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Abstract: The blind encounter commuting risks, such as failing to recognize and avoid obstacles
while walking, but protective support systems are lacking. Acoustic signals at crosswalk lights
are activated by button or remote control; however, these signals are difficult to operate and not
always available (i.e., broken). Bollards are posts installed for pedestrian safety, but they can create
dangerous situations in that the blind cannot see them. Therefore, we proposed an obstacle recognition
system to assist the blind in walking safely outdoors; this system can recognize and guide the blind
through two obstacles (crosswalk lights and bollards) with image training from the Google Object
Detection application program interface (API) based on TensorFlow. The recognized results notify
the blind through voice guidance playback in real time. The single shot multibox detector (SSD)
MobileNet and faster region-convolutional neural network (R-CNN) models were applied to evaluate
the obstacle recognition system; the latter model demonstrated better performance. Crosswalk lights
were evaluated and found to perform better during the day than night. They were also analyzed
to determine if a client could cross at a crosswalk, while the locations of bollards were analyzed by
algorithms to guide the client by voice guidance.

Keywords: blind; obstacles; crosswalk light; bollard; object detection; Raspberry Pi; Android

1. Introduction

Many people with disabilities have some difficulty walking unaided and are exposed to various
traffic accident risks. They are often classified as mobility impaired. Disability protection areas are
necessary to protect the disabled from danger while walking; however, according to data in Seoul,
only seven of the 631 disabled facilities have been designed as disability protection areas [1]. The lack
of safeguards for people with disabilities can deprive them of many positive opportunities, including
walking independently. As the population increases, the number of blind and visually impaired people
also increases. Researchers have predicted that the number of people with a visual impairment or
blindness will increase from 38.5 million in 2020 to more than 115 million by 2050 [2]. Among the
various types of disabilities, we took into consideration the walking safety of the blind and visually
impaired. We focused particularly on problems that could arise while walking outside.

The blind can choose from various methods that can help guide them while walking outdoors.
One way is the utilization of guide dogs. Guide dogs are trained by professional trainers for an average
of two years until they are skilled enough to safely guide the blind. Some blind people prefer to buy a
guide dog owing to its familiar character. However, people with an aversion to animals may not want
to utilize a guide dog. Moreover, if the blind or their family members have a health problem, such as
an allergy to dogs, they cannot choose this method of assistance. Additionally, it costs money to buy
and support a dog, and not everyone can afford such an expense. Furthermore, there are not enough

Appl. Sci. 2020, 10, 282; doi:10.3390/app10010282 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://dx.doi.org/10.3390/app10010282
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/1/282?type=check_update&version=2


Appl. Sci. 2020, 10, 282 2 of 11

guide dogs available to assist the blind; therefore, there needs to be alternative ways to support the
visually impaired and blind.

The blind must also consider the various obstacles they will encounter while walking outdoors.
Theoretically, they can use acoustic signals when they want to cross streets independently at crosswalks,
however, the emplacement rate of acoustic signals is only 57% [3]. People with disabilities can
operate the acoustic signals directly by pressing a button or using a device, such as a remote control.
However, the acoustic signal button is installed in the light pole near a crosswalk, so it cannot be
operated if it is inaccessible to the blind or if it is broken.

Another obstacle that interferes with safety while walking is the use of bollards, which are short
posts. Bollards are installed to keep pedestrians safe by preventing cars and other dangerous objects
from entering pedestrian pathways. However, they are installed in the middle of sidewalks, which can
pose a big danger to the blind who cannot see them. There have also been instances where non-visually
impaired people have collided with bollards and fallen because the bollards were not properly marked.

In this study, we implemented a system that recognizes crosswalk lights and bollards. We used
images of crosswalk lights and bollards to detect actual crosswalk lights and bollards to safely guide
the blind. An engine for assessing whether images were considered to be obstacles was implemented
by retraining the existing object detection models [4,5] of deep learning. After acknowledging the
presence of a crosswalk light, the module that detects a crosswalk light determines whether it is safe
for the blind to cross or not and directs them by voice [6]. The bollard recognition module informs the
blind where the obstacle is by using the faster region-convolutional neural network (R-CNN) model to
recognize it. Our system enables real time image recognition and guidance with Raspberry Pi or an
Android application. Here, we introduce our system and how to implement it. We also provide its
performance evaluation. Using this system, we could provide a safe outdoor walking environment for
the blind.

