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Featured Application: Produced biodiesel through this research work can be used as a suitable
fuel source instead of petroleum-derived fuels.

Abstract: Biodiesel is a renewable fuel that has been widely used in recent years. There are various
resources used as biodiesel feedstocks, including animal fats, waste oils, and vegetable oils. In the
present study, Chrozophora tinctoria seed oil is introduced as a new biodiesel feedstock. C. tinctoria
is a weed and non-edible plant. So, the primary cost of this resource is very low, and hence it
can be considered as a biodiesel source. This plant can also grow in most weather conditions.
In the present study, the research team tried to produce biodiesel from C. tinctoria seeds through a
transesterification reaction. To intensify the transesterification reaction, an ultrasonic device was
used. In order to perform the transesterification reaction, potassium hydroxide was used as a catalyst.
Important parameters, such as the reaction temperature, reaction time, molar ratio of methanol,
and concentration of the catalyst, were adjusted. Based on the adjusted conditions, a biodiesel yield
of 84% was attained. The properties of the C. tinctoria biodiesel was compared with the American
Society for Testing and Materials (ASTM) standard. The results show the properties of a biodiesel:
the density, kinematic viscosity, pour point, flash point, cloud point, and acid number are 0.868 g/cm3,
3.74 mPa, −7 ◦C, 169 ◦C, 4 ◦C, and 0.43 mg, respectively. The specification properties of C. tinctoria
biodiesel can thus pass the requirement of the ASTM standard. So, C. tinctoria seed oil can be used as
a suitable fuel source instead of petroleum-derived fuels.
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1. Introduction

Due to an increasing global population, the use of liquid fuels, especially in the transportation sector,
has grown. Reduction of fossil fuel resources, increasing greenhouse gas emissions, and increasing
oil prices created the need to find sustainable, renewable, efficient, cost-effective, and low-emission
alternatives [1,2]. One of the alternative fuel types is biodiesel, which was introduced as a suitable fuel
instead of conventional diesel fuel for using in heating systems and specifically for diesel engines [3,4].
Chemically, biodiesel is a combination of fatty methyl ester acids that are produced by the reaction of
diglycerol with alcohols in the presence of a catalyst along a process called transesterification [5,6].

Appl. Sci. 2020, 10, 3473; doi:10.3390/app10103473 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-5332-4792
http://www.mdpi.com/2076-3417/10/10/3473?type=check_update&version=1
http://dx.doi.org/10.3390/app10103473
http://www.mdpi.com/journal/applsci


Appl. Sci. 2020, 10, 3473 2 of 9

Biodiesel is made from bio-oils. The number of carbons in the carbon chain of diesel fuel is similar to
vegetable oils (containing 14–18 carbons). Because of the structural properties of biodiesel, this resource
can play an important role as a viable alternative to conventional (diesel) energy [7]. Generally,
the production price of biodiesel is high, being almost twice that of diesel’s price. The price of biodiesel
production consists of two main components that are the price of the raw material and price of the
biodiesel production process [8,9]. Although, large amounts of oils, such as restaurant waste oil and
animal fat, can be used to produce the biodiesel, the main problem with using these resources is that the
transesterification reaction of some of these resources is very difficult. As a result, the cost of biodiesel
production from these materials increase [10]. One of the main issues that play an important role in the
final price of the biodiesel is the price of the oil that is used as the feedstock. The appropriate way to
reduce the price of the produced biodiesel is the use of non-edible oils as feedstocks in the biodiesel
production process, which reduces the price of finished product. So far, several researches have been
done on the application of non-edible oils as the feedstock of biodiesel [11–23], such as rapeseed [24],
sea mango [25], rubber seed [26], mahua [27], Hodgsonia macrocarpa [28], karanja [29], moringa [30],
palm [31], jatropha [32], and tree of heaven [33]. So, intensive research on bioenergy resources, including
crops with less food importance, or non-edible, can help to decrease the greenhouse gas emission
and control climate change. The ideal non-edible resources should be water and nutrient efficient,
fast growing, have a high tolerance to environmental stresses, and low invasive potential [34,35]. One of
the non-edible resources that could be a novel resource for biodiesel is Chrozophora tinctoria seeds.

1.1. Why Chrozophora tinctoria?

C. tinctoria is an annual summer and warm season weed plant [36]. It can be observed under
different light, soil, and moisture conditions [37,38]. Recently, some researchers suggested that
C. tinctoria fruit could provide a new resource of oil [39,40]. The fruit of C. tinctoria is like a capsule in
the shape of three spheres attached to a rounded-triangular structure. Fruit of C. tinctoria has three
angular seeds [41]. C. tinctoria seeds are a valuable source of oil, which can be suitable for bioenergy
purposes. Moreover, C. tinctoria is a non-edible, weed plant, so the primary cost of C. tinctoria seed is
very low and, hence, can be introduced as a biodiesel source. This research focuses on C. tinctoria as a
potential bioenergy crop. The biofuel production possibilities from this crop is investigated in this
research paper.

