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Abstract: The lowland savannas of Belize are important areas to conserve for their biodiversity.
This study takes place in Payne’s Creek National Park (PCNP) in the southern coastal plain of Belize.
PCNP protects diverse terrestrial and coastal ecosystems, unique physical features, and wildlife.
A Support Vector Machine (SVM) classification technique was used to classify the heterogeneous
landscape of PCNP to characterize woody and non-woody conversion in a time-series of remotely
sensed data from 1975, 1993, 2011 and 2019. Results indicate that the SVM classifier performs well in
this small savanna landscape (average overall accuracy of 91.9%) with input variables of raw Landsat
imagery, the Normalized Difference Vegetation Index (NDVI), elevation, and soil type. Our change
trajectory analysis shows that PCNP is a relatively stable landscape, but with certain areas that are
prone to multiple conversions in the time-series. Woody vegetation mostly occurs in areas with
variable slopes and riparian zones with increased nutrient availability. This study does not show
extensive woody conversion in PCNP, contrary to widespread woody encroachment that is occurring
in savannas on other continents. These high-performing SVM classification maps and future studies
will be an important resource of information on Central American savanna vegetation dynamics for
savanna scientists and land managers that use adaptive management for ecosystem preservation.

Keywords: remote sensing; neotropical savannas; woody conversion; support vector machine
classification; land cover change; protected areas; Payne’s Creek National Park

1. Introduction

Savannas are mixed woodland–grassland ecosystems with continuous grass cover and variable
tree density that can border closed tropical forests. The tropical savanna climate, characterized by
its distinct wet and dry seasons, and corresponding ecoregions broadly occupies the space between
the equatorial tropical rainforests and subtropical deserts [1,2]. Covering about 20% of the Earth’s
land surface, savannas account for 30% of terrestrial net primary production [3]. The composition of
savanna vegetation is some combination of grassland and sporadic woodland in a patchwork mosaic.
The factors that determine boundaries between savanna and forest have generated debate [4]. It has
been suggested that the factors that control savanna distribution is variable between continents [3] and
that the globally ubiquitous woody encroachment occurring in savannas also varies at continental and
regional scales [5]. The determinants of savanna vegetation also vary at regional and local scales [6].
Climate is the primary driver of the distribution of savanna vegetation, especially at continental and
regional scales, while topography, soil, fire, and herbivory vary in influence regionally to locally [6].

In some global remote sensing studies, tropical savannas are broadly divided into those that
occur in South America, Africa and Australia [3,7,8], possibly because they occupy large areas and are
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widely classified as savanna (or associated ecoregions) in publicly available datasets, such as the World
Wildlife Fund ecoregions [9]. Global studies provide valuable information on the broad distribution,
drivers, and health of savanna vegetation on a continental scale. While vast savannas are widely
studied and are included in global studies, smaller pockets of savanna have received less attention.
There is a lack of understanding of the fine-scale drivers of the heterogeneous nature of savanna
vegetation [10]. Vegetation and soil studies in the expansive Brazilian Cerrado have concluded that
fine-scale interactions between vegetation and available water [10], and vegetation and soils [11], are
key to understanding neotropical savanna vegetation dynamics. Since knowledge of local dynamics is
crucial for understanding the larger savanna landscape, investigating vegetation drivers in smaller
pockets of savanna can also contribute to the larger understanding of savannas. Smaller savannas
are also key components in the preservation of biodiversity and contributions to the economy via
tourism [12]. The exclusion of relatively small savannas from global or continental remote sensing
studies can be partly attributed to the use of sensors with large spatial resolutions (e.g., Advanced Very
High Resolution Radiometer with 4 km pixel size) that contain much intra-pixel variability. For small
study areas that focus on localized savanna vegetation dynamics, finer spatial resolution imagery
is necessary to sufficiently characterize the area and the heterogeneous vegetation gradients that
are characteristic of savanna landscapes. Even when using imagery from sensors with finer spatial
resolution, defining the limits of vegetation in savannas is challenging due to the randomness and
spatial heterogeneity of the landscape [13].

Another challenge is that savanna vegetation exists in varying compositions and gradients,
and one of the most common ways to assess savanna vegetation with remote sensing is to create
discrete land cover classes using an unsupervised or supervised technique [14]. These techniques
use a set of variables (inputs) to break each pixel in an image into distinct classes (output). Discrete
classifications are simple to understand but prevent variation within classes, which, especially for
savannas, can result in an inaccurate representation of the continuous and varied transitions between
vegetation. The complicated nature of applying classification techniques to remotely sensed imagery
in small savanna landscapes suggests that statistically robust methods should be used. Many common
supervised classification techniques, such as Maximum Likelihood, function on the assumption that
the statistics for each class are normally distributed and then calculate the probability that a pixel
belongs to a specific class [15,16]. Since savanna landscapes often do not fit this definition of normality,
such a classification technique is inappropriate. One method to improve supervised classification
performance in savanna landscapes is to use non-parametric machine-learning algorithms that do
not make assumptions about the distribution of the data, such as Support Vector Machine (SVM) or
Random Forest [17,18]. Both SVM and Random Forest have been used to generate high-performing
vegetation classifications in some African savanna landscapes [12,19,20].