2. Related Works

The avoidance of obstacles for blind people has traditionally centered around the use of electronic
travel aids (ETA), as documented in previous research [7–9]. The ETA approach for the blind requires the
use of portable-wearable devices containing many electronic sensors that are expensive to manufacture.

Recently, a study proposed a new navigation aid for the blind that was inexpensive to manufacture
and easy to use. The study described a problem encountered by the blind in that they could not easily
detect obstacles above their waists or a few feet away [10]. Therefore, a navigation aid system for
the blind was suggested that could detect the surrounding environment via several types of sensors.
This system consisted of sonar sensors situated on the shoulder for detecting obstacles in front of the
blind person, a vibrator on an arm for vibro-tactile feedback, and an ultrasonic cane for detecting
obstacles on the ground. Detection of the obstacles was controlled by a central micro-controller
that connected all the components. The system allowed a person to navigate a 100 m route with
some obstacles; however, the system needed a very clean testing environment with little noise.
Furthermore, it could only detect the existence of an obstacle, but it could not identify the type
of obstacle.

Later, an obstacle recognition system using radio-frequency identification (RFID) technology was
proposed [11]. The system proposed a smart cane outfitted with a Braille display handle. This smart
cane could read information provided by RFID tags that were installed in various places. The cane
would then analyze the information and display it on the Braille display through the control of
electro-mechanical switches. As a result, blind people were able to recognize obstacles via the Braille
display. Ultimately, it was determined that the proposed system had several limitations for its adoption
in the real world. First, the system did not discriminate between the types of obstacles a blind person
could encounter. Additionally, the installation of RFID tags on every surrounding surface was virtually
impossible. Even if the installation of RFID tags everywhere was possible to achieve, it would entail a
massive cost, as determined by the cost analysis conducted during the study.
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Herein, we proposed an enhanced obstacle recognition system based on the technology of image
recognition in real time. Table 1 shows a comparison between the systems proposed in related works
and the proposed system of this study. The navigation aid for the blind [10] and the obstacle recognition
system using RFID [11] both used several sensors. The navigation aid required ultrasonic sensors
to determine if obstacles were in front of the blind, while the obstacle recognition system using
RFID required as many RFID tags as the number of obstacles present. Our proposed system does
not necessitate the manufacture of anything, nor does it require that expensive equipment be worn.
In addition, our proposed system made it possible to recognize an obstacle by using a video input
device, namely, a single camera, rather than several types of sensor. It could also recognize the types of
obstacles that were in front of the blind.

Table 1. Comparison between related works and the proposed system.

Navigation Aid
for Blind [10]

System with Radio-Frequency
Identification (RFID) [11]

Proposed Obstacle
Recognition System

Sensors Used Several ultrasonic Several RFID One camera
Obstacle type recognition Impossible Possible Possible

3. Obstacle Recognition Model and System Architecture

To recognize various obstacles, we used a Google Object Detection application program interface
(API) [12] based on TensorFlow [13]. The API had various pre-trained object detection models,
including single shot multibox detector (SSD) MobileNet and Faster R-CNN. These models could
recognize 90 classes (e.g., cat, dog, car, bus). If we used the original pre-trained models, which were not
specialized in obstacle data, we could not recognize any bollards or crosswalk lights. For this reason,
the models needed to be customized using retraining. We collected obstacle data for bollards and
crosswalk lights and retrained the models. The models were applied to the obstacle recognition module
and recognized obstacles were learned in real time. According to the recognized results, the obstacles
were input into the crosswalk discrimination module and the location calculation module, and a
customized algorithm was applied. Each result of the algorithm was passed on to the client, and then,
the client could monitor the location of a bollard and the state of the crosswalk light. The guidance
was remarkably close to real time and was effective at keeping the client safe.

3.1. Obstacle Recognition Model

3.1.1. Data

We took photos of the crosswalk lights and bollards directly to collect data to train the obstacle
recognition model. It was important to use obstacle images with various backgrounds in the training
model. Therefore, crosswalk lights and bollards were photographed at various locations and times
of day and night to obtain different backgrounds for the training data. In addition to the various
backgrounds, it was also necessary to photograph the obstacles from several different angles.

