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Abstract: Cross-version music retrieval aims at identifying all versions of a given piece of music
using a short query audio fragment. One previous approach, which is particularly suited for Western
classical music, is based on a nearest neighbor search using short sequences of chroma features,
also referred to as audio shingles. From the viewpoint of efficiency, indexing and dimensionality
reduction are important aspects. In this paper, we extend previous work by adapting two embedding
techniques; one is based on classical principle component analysis, and the other is based on neural
networks with triplet loss. Furthermore, we report on systematically conducted experiments with
Western classical music recordings and discuss the trade-off between retrieval quality and embedding
dimensionality. As one main result, we show that, using neural networks, one can reduce the
audio shingles from 240 to fewer than 8 dimensions with only a moderate loss in retrieval accuracy.
In addition, we present extended experiments with databases of different sizes and different query
lengths to test the scalability and generalizability of the dimensionality reduction methods. We also
provide a more detailed view into the retrieval problem by analyzing the distances that appear in the
nearest neighbor search.

Keywords: music information retrieval; version identification; audio matching; embedding; PCA;
deep learning; triplet loss

1. Introduction

Large amounts of digitally available music data require efficient retrieval strategies. In recent
decades, many systems for music retrieval based on the query-by-example paradigm have been
suggested. Given a fragment of a music representation as a query, the task is to automatically retrieve
documents from a music database containing parts or aspects that are similar to the query [1-3].
One such retrieval scenario is known as audio identification or fingerprinting [4-7], where the user
specifies a query using an excerpt of an audio recording, and the task is to identify the particular
audio recording that is the source of the query. A more challenging scenario is cross-version retrieval,
including tasks such as audio matching, version identification, or cover song retrieval [7-30]. Here,
given an excerpt of an audio recording as a query, the goal is to automatically retrieve all recordings in
a database that correspond to the same piece of music as the query. Relevant documents may include
various interpretations, arrangements, and cover songs of the piece underlying the recording of the
query fragment. We focus on such a retrieval scenario in the context of Western classical music, where
one typically has many different performances (referred to as versions) of the same piece of music.
For example, given a 10 to 30 s fragment of a recording of Beethoven'’s Fifth Symphony performed by
the Berlin Philharmonic conducted by Karajan, the task is to identify all versions of this symphony in a
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database, including an interpretation by the New York Philharmonic conducted by Bernstein and an
interpretation by the Vienna Philharmonic conducted by Abbado.

Figure 1 illustrates a typical retrieval procedure, where query and database recordings are
compared employing chroma-based audio representations [7] (Chapter 3), resulting in a ranked
list of database documents. For comparison, a temporal alignment procedure (e.g., subsequence
dynamic time warping [7] (Chapter 7)) is often used to compensate for non-linear tempo differences
between the query and relevant database documents [24,31]. However, for huge data collections,
the resulting runtime of such approaches is prohibitive. As a more efficient alternative, previous
work [1,9,12] introduced shingling approaches, where short feature sequences are used for indexing.
In this paper, we build on a study presented by Grosche and Miiller [12], who approached this task
using chroma-based audio shingles (see the left part of Figure 1 for a visualization of such a shingle).
Retrieval was performed via locality-sensitive hashing (LSH) applied to entire shingles. LSH is a
random indexing technique for approximate nearest neighbor search [32]. The authors investigated
the feature design, the length of the shingles, and the effect of dimensionality reduction applied to
individual feature vectors. In this paper, we propose approaches to increase the efficiency of the retrieval
even more. We concentrate on the aspect of dimensionality reduction applied to entire shingles so that
standard tree-based indexing techniques for nearest neighbor search can be used for retrieval.

As one contribution of this paper, we first use an approach based on principal component analysis
(PCA) applied to entire shingles, rather than to individual chroma vectors as in previous work [12].
As another contribution, we then adapt convolutional neural networks with triplet loss [33] to further
reduce the shingles’” dimensionality without losing their discriminative power. We conduct basic
experiments with a medium-sized collection of music recordings to study the benefits and limitations
of the dimensionality reduction methods. As our main result, we show that the shingle dimension can
be reduced from 240 to below 8 with only a moderate loss in retrieval quality. Furthermore, we report
on extended experiments with a larger data set, using different query lengths to study the scalability
and generalizability of the embedding approaches. In our context, scalability refers to the data set size
and generalizability refers to the diversity of the data set. We also provide detailed insights into the
challenges of the retrieval task and their musical reasons by analyzing the distance distributions that
form the basis for the nearest neighbor search.