Savannas in the neotropics cover approximately two million km2, or 40% of all land area in
the ecozone [21,22]. Of these, the South American savannas (e.g., Brazilian “Cerrado” and nearby
Bolivian “Llanos”, Venezuelan-Colombian “Llanos”, etc.) have gained the most attention due to their
vastness, high biodiversity and biomass, and global importance in the carbon cycle [21]. While these
large savanna expanses are undoubtedly important areas of study, smaller landscapes combined with
other information can allow researchers to better understand local drivers of vegetation, such as the
influence of topography, soil properties, and disturbances. There are isolated savannas in Central
America and the Caribbean that occur above and below 1000 m elevation [23]. While all savannas
are in part determined by climatic factors, these savannas are heavily influenced by the underlying
physical geography. The upland savannas are characterized by weathered soils, fluvial downcutting
and riparian forests, and cooler-weather grasses. The lowland savannas are generally located in flat
coastal plains and are created by the interaction between climate, topography, drainage, and soils.
Both the upland and lowland savannas are also characterized by disturbance in the form of fire and
hurricanes [23]. These large areas, underlain by nutrient-poor soil, have resulted in a general lack of
human land use since the times of the Maya.



Appl. Sci. 2020, 10, 4356 3 of 18

More recently, some of these savannas have been designated as protected areas for reasons ranging
from biodiversity to economics. National parks and other protected areas are ideal for analyzing
localized vegetation dynamics for a variety of reasons. Protected areas theoretically act as a static
feature in dynamic human-influenced landscapes, and represent a more natural state of being in a
given biome [24]. Garbulsky and Paruelo [25] used remote sensing techniques in Argentinian protected
areas to derive the “baseline/reference” conditions of various ecosystems as to better assess the impacts
of land use and global change. Protected areas act as areas of preservation for biodiversity, and this
attracts tourism to boost the economy [12]. In addition, protected areas are often small enough that
moderate or fine spatial resolution remotely sensed data is appropriate for an analysis of fine-scale
vegetation drivers. Nevertheless, even when coarse imagery is most appropriate, imagery with finer
spatial resolution may be able to supplement the analysis. Despite the name, many protected areas
are heavily influenced by human involvement or have been in the past. Josefsson et al. [26] used
paleoecological and archaeological evidence of long-term human land use in boreal forest protected
areas to denounce the notion that purportedly “pristine” forests can be used as ecological references.
Hence, protected areas may be an indicator of how local, regional, and global human-environment
interactions have affected floral and faunal life in the past and present. This reinforces the need to
consider multiple lines of evidence to ascertain the drivers of vegetation change in any landscape [5].
Finally, protected areas are often managed by governments or non-governmental organizations, which
means that there are often concerted efforts to maintain and protect the vegetation within a protected
area. For example, April Sahara et al. [27] used dendrochronological and remote sensing techniques to
characterize woody encroachment over the past 150 years in a pine savanna in Redwood National
Park, California. Using their findings, they created models to predict the spatiotemporal characteristics
of future woody encroachment in the park [27].

This research was carried out in Payne’s Creek National Park (PCNP) located in the southern
coastal plain of Belize. The purpose of this study is to use remotely sensed data to quantify vegetation
land cover change from 1975 to 2019, specifically to determine if there has been any woody conversion,
as seen in other savanna landscapes globally. This study addresses the following questions: (1) Can a
SVM accurately classify the complex savanna landscape of PCNP over time? (2) What is the overall
pattern of woody and non-woody conversion in PCNP from 1975 to 2019 using the SVM classifications?
(3) What are the fine-scale variables linked to vegetation distribution in PCNP?

