which is not as optimal as the
reference software for HEVC called HM (HEVC Test Model).

The PSNR for H.265 (see Figure 5a) is above 33 dB in all cases, improving between 0.10 and
0.25 dB for the same target bit rate when the chunk size is equal to 200 versus size 50. In the case of
VP9 (see Figure 5b), these values are higher than 43 dB in most cases. These PSNR values are very
high, so we can consider that the encoded videos have a high quality.

If we make a general analysis of the quality metrics, on one hand we can indicate that the codec
most affected by the change in chunk size and bit rate is H.265, while VP9 has a more stable behavior.
On the other hand, the codec with the best quality characteristics is VP9, because it has a higher PSNR
values. As we can see in Figure 5a, the H.265 codec has a different behavior when the chunk size
is very small. In this case, for a size of 25, the encoder is never able to reach the target bit rates and
therefore the PSNR decreases compared to the traditional encoding process (values presented on
Table 5). On the contrary, when the chunk size is increased to 100 and 200, the PSNR values are already
more similar. When we analyze the VP9 codec, we can see another behavior (see Figure 5b): with low
bit rates (0.75 and 1.5 Mbps), we can see that any chunk size reaches that target bit rate; but for the
other bit rates, only the chunk size 200 can reach the target bit rate. For VP9, the proposed solution
does not reach the quality obtained for a sequential encoding (see Table 5), but this small decrease of
quality is compensated by the big improvement obtained in the encoding time.

Finally, to sum up this quality evaluation, if we compare the values of Table 5 and Figure 5, we can
indicate, in general terms, that the encoding system presented in this paper provides a similar quality
to the sequential encoding process. When the chunk is smaller than 100, the quality drops a bit from
the values presented in the Table 5. This difference is so small that it is not noticeable to an end user,
but the coding speed is greatly improved (see Table 2 and Figure 2).

5. Discussion

A qualitative comparison between the related papers presented in Section 2 and our proposal is
summarized in Table 6.

Table 6. Qualitative comparison of the previous work with our proposal.

Proposal Type of Enconding
(RAW or Transcoding) Codec Used Chunk Size (Frames) Paradigm Video Resolution Tested on... Quality Analysis

[14] RAW encoding H.264 250 Map-Reduce 854 × 480 (ED)
Public cloud
Amazon EC2 No

[15] RAW encoding H.265
Variable, content-aware

video segmentation Map-Reduce 3840 × 2160 (4K)
Private architecture

1 master—20 workers No

[16] RAW encoding VP8 24 and 96 Serverless 3840 × 2160 (4K)
Public cloud

AWS Lambda Yes

[17] transcoding H.264 GOP size Map-Reduce - - No

[18] transcoding H.264
32, 64, 128,

256 and 512 MB Map-Reduce 320 × 240
Private architecture

1 master—28 workers No

[19] transcoding H.264
32, 64 and

128 MB Map-Reduce - - No

[20] transcoding H.264 - Map-Reduce -
Private architecture

4 nodes No

[21] transcoding H.264 - Cluster of machines -
Cluster of

2 to 20 machines No

Our proposal RAW encoding H.265 and VP9 25-50-100-200 Message broker 1920 × 1080 (FHD)
Private cloud

5 nodes—1 to 15 workers Yes

There are some proposals that work with RAW videos and others work performing only
transcoding tasks. Our proposal is based on the processing of RAW content, whose videos take
up more disk space and the management of these files must be as efficient as possible to improve
encoding times. Moreover, our proposal uses the latest stable codecs (H.265 and VP9), while most
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works use the previous codecs such as H.264 and VP8. Regarding the paradigm used, most works use
Map-Reduce or cluster of machines, while our proposal is based on the asynchronous message broker
paradigm over a virtual infrastructure. Therefore, our proposal is well adapted to leverage the elasticity
of computing resources offered by the cloud and has been tested on a private cloud infrastructure
with several workers distributed in different nodes. We have performed a video quality analysis
to verify that the encoded videos have a similar quality to the videos encoded using a sequential
encoding system.

Some approaches use hardware accelerators, as GPUs, to increase the performance of the encoder
on a compute node. In these approaches, the GPU parallelizes specific time consuming parts of
the video encoding process (mainly Motion Estimation and Intra-prediction) [9,28–30]. However,
the availability of nodes with GPU is not always possible, particularly on current heterogeneous cloud
infrastructures, and the virtualization and remote use of GPUs on the cloud is another active area
of research today [31]. Nevertheless, our solution could exploit the presence of GPUs in the VMs,
and their combination could provide higher performance.

6. Conclusions

We have proposed a cloud-based distributed architecture to accelerate video encoders that could
be offered by cloud providers as a coding platform to their users or can be deployed on premises.
Its main features are: elasticity, fault-tolerance, hyperconvergence, adaptability to different video
codecs, and automation.

The architecture relies on three node types (master node that schedules jobs, media node that
stores raw and coded videos, and worker nodes that perform the coding) to be deployed on a cloud
infrastructure. This paper has also detailed the deployment of our proposal on a private cloud to
fine tune the infrastructure. The goal is to achieve hyperconvergence and near bare metal network
performance by using SR-IOV in a provider network. Moreover, an application based on a message
middleware is deployed on the top of this virtual infrastructure to parallelize the execution of video
encoders x265 and libvpx-vp9. The proposal has been evaluated in terms of scalability, workload,
and job distribution ranging the number of workers from 1 to 15 at different bitrates and chunk sizes.

According to the quality evaluation, in terms of PSNR, the proposed cloud-based encoding
system provides a similar quality to the sequential encoding process while improving encoding time,
which can decrease up to 89% when using 15 workers. Moreover, the speedup is almost ideal until the
use of 9 workers with an efficiency greater than 80%.

As future work, we are testing the behavior of the architecture with AV1 codec and the impact on
performance and quality of other non-uniform video splitting schemes and other higher resolutions.
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