1.2. C. tinctoria in the World and Iran

C. tinctoria is mainly found in the central/south Asia and Mediterranean region. This plant is
described as native to the different countries (Figure 1), including Afghanistan, Albania, Algeria,
Bulgaria, Cyprus, Egypt, France, Greece, India, Iran, Italy, Kazakhstan, Libya, Morocco, Pakistan,
Palestine, Portugal, Romania, Saudi Arabia, Spain, Tunisia, Turkey, Turkmenistan, and Yemen [42,43].
By considering the weather conditions of Iran, C. tinctoria can be cultivated in all the regions of Iran
(Figure 1). For example, different species of the Chrozophora genus have been found in the different
provinces in Iran, such as East-Azerbaijan [37], Chaharmahal and Bakhtiari, Markazi, Qom, Qazvin,
and Isfahan [36].

Based on the above literature review on the potential of C. tinctoria seeds as a novel non-edible
resource for biodiesel production, in the present study the application of C. tinctoria seed oil as a
novel feedstock was experimentally investigated. In the Section 2, the experimental procedure for
biodiesel production from the C. tinctoria seed oil is presented. It is noteworthy that ultrasonic waves
were also used in this research to reduce the transesterification reaction time. Finally, in the Section 3,
the properties of the biodiesel are evaluated and then the properties of the produced biodiesel are
compared with the ASTM standards.



Appl. Sci. 2020, 10, 3473 3 of 9

Appl. Sci. 2020, 10, x FOR PEER REVIEW 3 of 9 

 
Figure 1. Potential countries for C. tinctoria cultivation [43]. 

Based on the above literature review on the potential of C. tinctoria seeds as a novel non-edible 
resource for biodiesel production, in the present study the application of C. tinctoria seed oil as a novel 
feedstock was experimentally investigated. In the second section, the experimental procedure for 
biodiesel production from the C. tinctoria seed oil is presented. It is noteworthy that ultrasonic waves 
were also used in this research to reduce the transesterification reaction time. Finally, in the third 
section, the properties of the biodiesel are evaluated and then the properties of the produced biodiesel 
are compared with the ASTM standards. 

2. Materials and Methods 

2.1. Raw Materials 

C. tinctoria were collected from the Fars province (Southwest of Iran), in August of 2019. A Global 
Positioning System (GPS) was used to mark the locations (the longitude of 40’51°–50’51° E and 
latitude of 20’30°–30’30° N, and altitude of 2890 m). The sampling was done by a randomized 
collection in an area of about 2000 m2. Matured fruits were isolated manually from the aerial parts 
and the seeds were separated from the fruit, then the fruits were washed with sterile water, and then 
dried at ambient temperature for seven days. In Figure 2, the different stages of plant sampling are 
shown. 

 

Figure 1. Potential countries for C. tinctoria cultivation [43].

2. Materials and Methods

2.1. Raw Materials

C. tinctoria were collected from the Fars province (Southwest of Iran), in August of 2019. A Global
Positioning System (GPS) was used to mark the locations (the longitude of 40′51◦–50′51◦ E and latitude
of 20′30◦–30′30◦ N, and altitude of 2890 m). The sampling was done by a randomized collection in an
area of about 2000 m2. Matured fruits were isolated manually from the aerial parts and the seeds were
separated from the fruit, then the fruits were washed with sterile water, and then dried at ambient
temperature for seven days. In Figure 2, the different stages of plant sampling are shown.
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The seeds of C. tinctoria were prepared to determine their properties, and thus that of the seed oil
and biodiesel. The C. tinctoria seeds were removed from the fruits. Seeds were powdered using a coffee
grinder. Then the crushed seeds were transferred to a Soxhlet extractor to extract the oil. Oil extraction
was performed using n-hexane for 8 h. The solvent was evaporated under reduced pressure at 60 ◦C
using a rotary evaporator for 3 h.

2.2. Methodology

Fatty acids of the C. tinctoria seed oil were determined using Metcalfe procedure [44], and fatty acid
composition were identified using a gas chromatography (Clarus580 GC) equipped with a FID detector.
That equipment has been sourced from FARASOUT SANAT Eng CO, Tehran, Iran. One microliter
of prepared sample was injected to the gas chromatography unit, which was equipped with a BP-30
column and FTIR detector that was kept isothermally standardized to encounter BS-EN 14103 standard.
The total run time for each sample was 30 min. Fatty acid profile was determined by classifying and
calculating relative peak areas.