2. Materials and Methods

2.1. Study Area

Payne’s Creek National Park (PCNP) in the Toledo District of southern Belize covers approximately
152 km2 of low elevation land that borders the Caribbean Sea (Figure 1). The park is located at
approximately 16.3◦ N 88.6◦ W in Belize’s southern coastal plain. Belize has a subtropical to tropical
climate with mean monthly minimum/maximum temperatures from 16/28 ◦C in winter to 24/33 ◦C
in summer [28]. The Köeppen climate classification of most of Belize, including PCNP, is “tropical
monsoon” [29], which is characterized by a distinct wet and dry season. The majority of rainfall falls
from June to November in Belize [29]. For this study, the dry season is considered as January–May and
the wet season is June–December. The dry season average precipitation in PCNP is approximately
498 mm and 2208 mm in the wet season. The minimum/maximum precipitation in PCNP in the dry
season was 269 mm/790 mm (1987/1990) and 1647 mm/2903 mm (2004/1979) in the wet season [30–32].
Mean annual rainfall ranges from 1524 mm in the north and 4064 mm in the south. This variability occurs
due to orographic lifting over steep slopes and the seasonal migration of the Inter-Tropical Convergence
Zone [29]. Belize contains upland savannas known as the Mountain Pine Ridge and lowland savannas
of the northern and southern coastal plains. This study focuses on Belize’s lowland savannas.
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Figure 1. Map of Payne’s Creek National Park (PCNP), showing nearby countries in Central America.
Image of PCNP is a true color composite from Landsat 5 TM taken in March 2011. Shapefile of Central
America from Natural Earth. Shapefile of Belize and its rivers from Biodiversity and Environmental
Resource Data System of Belize. Shapefile of Payne’s Creek National Park from Protected Planet.

The lowland savannas of Belize are located between dense broadleaf rainforests inland and
mangrove swamps seaward in the relatively flat, poorly drained coastal plain [33]. Vegetation in these
savannas are a mosaic of grassland and pine or oak trees, and pockets of broadleaf forest [23,28,34].
Both upland and lowland savannas are in areas with weathered, acidic and nutrient-poor soils, but the
upland savannas are well-drained while those in the lowlands frequently experience flooding and
drying with the wet and dry seasons, respectively [35]. The lowland area is underlain by the Yucatan
limestone platform, which was shallow sea during the Pliocene (2–13 Myr BP). Subsurface clay sits
atop the limestone platform, resulting in widespread poor drainage in the lowlands. Sands and gravels
from the nearby Maya Mountains eroded and accumulated on the clay and formed the current lowland
coastal plain [35]. Savannas in the low-lying area usually occur on nutrient-poor soils underlain by the
sands and gravels [28]. Undulations in the lowland topography result in improved drainage and the
dominance of woody vegetation, such as pine and oak. Dense broadleaf forests occur along rivers in
the area due to increased nutrients in alluvial deposits originating in the Maya Mountains [28]. At
an even finer scale, disturbance feedbacks in the form of fire and hurricanes control the boundaries
between grasses and trees. This is partly because the dominant pine species, Pinus caribaea, most
readily regenerates on sunlit mineral soils. These soils become available after fire from the removal
of grass cover and organic matter, or because old trees are killed and stand density is reduced [36].
Similarly, strong winds from hurricanes can reduce stand density and allow sunlight to penetrate to
the surface [36]. The Toledo Institute for Development and Environment (TIDE) manages PCNP and
uses fire management practices in the fire-adapted tropical pine savanna and grassland ecosystems.
While the pine savanna is fire adapted, too many fires would eventually lead to a grassland without
pine by scorching saplings attempting to regenerate. Too few fires results in a thick herbaceous layer
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and succession towards broadleaf forest. One result of less pine is habitat loss for the endangered
yellow-headed parrot, Amazona oratrix, which uses pine trees to nest [37]. Since the pine savanna and
yellow-headed parrot are both endangered and reliant on fire, TIDE places a high priority on fire
management in PCNP.

According to the ecosystem classifications created by other researchers [33,38], PCNP contains
open savanna, dense tree savanna, forest inclusion (within open savanna), forest, mangrove and littoral
swamp, and wetland. Open savanna is dominated by grasses and sedges with semi-open to very open
areas of pine, oak, palmetto and craboo. Dense tree savanna is the transitional area from forest or forest
inclusion to open savanna. Elevation broadly distributes the wetland in the lowest lying areas and
forest in the higher elevations (<35 m), with savanna in between. The mangrove and littoral swamps
are on the coast and also extend inland, beyond the mouth of Payne’s Creek and other streams.

2.2. Climate Data

Climate data was used to avoid anomalies and assess the viability of carrying out dry-season
vegetation classification and change trajectory analysis in the months from which the imagery was
collected. We used two sources of historical climate data to encompass the entire time period.
The Climate Hazards Group InfraRed Precipitation with Station Data (CHIRPS) from the University of
California Santa Barbara is a quasi-global rainfall dataset that spans 50◦ S–50◦ N across all longitudes.
CHIRPS uses 0.05◦ resolution satellite imagery and in-situ station data to produce a gridded, monthly
dataset the spans from 1981 to near-present [32]. Since the remote sensing analysis contains the earliest
usable Landsat imagery of PCNP from 1975, the CHIRPS data does not encompass the earliest part of
the study period. WorldClim is another gridded dataset for historical climate data. Specifically, the
CRU-TS 4.03 [31] downscaled with WorldClim 2.1 [30] is a monthly climate dataset for global land areas
at approximately 21 km spatial resolution. Since this dataset provides climate data that extends back to
1960, it was used to extend our climate data back to 1970. Even though the CHIRPS and WorldClim
data are at different spatial resolutions, both were used to assess the climate in PCNP. Based on the 49
years of combined CHIRPS and WorldClim precipitation data, the dry season (January–May) average
precipitation in PCNP is approximately 498 mm and 2208 mm in the wet season [30–32]. Figure 2,
which shows the yearly cumulative precipitation Z-scores for the CHIRPS and WorldClim data from
1970 to 2018, was used to assess which years were drier or wetter than average precipitation in PCNP
to ensure that anomalous years of imagery were not chosen for analysis.
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2.3. Data and Image Analysis