Bollards have various standard specifications from city to city and look different even if they are
the same size. We decided to collect images of the bollards near Sookmyung Women’s University.
In the case of crosswalk lights, we collected images of both green and red lights. The various data was
gathered not only during the day but the night as well. This was necessary for the ability to detect
crosswalk lights even in the dark of night. Additionally, crosswalk lights have three types of lights
(red, green, and flashing), so data was accumulated for each type. Therefore, we collected six types of
data in total for crosswalk lights, using a combination of the two conditions (day and night) and the
three types of lights (red, green, and flashing). Test data were also collected, with the same method as
the training data, to confirm whether the trained model worked proficiently.

The data used to train the model required not only image data but also position information of
obstacles within the image. The position data was saved as an extensible markup language (XML) data
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file by marking the coordinates of each obstacle within the image as a bounding box. The LabelImg
tool [14], an image labeling utility program, was used to generate such data. This tool could store
various output formats by adding boxes of objects in the images or videos. In this way, we have
created approximately 6350 pairs of image data and position data for training and 1000 pairs, thus far,
for test data.

3.1.2. Model

We used the Google Object Detection API to train the obstacle recognition model. It provided
several pre-trained models utilizing common objects in context (COCO) data. We trained the
SSD_MobileNet_v1_COCO and Faster_R-CNN_ResNet101_COCO models with the training data we
collected. We chose to use those particular models for two main reasons. First, we chose them for their
ability to run on little computing power. This meant that the obstacle recognition system could be
applied to portable devices in the future; for example, on small computers, such as the Raspberry Pi or
a smartphone. Second, other models, such as “You Only Look Once” (YOLO) [15], have a relatively
little ability to detect small objects, which would be counterintuitive to our study. In any case, there
were also differences between the two models used in our study. The SSD_MobileNet_v1_COCO-based
SSD [4] had the advantage of not using much computing power, but its obstacle recognition accuracy
was not high, while the Faster_R-CNN_ResNet101_COCO-based Faster R-CNN [5] had the advantage
of being able to process more image features in less time, allowing for higher accuracy with regard to
detecting obstacles. We compare the performances of the two models in Section 5.

The models could recognize 90 classes when using the current API checkpoint. Our objective was
to have them recognize both bollards and crosswalk lights, so we had to train extensively with the use
of our own data. For the additional training, the number of steps was 50,000. The batch size was 24,
and the input image size was 500 × 500 pixels.

3.2. System Architecture

This section describes the system architecture (Figure 1) in which the system works.
First, the Raspberry Pi was capable of streaming videos in real time. Streamed videos were imported
to the server using a network module. These images were divided into 30 frames per second in the
data processing. The obstacle recognition module was the main module in the system. It recognized
obstacles in the images using an obstacle recognition module based on the retraining, and then it
executed either the crosswalk discrimination module or location calculation module. Each of the
divided images from the Raspberry Pi were input into the obstacle recognition model (Step 3, Figure 1)
to recognize crosswalk lights and bollards. Images that were recognized as crosswalk lights were then
input into the crosswalk discrimination module (Step 4).

The crosswalk discrimination module extracted only the position of the incoming crosswalk light
images where the bounding box was drawn. We used the identification function [6] to identify red
and green in the images. This function identified a value for each color, based on the threshold of
whether it was red or green. The result of the color calculation was input into the crosswalk safety
guidance algorithm. The algorithm analyzed 30 frames per second and finally produced results for
none (as in no light was detected), and red, green, and flashing lights. The guidance results were
passed to the Raspberry Pi via the network module. A voice guidance determination module in the
Raspberry Pi used the guidance results to determine which voice was played. The module could play
different voices corresponding to none, green light, red light, or flashing light. For example, when
the system determined a green light, Raspberry Pi would voice, “Green light went on. You can cross
the crosswalk.” If the object recognized was a bollard (Step 7), the image was input into the location
finding module. This module calculated the correct location for a bollard using the coordinates of the
bounding box where the bollard was present. The location result was passed to the Android app by
the network module, which monitored the location of the obstacle. For instance, when a bollard was
located to the left of a client, the Raspberry Pi would voice, “A bollard is on your left.”
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Figure 1. Architecture of obstacle recognition system.

4. Implementation

This section describes the details of implementation after the input images were recognized as
either crosswalk lights or bollards. The algorithms were divided into crosswalk light discrimination,
location finding, and client guidance. The crosswalk light discrimination was partially extended using
an algorithm previously implemented [6]. We assumed that only one obstacle was recognized in
an image.