The structure of this paper is as follows. We give an overview of related work in Section 2 and
formalize our retrieval scenario in Section 3. We describe our embedding approaches in Section 4.
Then, in Section 5, we report on our basic experiments based on a medium-sized data set. Finally,
in Section 6, we give further insights based on our extended experiments using a larger and more
diverse data set, and conclude in Section 7 with a short summary.

Query Q Comparison Database documents ID

¥

Ranked list

1.D,
2.D;
3.D;

- J

Figure 1. Overview of the retrieval procedure: A query (Q) is compared with a set D of database
documents, resulting in a ranked list of documents.

2. Related Work

On a rough level, we can categorize music retrieval scenarios into metadata- and content-based
retrieval tasks [1]. Metadata-based systems use textual information for searching in music databases.
On the contrary, content-based systems use actual music data such as sheet music images, symbolic
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music representations, or audio data. Content-based systems can be further categorized according
to the modalities involved. For an overview of multi-modal music retrieval scenarios, we refer to a
survey by Miiller et al. [34]. In our contribution, we focus on retrieval scenarios, where both query and
database documents are audio recordings. In such a setting, we have a query that is either a segment
of a music recording or a complete recording. The goal is then to retrieve music recordings that are
similar to the query, based on some notion of similarity. Following Casey et al. [1] and Grosche et al. [2],
we can categorize such retrieval scenarios according to two properties: Specificity and granularity.
Specificity refers to the degree of similarity between the query and the database documents. High
specificity is related to a strict notion of similarity, whereas low specificity refers to a rather vague one.
The granularity refers to the length of the query, which can range from a short audio snippet (a couple
of seconds) to an entire recording (several minutes).

A typical task of high specificity and low granularity is audio identification or audio fingerprinting,
where the task is to identify the particular audio recording that is the source of the query [6,35]. At the
lower end of the specificity scale are tasks such as genre recognition [36]. A medium-level specificity
is associated with tasks such as audio matching [12,14], version identification [31,37], live song
detection [28,38], and cover song retrieval [8,10,13,15,16,21-27,29,30]. In all of these tasks, one allows
for variations as they typically occur in different performances and arrangements of a piece of music.
The tasks differ in their granularity (e.g., shorter queries for audio matching and longer queries for
version identification) and the specific types of music recordings of interest (e.g., live versions by the
same performers for live song detection, or popular music with different performers for cover song
retrieval). Cover song retrieval is a well-established research task, where one considers variations as
they occur in different performances of the same piece of popular music. Such variations concern
many different musical facets, including timbre, tempo, timing, structure, key, harmony, and lyrics [25].
A task that is similar to cover song retrieval is version identification for Western classical music, where
one allows for variations as they occur in different performances of the same piece of Western classical
music [12,14,18-20,39-41]. This scenario is associated with a higher specificity than cover song retrieval
because we expect fewer variations in Western classical music than in popular music. For example,
the rough harmonic progression is the same among different performances of the same classical piece,
which is not always the case for cover songs of popular music. For that reason, cover song retrieval
can be considered a more difficult task compared to version identification for classical music. For more
details on this, we refer to the overview article by Serra et al. [25]. In this paper, we focus on audio
matching or version identification for Western classical music.

Miotto and Orio address version identification for classical music by modeling each musical work
with a hidden Markov model (HMM) [18,19]. In these studies, a query is identified by choosing the
HMM that models the query with the highest probability. To avoid the time-consuming evaluation
of all HMMs, the authors propose to first select a small subset of potential candidates [19] and then
to evaluate only the HMMs for the most promising candidates. Instead of HMMs, other audio
alignment algorithms such as particle filtering have been used in similar settings [20]. Classical music
retrieval was also approached as a multi-modal scenario [39,40], in particular using audio and symbolic
representations [42]. Arzt et al. [39,40] present an approach that uses symbolic music representations
(as the database) to identify a query audio snippet of classical piano music. The query is first transcribed
into a series of symbolic events by a neural network. Then, a symbolic fingerprinting algorithm can
be applied. This system has a good performance for music where the automatic transcription step
achieves good results, e.g., piano music. However, the approach is problematic for kinds of music
where automatic transcription is more difficult, such as complex orchestral music. Another line of work
uses chroma feature sequences of short audio fragments for audio matching of classical music [12,14].
Our contribution builds upon this line of work and we refer to these studies in the following sections.
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3. Shingle-Based Retrieval Scenario