2.3.1. Remotely Sensed Data

This study used remotely sensed Landsat Multispectral Scanner (MSS), Thematic Mapper (TM),
and Operational Land Imager/Thermal Infrared Sensor (OLI/TIRS) imagery to create land cover
classification and change trajectories and carry out Normalized Difference Vegetation Index (NDVI)
analysis on freely available imagery from four years in the dry season: 1975, 1993, 2011 and 2019.
Landsat imagery was chosen for this analysis for its relatively fine spatial resolution and its long-term
database of publicly available satellite imagery. All Landsat imagery was obtained from the United
States Geological Survey Earth Explorer and came atmospherically and geometrically corrected [39].
The images from March 1975 and March 2011 are completely cloud-free, while those from March 1993
and January 2019 have some clouds and cloud shadows, which were masked out. The MSS data
(bands 1–4), obtained by Landsat-2 in 1975 at 80 m spatial resolution, were resampled to 30 m pixel
size to align with the resolution of the TM (bands 1–7) and OLI/TIRS (bands 1–8, 10, 11) imagery from
Landsats 4, 5 and 8 (1993, 2011 and 2019). All raw image bands (except OLI band 9) were subset
to a shapefile of PCNP obtained from Protected Planet and were used in the classification analysis.
Additionally, the three other layers outlined in Section 2.3.2 below were created or obtained to be used
as variables in the SVM classification.

2.3.2. Other Data: Normalized Difference Vegetation Index (NDVI), Digital Elevation Model (DEM),
and Soil Type

NDVI is a commonly used vegetation index that has a variety of applications, but its inherent use
is to quantify and discriminate vegetation characteristics [40]. The calculation for NDVI is:

NDVI =
NIR − Red
NIR + Red

where NIR is near infrared reflectance and Red is red reflectance in the electromagnetic spectrum.
NDVI is an indicator of vegetation productivity and degradation [40,41]. Using band math tools in the
Environment for Visualizing Images (ENVI) 5.5 software, four NDVI maps, one for each image in the
time series, was created from the NIR and red bands to be used as an input variable (Figure 3).

As was previously stated, edaphic factors are key to understanding the distribution of woody
and non-woody vegetation in the lowland savannas of Belize. Nutrient-poor soils in the Belize
lowlands stem from inundations in the wet season due to poor drainage from subsurface clay and
intense desiccation in the dry season [35]. Higher elevations and variable slopes can result in locally
improved drainage and the opportunity for soil development and woody vegetation establishment. To
encompass the importance of topography in the classification, a 30 m digital elevation model (DEM)
from the USGS Shuttle Radar Topography Mission (SRTM) was included (Figure 3). The DEM was
acquired from the USGS Earth Explorer website and the study area was subset in ArcMap 10.7.1 using
the PCNP shapefile.

While the subsurface clay in PCNP affects vegetation through seasonal inundations, the soil types
that overlay the clay also affect vegetation distribution. Alluvial deposits along rivers and streams, for
example, are nutrient rich and promote woody growth compared to the Maya Mountain outwash that
underly the grasslands [28]. To incorporate the importance of soil type in the classification, a Belize
soils map created by the Selva Maya consortium (Figure 3) was included as a variable [42].
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Normalized Difference Vegetation Index (NDVI) map of Landsat-5 Thematic Mapper (TM) image from
March 2011; (b) Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) showing
elevation in meters of PCNP, from United States Geological Survey (USGS) Earth Explorer; (c) soil type
map showing areas in PCNP with differing major soil types, from Selva Maya consortium.

2.4. Land Cover Classification and Change

2.4.1. Land Cover Classes

Other research carried out in Belize, including the southern coastal plain, identify the dominant
land covers of PCNP as open savanna, dense tree savanna, forest and wetland [28,33]. The open
savanna classification is characterized by the domination of grasses and sedges with scattered trees
and shrubs. Similarly, the species composition of the dense tree savanna is essentially the same as the
open savanna, but with semi-closed oak and pine canopies. The forest land cover includes lowland
broad-leaved wet forests, lowland broad-leaved moist scrub forests, and mangrove and littoral forests.
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Wetland land cover in PCNP are comprised of tall herb lowland swamp and Eleocharis marshes [33,34].
The focus of this study, however, is to characterize conversion to and from woody and non-woody
vegetation over time, so the land cover classes used in this classification are more general: forest, grass,
wetland, and water.