In order to perform the transesterification reaction, an ultrasonic reactor was used. In the first
step, a catalyst (e.g., potassium hydroxide (KOH)) and methanol was mixed together by a magnetic
stirrer. It is noteworthy that methoxide was prepared by mixing methanol that had a molar ratio of 1:7,
with 1 wt% of KOH. The prepared methoxide was added to the C. tinctoria seed oil. Then, the solution
was transferred into the ultrasonic reactor. An ultrasonic device (Hielscher Model UP400S, USA) was
applied to perform the transesterification reaction.That equipment has been sourced from FARASOUT
SANAT Eng CO, Tehran, Iran, The ultrasonic device was controlled using a computer with the help
of UPC software. An ultrasonic probe with a diameter of 10 mm and a height of 60 mm was used
to transmit the ultrasound to the solution. The effective length of the probe that was placed inside
the solution was 55 mm. The reaction time was adjusted every 5 min. The reaction temperature was
adjusted to 45 ± 0.45 ◦C with the help of water circulating between the two reactor walls, and all
experiments were performed at atmospheric pressure. After completing the reaction time, the biodiesel
mixture was removed from the ultrasonic reactor. In order to stop the reaction, the biodiesel mixture
was put into a cold ice bath. The mixture was stored in a separation plate and the mixture was
completely separated into two phases. The lower phase was glycerin and the upper one was biodiesel.
In Figure 3, the biodiesel production process is shown. After separation of the glycerin, the biodiesel
should be purified. The separated part from the glycerin was washed by warm water to purify the
biodiesel. In the next section, in order to remove the water from the biodiesel, the washed biodiesel was
heated up for one hour in an oven (temperature was adjusted to 60 ◦C). Finally, a gas chromatography
unit was used to identify the yield of the biodiesel. Equation (1) was used [34,45] to determine the
yield of the biodiesel.

Biodiesel yield =

∑
A−AIS
AIS

×
MIS
M

(1)

where
∑

A is the total area under the peak of total fatty acids, MIS is the weight of the internal standard,
AIS is the area under the peak for the internal standard (C19:0), and M is the weight of the sample.

After purification of the biodiesel, the most important physicochemical properties of the biodiesel,
including the kinematic viscosity at 40 ◦C (ASTM D445), density at 15 ◦C (ASTM D4052), pour point
(ASTM D6751), cloud point (ASTM D6751), flash point (ASTM D93), oxidation stability at 110 ◦C
(EN 14112), acid value (ASTM D664), and cetane number (ASTM D613), were determined, based on
ASTM standard [46].
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3. Results and Discussion

3.1. Seed Oil Properties

The seed and oil physico-chemical characteristics of C. tinctoria are shown in Table 1. The oil
content was 26%. So, the oil content of C. tinctoria seed is appropriate, and this feedstock can thus
be introduced as a feasible primary material to produce biodiesel. The kinematic viscosity of the
C. tinctoria oil is 4.32 mPa s. The viscosity of the C. tinctoria oil is less than that of some other feedstocks.
This property is an important characteristic of the oil as a new feedstock to produce biodiesel.

Table 1. Physico-chemical properties of the C. tinctoria seed oil.

Physico-Chemical Parameters Unit Content

Oil content % 26
Weight of 1000 seeds g 15

Density g/cm3 0.872
Kinematic viscosity mPa s 4.32

Acid value Mg KOH/g oil 2.5
Iodine value g I2/100 g oil 170

Water content mg/g 50

3.2. Fatty Acid Profile

In Table 2, the fatty acid structure of the C. tinctoria seed oil is shown. C. tinctoria seed oil consists
of both unsaturated and saturated fatty acids. According to Table 2, the main fatty acids of C. tinctoria
seed oil are unsaturated fatty acids; in other words, the unsaturated fatty acid content of this oil is
91.45% of the total oil. C. tinctoria seed oil contains a high content of polyunsaturated fatty acids, as the
main fatty acid. The main fatty acids were identified as palmitic acid (5.32%), linoleic acid (76.68%),
stearic acid (3.15%), and oleic acid (13.99%).

3.3. C. tinctoria Biodiesel Properties

After purification of the C. tinctoria biodiesel, the biodiesel yield was calculated by Equation (1).
The results show that the biodiesel yield from the oil is 84%. In order to investigate the properties of
C. tinctoria biodiesel as a new resource, the physicochemical characteristics of the produced biodiesel
was measured. In Table 3, the physicochemical characteristics of the C. tinctoria biodiesel is presented.
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According to the results, it is obvious that all the physicochemical characteristics of the produced
biodiesel are in agreement with the ASTM standards.

