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Featured Application: Phase hologram and diffractive optics element optimization with effective
convergence and quality reconstruction.

Abstract: A weighted constraint iterative algorithm is presented to calculate phase holograms with
quality reconstruction. The image plane is partitioned into two regions where different constraint
strategies are implemented during the iteration process. In the image plane, the signal region
is constrained directly according to the amplitude distribution of the target image based on an
adaptive strategy, whereas the non-signal region is constrained indirectly by total energy control of
the hologram plane based on the energy conservation principle. The weighted constraint strategy can
improve the reconstruction quality of the phase holograms by broadening the optimizing space of the
iterative algorithm, leading to effective convergence of the iteration process. Finally, numerical and
optical experiments have been performed to validate the feasibility of our method.

Keywords: holography; computer-generated hologram; phase hologram; holographic display;
diffractive optics

1. Introduction

Computer-generated holograms (CGHs) can reconstruct the whole optical wave field of the
synthetic object beam, which leads a wide range of applications, including beam shaping, holographic
displays, optical encryption and atom trapping [1-5]. Commercial spatial light modulators (SLMs)
provide an effective way to dynamically upload CGHs, whereas complex modulation is difficult to
directly realize on a single SLM. Compared to amplitude SLMs, multilevel-phase SLMs can reconstruct
optical wave fields with higher efficiency and no conjugate image. Therefore, phase holograms are
preferable in the applications where optical efficiency and compact configuration are demanded [6,7].

In order to improve the reconstruction qualities of phase holograms, various non-iterative methods
have been proposed to calculate phase holograms [8-17]. A straightforward solution is to transform a
complex amplitude distribution into a phase distribution. The double-phase method was proposed to
decompose the complex value into two phase values, which were then used to encode the complex
wave fields into phase distributions with the help of a low-pass filter in the Fourier plane [8-10].
The space-bandwidth product was not efficiently utilized in this method due to the decomposition
operation of each complex value. The error diffusion method was introduced to transform a complex
hologram to a phase hologram by diffusing the residual errors to adjacent sampling points [11,12].
However, the optical efficiency would be affected by this method. Recently, some researchers have
attempted to impose a designed phase mask to target images for improving the reconstruction quality
of phase holograms, such as random phase-free, periodic patterned phase masks, gradient-limited
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random phase and optimized phase modulation methods [13-17]. These methods possess the merit of
low computation load; whereas the generalization of these methods would be affected due to the lack
of further optimization.

Iterative algorithms can optimize the phase profile of the hologram according to target images,
which are widely used for designing phase holograms [18]. Iterative algorithms try to optimize
the phase profile for improving the reconstruction quality by utilization of phase freedom in the
image plane. The majority of iterative algorithms were developed on the basis of the error-reduction
(ER) algorithm, which is also referred to as the Gerchberg-Saxton (GS) algorithm [19-21]. The GS
algorithm has the property of non-increasing error under increasing quantity of iterations, leading
effective convergence of the iteration process. Input—output algorithms were introduced to speed
up convergence by introducing feedback calculation during the iterations [22-24]. However, the GS
algorithm and input-output algorithms often stagnate into the local minimum. Instead of imposing
amplitude constraint to the entire image plane, some iterative algorithms have been proposed to
improve reconstruction quality by introducing amplitude freedom into the image plane [25-28].
In these methods, the image plane was partitioned into a signal region and non-signal region, and only
the amplitude distribution of the signal region was directly constrained. Recently, double-constraint
iterative algorithms were introduced to suppress the speckle noise, in which the desired amplitude and
smooth phase distribution were constrained in the signal region during the iteration process [29,30].
These methods improve the reconstruction quality of the signal region by relaxing the amplitude
constraint of the non-signal region. However, the reconstruction in the non-signal region would be
less controlled, causing severe noise and low optical efficiency. Although the noise in the non-signal
region could be reduced by introducing a noise suppression parameter [26], it would sacrifice the
optimization space of the iterative algorithm and degrade the reconstruction quality in the signal
region. It is difficult to obtain a satisfactory reconstruction while maintaining a high optical efficiency
in these methods. In addition, the noise suppression parameter should be chosen manually, and the
optimal value is dependent on different target images, which would be inconvenient when generating
phase holograms with different target images. In our previous work [31], the noise in the non-signal
region was suppressed by controlling the total energy in the hologram plane, and the amplitude
distribution of the signal region was constrained by a two-step constraint strategy. This method can
effectively reduce the noise in the non-signal region; however, the amplitude constraint strategy in the
signal region is not stable and might degrade the convergence of the iteration process.