2.4.2. Training Data

Since fieldwork was not undertaken, all training and testing data in this study were collected
via easily accessible high-resolution satellite imagery. Using the “Generate Random Points” tool in
ArcMap, random points were generated throughout the PCNP shapefile. Using imagery from Google
Earth and the ArcGIS satellite basemap, the random points were identified as belonging to one of
the four training sample categories: forest, grass, wetland, or water. The 2017 update of the Belize
Ecosystems map from Meerman and Sabido [38] and the Savanna Ecosystems Map of Belize from
Bridgewater et al. [33] were used to aid in the spectral differentiation of classes. Additional classes
for clouds and cloud shadows were used in the images from 1993 and 2011. A total of 198 points
comprised the training dataset, with 133 of those being for the four land cover classes and 65 for
clouds and shadows. Approximately 80% of the samples were used to train the classifier and 20%
were saved for accuracy assessment [12]. The training and testing data were randomly split by the
“Subset Features” tool in ArcMap.

2.4.3. Support Vector Machine Classification

A radial basis function kernel SVM was chosen for these classification maps due to the capability
of the classifier to distinguish non-linear boundaries between classes, especially when training data
sample size is low. The SVM classifier is a supervised classification technique that uses statistical
learning to discriminate classes by maximizing the separation between discrete classes based on
training data. The optimal separating hyperplane refers to this boundary, which maximizes class
separation and minimizes misclassification [43,44].

The SVM classification was carried out in ENVI 5.5 using a radial basis function (RBF) kernel. The
four classifications were carried out on dry season images using Landsat-2 MSS bands 1–4 for March
1975, Landsat-4 TM bands 1–7 for March 1993, Landsat-5 TM band 1–7 for March 2011, and Landsat-8
OLI/TIRS bands 1–8, 10 and 11 for January 2019 imagery. All four classifications also included the
derived NDVI using the NIR and Red bands, the SRTM DEM, and the Belize Soils Map. The raw
Landsat bands, NDVI, DEM and Belize Soils Map were all subset to the PCNP shapefile in ArcMap
and stacked together as a multi-band file in ENVI. Accuracy assessments were performed in ENVI for
all four classification maps using ground truth regions of interest.

2.4.4. Change Detection

The first step for detecting conversions to and from woody and non-woody vegetation was to
simplify the land cover classes. Using the “Reclassify” tool in ArcMap 10.7.1, the forest class pixels
were reclassified as “Woody” while grass, wetland, and water were reclassified as “Non-Woody.”
The cloud and cloud shadow pixels were reclassified to no data. After all maps were reclassified, we
used the ArcMap “Raster Calculator” to create change trajectories. A change trajectory was created
for all four dates to characterize overall woody and non-woody conversions in the time-series. Three
additional change trajectories were created to show woody and non-woody conversion between 1975
and 1993, 1993 and 2011, and 2011 and 2019.
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3. Results

3.1. Land Cover Classification and Change Trajectories

3.1.1. Classification Maps

The first output from the SVM classification is a land cover classification map for each of the
four dates (Figure 4). These maps show where forest, grass, water, and wetland classes are located in
PCNP. The 1993 and 2011 maps also contain cloud and cloud shadow classes. Figure 4 shows that,
in all four maps, the four land cover classes are generally grouped together, but with transitional
areas between them. Higher elevations and improved drainage promote closed forest in the northeast;
seasonal inundations and nutrient-poor soils promote grasses and interspersed trees in the central and
western low-lying areas; waterlogged soils promote wetlands in the east that border the grass, closed
forest, and Atlantic Ocean to the south; water accumulates and discharges into the Caribbean Sea in
the southwest and southeast. The most notable transitions are the more gradual transitions between
grass and wetland, forest and wetland, and the quicker transition between grass and forest.
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Figure 4. Support Vector Machine classification results based on Landsat imagery and other data for:
(a) 1975; (b) 1993; (c) 2011; (d) 2019.

The error matrices (Table 1) show where misclassification occurred in the four images. Table 1 also
shows class error commission and omission percentages, and overall accuracy and kappa coefficients.
The overall accuracy for the 1975, 1993, 2011 and 2019 classifications are 88.5%, 96.9%, 96.2% and 86.1%,
respectively, and the kappa statistics are 0.8402, 0.9612, 0.9474 and 0.8289. While the classifications
perform well overall, some confusion, especially in the grass and wetland classes, can be noted
visually. The transitional areas between grass and wetland are most well defined in the 1975 land cover
classification, with each subsequent map having less definition between classes. Another issue for
the SVM classifier was differentiating between spectrally similar water and cloud shadow, especially
in the 2019 land cover classification; nevertheless, grouping classes together through reclassification
results in new classification maps where these issues are less pronounced.
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Table 1. Error matrices for Support Vector Machine classification results based on Landsat imagery and
other data for 1975, 1993, 2011 and 2019. The 1975 and 2011 images were completely cloud-free.