Table 2. Fatty acid composition of oil extracted from C. tinctoria seeds.

Fatty Acid Content (%)

Palmitic acid (C16:0) 5.32 ± 0.047
Palmitoleic acid (C16:1) 0.11 ± 0.50

Stearic acid (C18:0) 3.15 ± 0.19
Oleic acid (C18:1) 13.99 ± 029

Linoleic acid (C18:2) 76.68 ± 0.16
Linolenic acid (C18:3) 0.67 ± 0.13∑

UFA 91.45∑
SFA 8.43∑

MUFA 14.10∑
PUFA 77.35∑

UFA:
∑

SFA 10.85∑
MUFA:

∑
PUFA 0.18

Note: UFA, unsaturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids;
SFA, saturated fatty acids.

Table 3. Properties of the biodiesel produced from C. tinctoria.

Parameters Method Limitation Units Content

Density at 15 ◦C ASTM D 4052 0.86–0.90 g/cm3 0.862
Kinematic Viscosity @ 40 ◦C ASTMD445 1.9–6.0 mm2/s 3.74

Flash Point, Closed Cup D93 >130 ◦C 169
Cloud point ASTM D6751 −3 to 12 ◦C 4
Pour point ASTM D6751 −15 to 10 ◦C −7

Acid Number ASTMD664 0.50 mg 0.43

Viscosity is one of the important properties of biodiesel. By considering the biodiesel standard
(ASTM), the viscosity of a biodiesel should be in the range of 1.9–6.0 mm2/s. The results show
that the viscosity of C. tinctoria biodiesel is 3.74 mm2/s, which is lower than different biodiesel
resources; for example, moringa (5 mm2/s) [47], karanja (6.13 mm2/s) [48], and neem (5.21 mm2/s) [47].
Another important characteristic of a biodiesel resource is its density. Density plays an important
role in the fuel atomization in the combustion process of a diesel engine [49]. Based on the biodiesel
standards (ASTM and EN), the range of a new biodiesel resource should be 0.86–0.9 (g/cm3). The result
of the present study shows that the density of C. tinctoria biodiesel is 0.862 (g/cm3). By reviewing the
recent studies, it is clear that the density of the C. tinctoria biodiesel is lower than many of the other
resources, such as karanja (0.931 g/cm3) [48], moringa (0.883 g/cm3) [47], rapeseed (0.882 g/cm3) [47],
and tobacco (0.888 g/cm3) [48]. Another biodiesel property that plays an important role in the corrosion
of the internal parts of diesel engines, is the acid number. The ASTM standard consider a strict law for
acid number. Based on the ASTM standard, the acid number of a new biodiesel should not exceed
0.5 mg KOH/g. According to the result of the present study, the acid number value of the C. tinctoria
biodiesel is 0.41 mg KOH/g. So, this acid number is suitable for a new biodiesel resource. In this
present study, other properties of the C. tinctoria biodiesel have been measured, including the cloud
point, pour point, and flash point. The results show these properties of the C. tinctoria biodiesel pass
the ASTM standard. It is noteworthy that the specification properties of the C. tinctoria biodiesel are
within the ASTM standard range and that the biodiesel produced from C. tinctoria seed oil can be used
as a suitable fuel source instead of petroleum-derived fuels.
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4. Conclusions

In this research, the C. tinctoria seed oil, which is a weed plant, was introduced as a new resource
for biodiesel production. In order to intensify the transesterification reaction, an ultrasonic device was
used. Potassium hydroxide was also used as the catalyst for the transesterification reaction. Important
parameters, such as the reaction temperature, reaction time, molar ratio of methanol, and concentration
of the catalyst, were adjusted. Based on the adjusted condition, a biodiesel yield of 84% was obtained.
The important properties of the C. tinctoria biodiesel were investigated. The results show that the
properties of the biodiesel, namely, the density, kinematic viscosity, pour point, flash point, cloud
point, and acid number, are 0.868 g/cm3, 3.74 mPa, −7 ◦C, 169 ◦C, 4 ◦C, and 0.43 mg, respectively.
The physicochemical properties of the C. tinctoria biodiesel are thus in agreement with the biodiesel
standard (ASTM standard). In other words, it is clear that the specifications of the physical and chemical
characteristics of C. tinctoria biodiesel are in agreement with the ASTM standard range. So, biodiesel
produced from C. tinctoria seed oil can be used as a suitable fuel source instead of petroleum-derived fuels.
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