In this study, a weighted constraint iterative algorithm (WCIA) is presented to calculate phase
holograms with quality reconstruction and effective convergence. Specifically, the image plane is
partitioned into signal region and non-signal region according to the amplitude distribution of the
target image. The signal region is the area where the signal pattern is located, and the non-signal
region is the area where there is no designed signal. Different constraint strategies are addressed on
the corresponding regions during the iteration process. The amplitude distribution of the signal region
is constrained directly according to the target image using an adaptive over-compensation method,
which can change the constraint parameter in the image plane with the iteration progress for effective
and fast convergence. The non-signal region is constrained indirectly by total energy control in the
hologram plane based on the energy conservation principle rather than directly introducing a noise
suppression parameter. Our proposed method can provide quality reconstruction of phase holograms
by broadening the optimizing space of the iterative algorithm, and the weighted constraint strategy
also provides overall and effective constraints in the image plane with effective convergence.

2. Method

An iterative optimization algorithm is an effective technique to design a phase hologram for
converting the incident plane wave in the hologram plane into the target intensity distribution in
the image plane. In this work, we focus on the generation of Fourier phase holograms, and an
optical Fourier transform system is shown as Figure 1. The hologram plane is located in the front
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focal plane of the Fourier lens, and the image plane is located in the back focal plane of the Fourier
lens. The incident plane wave in the hologram plane is modulated by the phase hologram and then
converted into the target intensity distribution in the image plane by the optical Fourier transform
system. A conventional iterative algorithm, such as the GS algorithm, is a stable algorithm to design
phase holograms. However, the GS algorithm gives the same weight to all sampling points in the
image plane, leading a slow and stagnant convergence.
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Figure 1. Schematic geometry for optical Fourier transform system: the hologram plane is located in
the front focal plane of the Fourier lens, and the image plane is located in the back focal plane of the
Fourier lens.

Our method would effectively improve the visual quality of the reconstructed image by addressing
different constraint strategies at the corresponding regions in the image plane. The image plane is
partitioned into two regions according to the amplitude distribution of the target image. The signal
region is the area where the signal pattern is located, and the non-signal region is the area where there
is no designed signal. Figure 2 illustrates two typical examples of the target images. The left one is a
grayscale image where the non-signal region is set at the surrounding area. The right one shows a
target image where the signal region is located in the annulus with uniform intensity, which is often
used in beam shaping applications. In this case, the signal region is not rectangular, and the non-signal
region is set at the black area which is separated by the annulus.

Vv

Signal region Non-signal region Signal region Non-signal region

Figure 2. The partition strategy of the weighted constraint iterative algorithm (WCIA): The signal
region is the area where the signal pattern is located, and the non-signal region is the area where there
is no designed signal.

The working principle of our proposed algorithm is shown in Figure 3. The initial random phase ¢
is applied to the target image as Ay = |Atargetlexp(ip), where |Atarget| is the amplitude distribution of the
target image, and the resulting complex amplitude A is set as the initial input of the iteration process.
Complex amplitude a; in the hologram plane is calculated by the inverse Fourier transform of the input
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complex amplitude Ay in the image plane. Then, the phase hologram 4’y is generated from the complex
amplitude ay after a phase extraction and amplitude regularization. Subsequently, the reconstructed
complex amplitude distribution A’y in the image plane is calculated by the Fourier transform of the
phase hologram a’. The input complex amplitude Ay, for the next iteration is generated after the
amplitude constraint in the image plane. In the amplitude constraint of the image plane, only the
amplitude distribution of the signal region is constrained using an adaptive over-compensation
method. The over-compensation method is always utilized to speed up the convergence of the iteration
process [23]. However, the convergence of the conventional over-compensation method would be easily
degraded if used alone. Here, we modify the over-compensation method by introducing adaptive
parameters which can change with the iteration progress. During the iteration process, the enforced
amplitude constraint for the next iteration in the image plane is

[ 1Ad( A /14)" . o) €S
A = k 1
e { 4] , (1,0) ¢S @

where |Ay| is the amplitude distribution of the input in kth iteration, |A’¢| is the amplitude distribution of
the reconstructed image in kth iteration, (1, v) are the coordinates in the image plane, and S denotes the
signal region. Adaptive parameters f3; are used here to enhance convergence of the iterative algorithm.
In the numerical calculation, a small number ~10719 should be added on |A’y] for avoiding the division
by zero in the amplitude constraint of the signal region.

Image plane Hologram plane
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Figure 3. The block diagram of WCIA.