Error Matrix Forest Grass Water Wetland Cloud Cloud
Shadow Total Class Error

Commission %
Class Error

Omission %

1975

Unclassified 0 0 0 0 n/a n/a 0
Forest 6 0 0 0 n/a n/a 6 0.0 0.0
Grass 0 7 2 0 n/a n/a 9 22.2 12.5
Water 0 0 2 0 n/a n/a 2 0.0 50.0

Wetland 0 1 0 8 n/a n/a 9 11.1 0.0
Total 6 8 4 8 n/a n/a 26

1993

Unclassified 0 0 0 0 0 0 0
Forest 6 0 1 0 0 0 7 14.3 0.0
Grass 0 8 0 0 0 0 8 0.0 0.0
Water 0 0 3 0 0 0 3 0.0 25.0

Wetland 0 0 0 8 0 0 8 0.0 0.0
Cloud 0 0 0 0 3 0 3 0.0 0.0

Cloud Shadow 0 0 0 0 0 3 3 0.0 0.0
Total 6 8 4 8 3 3 32

2011

Unclassified 0 0 0 0 n/a n/a 0
Forest 6 0 1 0 n/a n/a 7 14.3 0.0
Grass 0 8 0 0 n/a n/a 8 0.0 0.0
Water 0 0 3 0 n/a n/a 3 0.0 25.0

Wetland 0 0 0 8 n/a n/a 8 0.0 0.0
Total 6 8 4 8 n/a n/a 26

2019

Unclassified 0 0 0 0 0 0 0
Forest 6 0 0 0 0 0 6 0.0 0.0
Grass 0 7 2 0 0 0 9 22.2 12.5
Water 0 0 2 0 0 0 2 0.0 50.0

Wetland 0 1 0 8 2 0 11 27.3 0.0
Cloud 0 0 0 0 4 0 4 0.0 33.3

Cloud Shadow 0 0 0 0 0 4 4 0.0 0.0
Total 6 8 4 8 6 4 36

1975 Kappa Coefficient: 0.8402 Overall Accuracy: 88.5%; 1993 Kappa Coefficient: 0.9612 Overall Accuracy: 96.9%;

2011 Kappa Coefficient: 0.9474 Overall Accuracy: 96.2%; 2019 Kappa Coefficient: 0.8289 Overall Accuracy: 86.1%

3.1.2. Change Trajectories

Figure 5 shows the four SVM classification maps after being reclassified. There is an average
of 176,765 reclassified pixels in the four maps with approximately 70% being non-woody and 30%
woody. The number of pixels in the four classifications are not equal because of the presence of cloud
and cloud shadow pixels in the 1993 and 2011 imagery, which were reclassified as no data. Figure 6
shows the overall change trajectory using all SVM classifications in the time-series. Visually, most
pixels did not undergo change, as the WWWW (brown) and NNNN (blue) trajectories represent
pixels that, throughout the time-series, remain woody or non-woody, respectively. Table 2 shows
that 86.7% of pixels did not undergo conversion throughout the entire time-series, while all other
pixels underwent conversion at least once. Of the 13.3% that underwent conversion, 66.3% ended the
time-series as non-woody and 33.7% as woody. There are some visually discernible spatial patterns to
the conversions that occurred in the overall change trajectory, indicating that some portions of PCNP
may be more susceptible to land cover change. Figure 6 shows that changes occurred along the coast
in the south and southwest. Conversions also appear to be more frequent on the fringes of the pockets
of forest that surround fluvial systems. Substantial change also occurred in the eastern PCNP wetland
and within the northern eastern closed forest. It appears that little widespread change occurred in
the grasslands, but with pronounced conversions occurring in transition zones between woody and
non-woody vegetation.
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Table 2. SVM classifier change trajectory pixel counts and percent change with explanation of each
change trajectory. Woody is “W” and non-woody is “N”.

Trajectory 1975 1993 2011 2019 Pixel Count % Change

WWWW W W W W 41296 24.4
WWWN N W W W 3546 2.1
WWNW W N W W 398 0.2
WWNN N N W W 423 0.2
WNWW W W N W 398 0.2
WNWN N W N W 418 0.2
WNNW W N N W 258 0.2
WNNN N N N W 2134 1.3
NWWW W W W N 2060 1.2
NWWN N W W N 4231 2.5
NWNW W N W N 181 0.1
NWNN N N W N 1181 0.7
NNWW W W N N 1172 0.7
NNWN N W N N 3091 1.8
NNNW W N N N 2988 1.8
NNNN N N N N 105445 62.3