4.1. Crosswalk Light Discrimination

Crosswalk light discrimination occurred after a crosswalk light was recognized as being as such
in the obstacle recognition model (Figure 2). If the object was indeed recognized as a crosswalk light,
the image was cut into the part corresponding to the crosswalk light, and then input into the algorithm
as crop_img. In the process of lines 3–10, a red or green color could be detected using the detection color
function. If a green color was detected, red_flag turned False, which meant that the client could not
cross the crosswalk in the algorithm. In lines 11–13, if red_flag (set to True when red color was absent)
and green_flag were True then result_flag became True. This indicated that the client could cross a road
via the crosswalk. In contrast, if result_flag became False, it meant that the client must stop and wait.

After the green or red color was identified, the next step was to check if it was safe for the client
to cross at the crosswalk, as determined by another algorithm (Figure 3). The input images received
from the Raspberry Pi were divided into 30 frames per second. The algorithm then read the crop_img
extracted from each frame and result_flag indicated the crosswalk light. A green count of result_per
would be implemented if the green color was identified in the image, and a red count of result_per
would be implemented if the red color was identified. The result_per of this algorithm was determined
from four types of lights: none, red light, green light, and flashing light. The result was then passed
to the Raspberry Pi client using a transmission control protocol (TCP) socket connection to play the
voice guidance.
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Figure 2. Algorithm for crosswalk discrimination (color identification).

Figure 3. Algorithm for crosswalk safety guidance.

4.2. Location Finding

Figure 4 shows the algorithm for finding the location of an obstacle once an obstacle has been
detected. Once the obstacle has been recognized, the coordinates can be obtained using the bounding
box already added to the image. We could get xmin, xmax, ymin, and ymax, which indicated each
vertex of the box. If any of the values were not 0 in an image, it meant that there was an obstacle.
Therefore, the center, or the horizontal middle value of the box, could be obtained. If this center
value was less than half of the total image size, location_obstacle was left; otherwise, it was right.
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The coordinates result was sent to the Android app to monitor the obstacle, but only when the threshold
was above 0.3. By default, the Google Object Detection API was set to a threshold of 0.2, so it would
recognize an object and draw a box only if the score was greater than 0.2. We used a threshold value of
0.3 because the default threshold was too low to recognize obstacles. It could be considered that an
obstacle was typically recognized only when the recognition score of the Google Object Detection API
was 0.3 or higher.

Figure 4. Algorithm for finding location.

4.3. Voice Guidance in Client

The results processed by the server were delivered to assist the client immediately. Figure 5 shows
how each case is handled from previous recognition results from the server, where 1 is for no crosswalk
light, 2 is for a flashing light, 3 is for a red light, and 4 is for a green light. If the same result was
received by the client, the voice guidance would not be played because it could be considered that the
traffic signal had not yet changed. The voice guidance played only when the receiving result changed.
For example, if the red result was received, and then the green result was received, a client could play
“green.wav.”
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Figure 5. Algorithm for voice guidance determination of Raspberry Pi.

5. Implementation Results and Performance Evaluation

In this section, we describe the performance evaluation of our proposed system, which included
the performance of bollard detection using various object detection models, and the performance of
the discrimination between crosswalk lights. Moments of recognition of the obstacles are also shown
in Figure 6 as they would appear on the display screens of clients. To evaluate our system accurately,
we used the images for the performance evaluation, which were taken at various locations, angles,
and times of day and night. These images were different than the image data that was used with the
training model.

5.1. Implementation Results

This section describes the results of the display screens when recognizing crosswalk lights or
bollards. Figure 6 shows the moments of recognition for two different obstacles. Figure 6a shows
a screen that recognizes a bollard, while Figure 6b shows a screen that recognizes a crosswalk light.
Both the bollard and crosswalk light were from verification data taken elsewhere and not from the
images used for training. Each image that was sent by the Raspberry Pi camera module was successfully
recognized in real time by the server. The obstacle then appeared in the bounding box. In addition,
the position of the obstacles could be determined by the coordinate values.
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Figure 6. Display screens recognizing obstacles utilizing the proposed model: (a) bollard detection;
(b) crosswalk light detection.