The amplitude constraint strategy in the image plane improves the reconstruction quality in the
signal region by relaxing the amplitude constraint in the non-signal region. The enforced amplitude
constraint changes during the iteration process, so that the difference between |Ay1| and |A’y| is
reduced. In this way, when the complex amplitude gy, in the hologram plane is calculated by the
inverse Fourier transform of the image plane, it has better amplitude uniformity than the previous
iteration, which helps to improve the reconstruction quality. Furthermore, the amplitude distribution
of the signal region is constrained by the adaptive over-compensation method. From Equation (1),
we can see that in kth iteration that if amplitude distribution |A’;| at some pixels of the signal region is
smaller than the target amplitude |Atarget|, the enforced amplitude |Acon| at the corresponding pixels
will be enlarged in (k + 1)th iteration, which helps to enlarge the amplitude |A’1| at the corresponding
pixels and make it closer to the target amplitude. After several iterations, the difference between the
amplitude distribution of the reconstructed image and the amplitude distribution of the target image
is reduced. It should be noted that the convergence of the conventional over-compensation method
would be easily degraded if it is used alone to design phase holograms [23]. Hence, it is always used
as a final step to optimize further results obtained by some stable iterative algorithms, such as the GS
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algorithm. Here, we modify the conventional over-compensation method by introducing adaptive
parameters f3; into the iteration process. The adaptive parameters f are given by

Br = VBr-1 ()

where the initial value f is a small number, ~1078. ; would increase and approach to one after a
certain number of iterations. When f is relatively small, the constraint strategy in the signal region is
similar to the GS algorithm so that the convergence of the iteration process is effective and stable. After
several iterations, f; would be close to one, then the constraint strategy in the signal region is similar
to the conventional over-compensation method, and a further optimized result can be obtained.

In order to suppress the noise in the non-signal region, total energy in the hologram plane is
controlled based on the energy conservation principle. In the Fourier transform system, the energy in
the image plane is equal to the energy in the hologram plane:

fj |A,’<(u,v)|2dudv = fﬂAholo (x, y)|2dxdy ©)

By controlling the total energy in the hologram plane, the total energy in the image plane is
constrained. During the iteration process, the amplitude of the incident plane wave in the hologram
plane is calculated as:

2
Etarget = JI |Atarget(u, U)| dudv (4)
Enolo = Etarget (5)

E
[Anolol = /222 (6)

where Etarget represents the total energy of the target image, Epolo represents the total energy in the
hologram plane, H is the area of the hologram, and |Ay)| is the enforced amplitude constraint in the
hologram plane. During the iterations, the amplitude of the incident plane wave in the hologram plane
is replaced by |Apolol- According to Equations (3)-(6), the following formula can be deduced:

fj |A]’((u, v)|2dudv = jj |Atarget(u, v)|2dudv (7)

In this way, the total energy in the image plane is constrained indirectly by controlling the total
energy in the hologram plane. Meanwhile, the amplitude distribution of the signal region is constrained
directly during the iteration process. Through the iterations, more and more energy is gathered in the
signal region so that the noise of the non-signal region is suppressed effectively. The above operation
provides a larger optimization space of the algorithm than introducing the noise suppression parameter
to directly constrain the non-signal region [26] while maintaining overall and effective constraint in the
image plane.

3. Reconstruction Results

To validate the feasibility of the WCIA, numerical simulation is performed. The measures of
root-mean-square error (RMSE) and structural similarity index measure (SSIM) are used to evaluate
the reconstruction quality objectively. The RMSE is calculated as follows:

RMSE = \/Z()A;f - |Atarget|2)2/ Z(|Atarget|2)2 ®)
P P

where P represents the pixel in the reconstructed image. The RMSE indicates how well the reconstructed
image agrees with the target one. The SSIM is another well-known evaluation function and is given by
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(2utpr + 1) - (204, + c2)

SSIM = 9)
(243 +c1)- (07 + 07 +c2)

where u, and p; are the mean values of the reconstructed and target images, o, and o; are the standard
deviations of the reconstructed and target images, o, is the covariance between the reconstructed
image and target image, and c¢; and ¢, are constants used here to avoid the division by zero.

The performances of the WCIA and GS algorithms are compared. During calculation, a “baboon”
image (from USC-SIPI image database) with the dimensions of 600 x 600 was set as the signal region,
and the sampling numbers of the image plane were 1000 x 1000, as shown in Figure 4a. The number of
iterations was set as 100. The reconstruction results are shown in Figure 4b,c. The RMSEs and the
SSIMs are plotted in Figure 4d,e, respectively. Figure 4b shows that the image reconstructed by the
GS algorithm is degraded by the noise. Figure 4c shows that the image was precisely reconstructed
by WCIA, and the noise in the non-signal region was effectively suppressed at the same time. From
Figure 4d, it can be seen that the convergence rate of WCIA is faster than the GS algorithm during the
iteration process. Figure 4e shows that the SSIMs of the reconstructed image with WCIA approach
to nearly one after 20 iterations. The reconstruction results confirm that the weighted constraint

strategy can improve the reconstruction quality in the signal region and maintains overall and effective
constraint on the image plane.