Total 169220 100.0

While the overall change trajectory map shows a more holistic view of change in the time-series,
showing only the conversions between successive imagery dates allows for highlighting the timing
of certain changes. Figure 7 shows three change trajectories which highlight woody and non-woody
conversions between adjacent imagery dates. These maps make the timing of certain conversions
much clearer. The conversions between 1975 and 1993 are perhaps the most distinct, with the south
and southwest portions of PCNP undergoing widespread woody conversion (colored in yellow) along
the coast. Non-woody conversion (green) occurred in the east in the transition from forest to wetland,
indicating that these pixels may have converted from forest to wetland. Table 3 shows that 6.6% of
all pixels converted to woody vegetation between 1975 and 1993, which is the highest rate of woody
conversion between all four imagery dates. The 2.2% conversion to non-woody land cover between
1975 and 1993 is the lowest of the three change trajectories. Between 1993 and 2011, more than 95%
of all pixels underwent no change and 3% converted to non-woody. Spatially, most of this change
occurred along the coast, but there are also non-woody conversions within the grassland, wetland, and
closed forest, especially in transitional areas. The conversions that occurred between 2011 and 2019
were mostly non-woody and appear to be in areas that had already undergone conversion at other
points in the time-series.
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Table 3. Change trajectory percent changes between successive imagery dates.

Trajectory SVM Classifier % Change

1975–1993 1993–2011 2011–2019

Non-Woody to Woody 6.6 1.3 1.9
No Change 91.2 95.7 93.3

Woody to Non-Woody 2.2 3.0 4.8

Total 100.0 100.0 100.0

4. Discussion

This study demonstrates a novel application of a non-parametric supervised classification
technique in a heterogeneous neotropical savanna landscape. SVM classifiers are especially useful
when training data is limited and boundaries between classes are not abrupt, which are both true
for this study. The SVM classification of the heterogenous landscape in PCNP is high-performing
and performs similarly to other studies that use SVM to classify savanna vegetation [19,45,46]. This
research adds to the growing recognition of the robustness of SVM classifiers in savannas and other
heterogenous landscapes. The use of SVM needs to be explored further in savanna landscapes,
especially in other small Central American savannas that are underrepresented in regional and global
studies. Understanding conversions to and from woody and non-woody vegetation is a simple, but
important way for researchers and land managers to compartmentalize and interpret change occurring
on a landscape. This streamlined view of vegetation change is especially useful in savanna landscapes,
which contain grass and trees in alternative stable states that are constantly experiencing change driven
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by disturbances and feedbacks [6]. Understanding where land conversions are occurring in savanna
and adjacent landscapes is crucial so that managers can investigate the source of change and determine
if planning and intervention is needed or if the change is part of the overall function of the ecosystem.

Our analysis reveals a relatively stable landscape in PCNP, but with spatially concentrated
areas that are prone to vegetation conversion. The overall change trajectory (Figure 6, Table 2)
does not reveal evidence of widespread woody or non-woody conversion in PCNP from 1975 to
2019. This finding is notable because it differs from studies of savanna vegetation dynamics on
other continents. In sub-Saharan Africa, remote sensing studies have found evidence of woody
encroachment in savannas [12,20]. The authors of [47] reviewed 16 studies that present evidence
of woody encroachment and supplement those findings with continental-scale remote sensing
analysis. Moreover, at a continental scale, a connection between mean annual precipitation and
woody encroachment was discovered by the authors of [48], who also suggested that future increases
of water availability in African Savannas could lead to enhanced woody conversion. In a protected
area in northern Australia, researchers found forest expansion and grassland contraction in a lowland
Eucalyptus savanna [49]. Further evidence of tropical rain forest expansion into savanna was found
across multiple sites in northeast Australia, most likely attributed to increased atmospheric CO2 [50].
In South America, it has been suggested that the expansion of riparian forests within the Brazilian
Cerrado savannas has been occurring for thousands of years and will continue to do so with modern
climate change [51]. Based on an extensive review covering 112 savanna sites, the authors of [5]
conclude that widespread woody encroachment is occurring in savannas across Africa, Australia, and
South America; however, regionally specific characteristics of plant biology, land use, disturbance,
moisture availability, soil nutrients, etc. determine encroachment susceptibility for the landscape.

Figure 7 shows where conversions occurred between imagery dates and reveals that certain areas
in PCNP are especially sensitive to change and have changed multiple times. These sensitive areas
are along the coast and the transition zones between forest, grassland, and wetland. We hypothesize
that some of these areas are especially susceptible to conversion due to disturbance and the inherent
sensitivity and heterogeneity of vegetation transition zones in savannas. Clusters of conversion to
non-woody vegetation (colored in green) between 1975 and 1993 may be a result of selective logging of
broadleaf and pine trees, which occurred until becoming a protected area in 1994 [52]. Later in the
time-series, non-woody conversions surrounding pockets of forest could be a result of fire management
practices. TIDE uses prescribed fires in PCNP to maintain the pine savanna and promote post-fire
pine regeneration. If the fire management efforts were not effective, it is likely that the 1993–2011
and 2011–2019 change trajectories would show an expansion of non-woody vegetation or woody
encroachment in the grassland [52].