Closely following Grosche and Miiller [12], we now formalize the shingle-based retrieval strategy
used in this paper. Given a short fragment of a music recording as a query, the goal is to retrieve
all versions (documents) of the same piece of music underlying the query. To this end, we compare
the database and query recordings based on a particular feature representation. The retrieval result
for a query is given as a ranked list of documents. Figure 1 illustrates this general procedure. In the
following, we explain the feature computation as well as the retrieval approach.

Our approach is based on so-called “shingles” [9], which are short sequences of feature vectors.
We denote such a shingle of feature dimension F € N and fixed length L € Nby S € RF*L. In general,
we generate such shingles from audio recordings, which are represented by longer feature sequences
of variable length. The feature sequence of an audio recording is denoted by C = (¢, ..., cn) of length
N € N and consists of feature vectors ¢, € RF forn € {1,...,N}. We use chroma-based audio features,
which measure local energy distributions of the audio recording in the F = 12 chromatic pitch class
bands [7] (Chapter 3). More precisely, we use a variant called CENS (chroma energy distribution
normalized statistics) [43], which are chroma features with post-processing that makes them more
suited for retrieval: First, each chroma vector is #!-normalized. Then, the resulting values of the
chroma features are quantized in a logarithmic way (by mapping logarithmically spaced value ranges
to integer values, e.g., values between 0.05 and 0.1 are mapped to to 1, values between 0.1 and 0.2 to 2,
etc.). Next, the chroma feature sequence is temporally smoothed (using a smoothing length of 4 s) and
downsampled (from 10 Hz to 1 Hz). Finally, each chroma vector is ¢?>-normalized. The most important
aspect of this post-processing is the temporal smoothing, because it makes the features more robust
against tempo differences. This chroma variant is state-of-the-art for the given task [12]. The upper
part of Figure 2 shows a visualization of the feature type used in this paper. To generate shingles of
length L < N from the feature sequence C, we use a hop size H € N to define the subsequences

cyti= (Cn-1)H4+1/ -+ -+ C(n—1)H+L) 1)

forn € {1,...,|[MzE| + 1}, where |-| denotes the floor operation. The resulting subsequences can
also be regarded as matrices or shingles cit e RFXE For brevity, we will omit the superscript H in
the case of H = 1. See the lower part of Figure 2 for such a sequence of overlapping shingles.

Feature Sequence C of document D

R T T

Set of shingles SP = {C['H,CEH,cLH, cLH, cLHy

- J

Figure 2. Schematic overview of the shingle generation process: A set of overlapping shingles SP is
generated from the feature sequence of document D.

We now describe the retrieval approach for a fixed query (denoted as Q) and database document
(denoted as D). For now, the query consists of a single shingle S2 € RF*L. Previous investigations of
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the query length found that a length of 20 s is well suited for performing the retrieval with a single
audio shingle [12]. In our study, we use such a shingle length, resulting in a shingle dimensionality of
F x L =12 x 20 = 240. The document D is represented by a set of shingles

SP={cl:ne{l,...,N-L+1}}. )

This set SP consists of all subsequences Ck from the audio recording of document D (as defined
in Equation (1)), generated with a hop size H = 1. In the next step, SQis compared with all shingles
from the set SP. The comparison between Q and D is achieved by first transforming the shingles to
vectors by a function

fiREXE 5 RE 3)

for some K € N. In the brute-force case, f just flattens a matrix by concatenating all columns (i.e.,
K = FL). Using shingle embedding methods, as explained later, f performs a dimensionality reduction
(typically K < FL). Given two shingles S(!) and §(2), we compare them in the embedding space using
a distance function

d: RE X RK = Ry, (4)

In the following, we use the squared Euclidean distance:

K
dxV,x®) = ) ()~ 577, 5)
k=1

where 1) = £(§(1)) and x(?) = £(8()). Given a query Q (in the form of a shingle S?) and a database
document D (in the form of a set of shingles SP), we compute the distance between Q and D by

op(§9) = mind(f(S°), £(S))- 6)

Finally, for Q and a data collection ID containing |D| documents, we compute p(SQ) between Q
and all D € D and rank the results by ascending 5p(S9Q).