5.2. Performance Evaluation

This section compares the obstacle recognition models we used and presents their performance
evaluations. First, we retrained the two pre-trained models (SSD MobileNet and Faster R-CNN), using
the same training data for each of them. Table 2 shows the performance results of the two models when
using the same verification images. The speed of the models and the COCO mean average precision
(mAP) are both explained on the Google Object Detection site [12]. It stated that the speed of the Faster
R-CNN was greater than that of the SSD MobileNet model. Moreover, the COCO mAP was smaller.
For the verification image, images taken from different locations were used. A total of 1000 images
were used and they consisted of 500 bollards and 500 crosswalk lights. The SSD MobileNet could be
used for minor computing power, but the accuracy of detecting obstacles was only 79.6%. The Faster
R-CNN, in contrast, had a higher recognition rate, accurately recognizing 95.1% of obstacles.

Table 2. Comparison of obstacle recognition models.

Model Speed (ms)
Common Objects in Context

Mean Average Precision
(COCO mAP)

Accuracy

Single shot multibox detector (SSD) MobileNet 30 21 79.6%
Faster region-convolutional neural network (R-CNN) 106 32 95.1%

Table 3 shows the accuracy measurement for the crosswalk safety guidance. The data used in
this test were taken during two time periods (daytime and nighttime). In addition, the images were
classified into three categories: flashing, green, and red. We photographed them for five seconds each.
The algorithm confirmed whether the client could safely cross the crosswalk or not. In Table 3, more
than 80% of the images distinguished between flashing, green, and red lights during the daytime.
However, the algorithm that determined whether a client could safely cross the crosswalk had a
significantly lower performance rate during the nighttime, which could be due to the light blur effect
caused by the lighting.
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Table 3. Accuracy measurement for crosswalk safety guidance.

Flashing Green Red

Day 82% 84% 80%
Night 42% 68% 52%

Predicting and monitoring the state of a crosswalk light is very important, because any incorrect
guidance could impair the safety of the client and cause harm. Therefore, we reanalyzed the low
guidance results listed in Table 3. When the crosswalk light was red, guidance for crossing the
crosswalk was 0%. This indicated that the probability of guidance results that posed a great risk to the
client were close to 0%. However, we are still in the process of developing a filtering algorithm because
we know that the system must have higher accuracy for the safest crosswalk guidance possible.

Table 4 shows the accuracy measurements of the bollard location finding algorithm when
determining the position of obstacles when a bollard is recognized. These results were measured using
validation images in which one bollard was recognized. The data consisted of images from both day
and night. In both cases, when a bollard was recognized in an image, the system could guide the client
by informing the client about the location of the bollard.

Table 4. Accuracy measurement for bollard location finding.

Bollard

Day 100%
Night 100%

6. Conclusions

In this study, we proposed recognition software for crossing lights and bollards, along with a
hardware system. The proposed system did not need to be built, nor was a client required to wear any
expensive equipment. Additionally, it was possible to recognize the two aforementioned obstacles by
using a video input device, namely, a single camera, rather than several types of sensor, as necessitated
by previous systems.

We initially used pre-trained models that recognized the two obstacles. We retrained the SSD
MobileNet and Faster R-CNN models using the Google Object Detection API. The client had a
Raspberry Pi and an Android app, and the camera module of the Raspberry Pi streamed images in real
time. Then, the obstacle recognition model in the server recognized obstacles in the images. If the
obstacle was a crosswalk light, it used the crosswalk discrimination module to determine if it was a
red, green, or flashing light. In the case of a bollard, it identified the position of the bollard in the image
and returned the location information. The results were passed back to the Raspberry Pi and Android
app via the network module and guided the client by voice guidance playback to safely overcome
the obstacle.

In this study, we revealed moments of obstacle recognition displayed on obstacle detection screens
from our system. We also compared the performance of the SSD MobileNet to that of the Faster R-CNN
model and found that the Faster R-CNN recognition results were significantly better. The performance
of the crosswalk safety guidance algorithm was approximately 80% during the daytime. This result
seemed somewhat low, but the result of risking the safety of the client among the mismatched results
was 0%. The currently low results could be improved and resolved in the future by improving the
current algorithms.

In the future, we need to extend this system in many ways. First, the system was implemented
on the premise that one obstacle was recognized in one image. We are devising how to calculate and
guide directionality when several obstacles are recognized in an image. Second, the algorithms of
the system need to be improved. The system must guide the client even more safely when using the
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crosswalk safety guidance algorithm. With these types of improvements to our current system on the
horizon, the potential for the blind walking outdoors independently is great.
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