Between 1975 and 1993, there is also an area of concentrated woody conversion (colored in yellow)
that occurs along the PCNP coastline. Meerman and Sabido [2001] indicate that this coastal area
contains mangrove and littoral forest. Mangrove and littoral forest are dynamic environments that
occupy the space between marine and terrestrial ecosystems, so it is not surprising that the PCNP
coastline has experienced change in the time-series. Nevertheless, the spatially concentrated woody
conversion along the coast suggests that a disturbance event, such as a hurricane or wildfire, or its
aftermath could be the source of change. Since this a forest in the littoral zone, pre-1975 hurricane
activity is more likely to have damaged the mangroves or reduced stand density. There were multiple
tropical cyclone events that affected Belize before 1975: Hurricane Hattie (1961), Hurricane Francelia
(1969), Hurricane Edith (1971), Tropical Storm Laura (1971), and Hurricane Fifi (1974) [53]. Stoddart [54]
observed mangrove defoliation and widespread destruction of coconut palms in areas affected by
Hurricane Hattie [54]. These pre-1975 events may have reduced littoral forest density and induced
regrowth. The fact that there are also groups of pixels along the coast that went from woody to woody
between 1975 and 1993 suggests that woody conversion was already happening before 1975 and
continued through 1993. Even though mangrove forests are not typically associated with savanna
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landscapes, the importance of the mangroves to the pine savanna manifests through the interception
of energy from hurricanes and other storms [55].

One of the contributions of this study to savanna science is the importance of ascertaining and
including fine-scale driving factors, such as topography and soil type, into remote sensing analyses.
Each savanna landscape is unique and contains varying drivers and disturbances that determine
vegetation distribution, with common drivers often being plant available moisture and nutrients [56].
In the lowland savannas of Belize, edaphic and topographic factors play key roles in vegetation
distribution [23]. These factors vary on multiple scales in Belize, and the fine-scale variations within
these are important vegetation drivers in PCNP. Elevation ranges from 35 m to sea level and broadly
distributes vegetation in PCNP; nevertheless, it appears that the fine-scale consequences of elevation,
such as locally improved drainage, determine where woody vegetation can survive. Since there
are widespread nutrient-poor soils in the coastal plain, pockets of nutrient rich, alluvial soils along
fluvial systems also determine the extent to which woody vegetation can establish. As is seen in the
SVM classification maps, pixels at higher elevations and around fluvial systems were classified as
woody vegetation, which agrees with other studies [28,33,38]. These results parallel the findings of a
study in Kenya by Coughenour and Ellis [57]. They determined that water availability and physical
landscape pattern control the distribution of grass and trees, as woody vegetation almost only occurred
in riparian zones. It was concluded that the there is a hierarchy of physical factors that determine where
woody vegetation can develop on this landscape at multiple scales: climate at regional and continental,
topographic influence on water redistribution and the geomorphic effect on soil moisture regionally,
and water redistribution and disturbance at the local scale [57]. Similarly, the interaction between
rainfall and topography distribute vegetation in the Serengeti-Maasai Mara savanna ecosystem [58].
Including the SRTM DEM and the soils map as variables in the SVM classifications were paramount in
encompassing “bottom-up” drivers of woody and non-woody vegetation distribution that remotely
sensed imagery alone cannot include. Future vegetation studies in PCNP should quantitatively
describe the influence of riparian zones and alluvium on woody vegetation distribution.

5. Conclusions

The research presented here demonstrates that a non-parametric supervised land cover
classification technique performs well in this heterogenous savanna landscape. Using a SVM
classification and time-series change trajectories, we characterized woody and non-woody conversion
in PCNP from 1975 to 2019 and found a relatively stable landscape. Our land cover classification
revealed that some portions of PCNP that are susceptible to change tend to be in areas where the
dominant vegetation cover is transitioning. These areas overlap with changes in elevation and/or
riparian zones, indicating the importance of slight variations in drainage and nutrient availability.
Consequently, our analysis suggests that topo-edaphic factors play a key role in controlling woody
biomass in PCNP, and future studies should explore this further. We attribute the other areas with
similarly grouped conversions to be disturbance or human induced, such as fire, hurricane-induced
vegetation damage, or logging. Unlike many other savanna landscapes, woody encroachment is not
widespread in PCNP.

The findings from this study have important implications for savanna scientists and land managers
in Belize, such as a better understanding of fine-scale savanna vegetation drivers and areas susceptible
to vegetation conversion. Adding to the knowledge of how this landscape functions will allow land
managers to improve their efforts of protecting the pine savanna and its associated wildlife. Future work
should improve the vegetation classification with field validation, quantitatively relate topo-edaphic
factors to vegetation conversion, and compare these findings to other Central American savannas.
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