Previous work [12] used maximum cosine similarity instead of minimum Euclidean distance.
We use the squared Euclidean distance because this distance naturally occurs in both dimensionality
reduction methods, as explained in Section 4. Note that, since each feature vector of the shingles is
normalized, Euclidean distance and cosine similarity lead to similar retrieval results. The relation

between the squared Euclidean distance of 2-normalized vectors and their cosine similarity is given
by: d(x(l), x(z)) = 2(1 _ COS(x(l),x(z))) )

4. Shingle Embedding

In this section, we explain the brute-force approach and the two shingle embedding techniques.
The first uses standard PCA and the second is based on siamese neural networks, which are trained
with the so-called triplet loss.

4.1. Brute Force

As a baseline approach, we just flatten each audio shingle S € R12*2 to a vector of size
K =12 x 20 = 240 by concatenating the feature vectors. In other words, we do not apply any
dimensionality reduction. Note that no training is involved in this approach, contrary to the
embedding methods that are explained in the following subsections. This baseline approach of
using the full-dimensional audio shingles was also used in the study by Grosche and Miiller [12].
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4.2. PCA

As a first embedding approach, we use PCA [44] to reduce the dimensionality of the audio
shingles. Each audio shingle § € R'?*% is seen as a vector of size 12 x 20 = 240. PCA learns a basis
that is used to linearly project these audio shingles. Dimensionality reduction is then performed by
considering only the first basis vectors instead of the complete set of basis vectors. This basis is learned
such that the squared Euclidean distance between the original and the dimensionality-reduced shingles
of a given training set is minimized. As a result, one obtains a linear transformation that maps an audio
shingle S to an embedding vector x € RX. This mapping f(S) = x is then used in the experiments
with a separate test set by embedding the entire database as well as the queries before performing the
retrieval (see Section 5.4). The authors of [12] also used PCA for dimensionality reduction, but they
applied PCA only to individual chroma vectors of dimension F. Thus, their approach can only make
use of the chroma dimension, without any temporal information. In our approach, we apply PCA to
entire shingles of dimension F x L and can, therefore, exploit redundancies in the temporal sequence
of chroma vectors for dimensionality reduction.

4.3. Neural Network with Triplet Loss

As a second embedding approach, we use neural networks to reduce the dimensionality
of the audio shingles. Such networks can be used to learn non-linear functions that map
high-dimensional input representations to low-dimensional output representations. We now show
how the dimensionality of the audio shingles can be reduced using a convolutional neural network
trained with the triplet loss [33]. During training, our network embeds three shingles for computing
the loss, which is then used for updating the parameters of the network. This will be explained in
detail later in this section. Figure 3 shows an illustration of this process.

~
Input: Time-chroma shingles (12 x 20 = 240 dimensions)
Anchor Positive Negative
g — —
g R ee— —
E - EomEmT e
v e ™™ ™ - .
N e =
Time (seconds) Time (seconds) Time (seconds)
(& J
s? Sp sn
Y Y Y
Embedding Network
x* = f(§? xP = f(SP "= f(S"
=7 (87 V=7 (s7) =1

Output: Embedded shingles (K = 6 dimensions)

Anchor Positive Negative

(s (MmO s

Figure 3. Schematic overview of the triplet embedding: Anchor, positive, and negative shingles
(82, SP, SM) are embedded into the vectors (x?, xP, x") by a neural network.