—GS
--WCIA

0.3

RMSE

027

017\

0 20 40 60 80 100

0 20 40 60 80 100
Iteration number

Figure 4. Numerical simulations: (a) target image; reconstructed images with (b) Gerchberg—-Saxton
(GS) algorithm and (c) WCIA; (d) comparison of the root-mean-square errors (RMSE); (e) comparison
of the structural similarity index measures (SSIM).
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To further confirm that the weighted constraint strategy can effectively suppress the noise in the
non-signal region with the iteration progress, the efficiency of reconstructions under different numbers
of iterations was calculated. The measure of efficiency 1) is used here to evaluate the performance of
the noise suppression, which is defined as the ratio of energy in the signal region compared to the total
image plane. The results are shown in Figure 5. It can be seen that the noise in the non-signal region
can be effectively suppressed during the iteration process based on the weighted constraint strategy.

Figure 5. Numerical reconstructions with WCIA: (a) 3 iterations; (b) 10 iterations; (c) 30 iterations;
(d) 100 iterations.

Qualitative comparisons for more gray images are given in Figure 6 for evaluating our proposed
algorithm. The resolution of the test images is 1000 x 1000. The number of iterations was set as 100
for both the GS algorithm and WCIA. This shows that our proposed algorithm produces superior
reconstruction quality and outperforms the GS algorithm across all these test images.

Figure 6. Numerical simulations: target images (top); reconstructed images with GS algorithm (middle)
and WCIA (bottom). Image credits: Goldhill by USC-SIPI, Motorbike by Steve Sewell and Earth
by Wikilmages.
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Some typical patterns that are often used in beam shaping were also used as the target images to
illustrate the effectiveness of WCIA. Figure 7 shows the reconstruction results of these test images with
GS and WCIA. The sampling numbers of the images are 800 x 800, and the iteration number was set as
100. From the reconstruction results, it can clearly be seen that WCIA can effectively suppress noise
while improving the reconstruction quality for these images compared to the GS algorithm.

RMSE = 0.1535 RMSE =0.1614 RMSE =0.1108 RMSE =0.1393

RMSE = 0.0038 RMSE = 0.0043 RMSE =0.0047 RMSE =0.0037

Figure 7. Numerical reconstructions: GS algorithm (top) and WCIA (bottom).

To further validate the feasibility of our proposed algorithm, optical experiments were also
performed. The experimental setup is shown in Figure 8. The wavelength of the laser beam was
532 nm. The laser beam was collimated and polarized to achieve a uniform plane wave illumination.
In the experiment, we used Holoeye GAEA-2 256 gray-scale level Phase-only SLM. The pixel pitch of
the SLM was 3.74 um, and the pixel resolution was 3840 x 2160. The focal length of the Fourier lens
was 200 mm. The reconstructed images were located in the back focal plane of the Fourier lens and
were captured directly by a sensor. A linear phase was added on the calculated hologram to separate
the reconstructed image from the zero-order noise of SLM [32].

Laser

Polarizer

Fourier lens CMOS
A

A—

v

SLM

—

BS

Figure 8. The schematic of the optical setup.
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The optical reconstruction results of gray test images with GS algorithm and WCIA are shown
in Figure 9. To capture the entire image on the sensor, the resolution of the signal region was set as
960 x 540. The iteration number was set as 100. Although the reconstructions were affected by the
systematic noise, it can be seen that better image quality and more details can be optically reconstructed
with our proposed method.

Figure 9. Optical reconstructions: reconstructed “baboon” images with (a) GS algorithm and (b) WCIA;
reconstructed “Goldhill” images with (c) GS algorithm and (d) WCIA.

A binary ring pattern was also set as the test image to evaluate the optical reconstruction
performance of WCIA. In order to avoid the effect of the systematic noise, the time-average method [33]
by uploading five sequential holograms obtained with different initial random phase was used here
for both these methods. The RMSEs of optical reconstructed images were calculated to compare WCIA
with the GS algorithm. Figure 10 shows the optical reconstruction results. To calculate the RMSEs,
the same part of the signal region was set as the measured raw data, which is circled by a red rectangle.
The measured raw data were transformed into a gray image and then used to calculate the RMSEs.
It can be seen that the reconstructed image with WCIA is of lower error.

RMSE =0.418

Figure 10. Optical reconstructions: (a) GS algorithm; (b) WCIA.
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4. Conclusions

In conclusion, we propose a weighted constraint iterative algorithm for generating phase holograms
with quality reconstruction. Different constraint strategies are addressed in the corresponding areas
during the iteration process. The signal region is constrained directly based on an adaptive strategy,
whereas the other part of the image plane is constrained indirectly by total energy control in the
hologram plane. The proposed algorithm can improve reconstruction quality by broadening the search
space for optimizing the phase distribution. Our method can provide quality reconstructions of phase
holograms while maintaining overall and effective constraint in the image plane. Although this method
is based on the Fourier transform, it can be extended to the Fresnel region and can also be used in
holographic displays, beam shaping and optical trapping.
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