For learning embeddings, a loss function that enforces specified similarities and dissimilarities in
the embedding space is used. An example of such a loss function is the hinge loss, which has been used
to learn representations for cross-modal score-to-audio embeddings [45] and for artist similarity [46].
A related loss function is the triplet loss, which was developed for the task of face recognition [33]
and then adapted for audio and music processing tasks such as speech retrieval [47], sound event
classification [48], audio fingerprinting [49], artist clustering [50], music similarity [51], and cover song
retrieval [37]. The latter study is conceptually similar to our approach, but presents results that are
worse than those achieved by more traditional approaches [21].
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To define the triplet loss in our scenario, we select three shingles: An anchor shingle §?, a positive
shingle SP, and a negative shingle S" (see the upper part of Figure 3 for an example). With respect to
the anchor shingle, the positive shingle is musically similar, while the negative shingle is musically
dissimilar. More precisely, the anchor and positive shingles originate from different versions of the
same piece of music and correspond to the same musical position within that piece. Anchor and
negative shingles do not correspond to each other.

The goal is to find an embedding function f : RF*L — RK such that £($?) is numerically close to
f(SP) and far from f(S™). The lower part of Figure 3 visualizes embeddings with this property. Let

X = (a2, ") = (f(8%),f(SP),f(S%)). @)
Then, following Schroff et al. [33], we define the loss as
L(X) = max (0,d(x* xP) —d(x*,x") + ), 8)

with @ € R>( being a margin parameter and d being a distance function. In our experiments, we use
the squared Euclidean distance, as defined in Equation (5). The cost function ] to be optimized during
batch gradient descent is the average of losses over a batch B of triplets:

1(B) = ulm Y LX), )

XeB

Our neural network architecture is summarized in Table 1. It comprises two blocks, each consisting
of two convolutional layers and a max-pooling layer. Finally, a dense layer reduces the network’s
internal representation to the embedding dimensionality K; an ¢2-normalization layer ensures that the
embedding vectors do not become arbitrarily large or small. This topology is inspired by a network
for multi-modal music embeddings [45]. We simplified the architecture (e.g., using 2 blocks instead
of 4) for two reasons: First, our scenario is mono-modal and therefore less complex compared to the
multi-modal task [45], and second, our input dimension is smaller (using chroma features instead
of spectral features). Our network has relatively few parameters compared with many other deep
learning systems. E.g., for K = 10, the network has about 6000 parameters.

Table 1. Neural network architecture. For all convolutional operations, we use a zero-padding size of 1.
Conv2D* indicates a circular padding of the chroma axis instead of zero-padding.

Layer Output Shape Parameters
Input (12,20, 1)

Conv2D* 12x(3, 3, 1) (12,20, 12) 108
BatchNorm + ELU (12,20, 12) 48
Conv2D 12x(3, 3, 12) (12,20, 12) 1296
BatchNorm + ELU (12,20, 12) 48
MaxPool2D (2, 2) (6,10, 12)

Conv2D 12x(3, 3, 12) (6,10, 12) 1296
BatchNorm + ELU (6,10, 12) 48
Conv2D 12x(3, 3, 12) (6,10, 12) 1296
BatchNorm + ELU (6,10, 12) 48
MaxPool2D (2, 2) (3,5,12)

Flatten + Dense K (K) K x 181
Output: ¢>-normalize (K)

5. Basic Experiments

In this section, we report on our experiments with medium-sized data sets for training and testing.
Later, in Section 6, we will also report on experiments with an extended data set. For now, we use
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medium-sized data sets similar to those used in previous studies [12] for being comparable with this
work. First, we describe the data sets and our evaluation measures. Second, we discuss the evaluation
results obtained using the brute-force approach, the PCA-based embeddings, and the approach using
neural networks. Third, we analyze the influence of the margin parameter a (used in the loss function)
on the retrieval results. Finally, we report on a runtime experiment that indicates the impact of the
embeddings’ dimensionality on the retrieval time.

5.1. Training and lesting Data Sets

In our experiments, we used audio recordings of Western classical music. In particular, we used
pieces from three composers: Symphonies by Beethoven, Mazurkas by Chopin, and pieces from
Vivaldi’s The Four Seasons. These composers cover three different musical eras, namely the Baroque,
Classical, and Romantic periods. Table 2 shows a list of the musical pieces underlying the recordings.
For each musical piece, our database contains several versions that are performed by different
orchestras, conductors, and soloists. To make our results comparable to prior work, we use audio data
sets that are similar to the one used in the study by Grosche and Miiller [12]. The data sets comprise
recordings of some of Frédéric Chopin’s Mazurkas, which have been collected within the Mazurka
Project [52].

Table 2. The music collections Dy used for training and D, used for testing. Duration format hh:mm:ss.

Composer Piece Genre Versions Dur 2 Dur
Op.67,Mov.1  symphony 10 1:12:07  0:07:13
Beethoven Op. 67, Mov. 2 10 1:44:53  0:10:29
Op. 67, Mov. 3 10 1:02:53  0:06:17
- Op. 67, Mov. 4 10 1:48:00  0:10:48
%v Op. 17, No. 4 mazurka 62 4:29:23  0:04:21
:o Op. 24, No. 2 (piano solo) 64 2:26:38 0:02:17
£ Chopin Op. 30, No. 2 33 0:46:52  0:01:25
-E Op. 63, No. 3 86 3:05:06  0:02:09
= Op. 68, No. 3 51 1:25:58  0:01:41
RV 315, Mov.1 violin concerto 7 0:37:40 0:05:23
Vivaldi RV 315, Mov. 2 7 0:17:23  0:02:29
RV 315, Mov. 3 7 0:20:40 0:02:57

z 357 19:17:32
Op.55,Mov.1  symphony 4 1:06:34  0:16:38
Beethoven Op. 55, Mov. 2 4 1:02:52 0:15:43
Op. 55, Mov. 3 4 0:23:41 0:05:55
Op. 55, Mov. 4 4 0:46:07  0:11:32
é‘ Op.7,No. 1 mazurka 53 2:01:15 0:02:17
s Op.24,No. 1 (piano solo) 61 2:53:48  0:02:51
; Chopin Op. 33, No. 2 67 2:40:38  0:02:24
& Op. 33,No. 3 50 1:29:22 0:01:47
Op. 68, No. 4 62 2:33:58  0:02:29
RV 269, Mov.1 violin concerto 7 0:24:17 0:03:28
Vivaldi RV 269, Mov. 2 7 0:20:20 0:02:54
RV 269, Mov. 3 7 0:30:46  0:04:24

x 330 16:13:37

There are two disjoint sets: Iy (357 recordings, 62,867 shingles) was used for training the
dimensionality reduction methods, and 1D, (330 recordings, 52,332 shingles) was used for evaluating
the retrieval quality based on the embedded shingles. Furthermore, circular chroma shifts were applied
to the training set, which simulate musical transpositions and increase the number of shingles used for
training by a factor of twelve. This process can be seen as a type of data augmentation. Both training
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and test sets are musically related, as they contain the same composers and the same music genres.
However, the musical pieces in both sets are different.

5.2. Evaluation Procedure

In our testing stage, we used the data set D, which is independent of the training set D;. When
performing retrieval using a query Q, we computed &p(S®) for all D € D, and obtained a ranked list
of documents, as described in Section 3. We excluded the document containing the query from the
database D, so that there are no trivial retrieval results.

For evaluating the results, we considered three evaluation measures. First, we used precision at
one (P@1), which is 1 if the top-ranked document is relevant, and 0 otherwise. However, not only the
top rank is of relevance in our retrieval scenario. This was taken into account by our second evaluation
measure, called R-precision (Pr). Here, R € N denotes the number of relevant documents for a given
query. Note that this number may be different for different queries. Pr is defined as the proportion of
relevant documents among the first R ranks. Third, we used average precision, which is a standard
evaluation measure for information retrieval that takes the entire list of ranks into account. It is defined
as the mean of the precision scores for the ranks with retrieved relevant documents. This measure is
not as well interpretable as P@1 or Pg, but it is the most comprehensive evaluation measure that we
used. For a more detailed explanation, we refer to the book by Manning et al. [53] (Chapter 8).

For our experiments, we used a set of queries, which we created by equidistantly sampling
10 queries from each recording of our test set D, resulting in 3300 queries. The evaluation results were
then averaged over all queries. In the case of average precision, the averaged measure is referred to as
mean average precision (MAP).

5.3. Brute Force

As a baseline, we performed a first retrieval experiment based on the original audio shingles
without dimensionality reduction (see Section 4.1). Since no training was involved, we report the
results in Table 3 (upper rows) for both the training set I); and the test set ;. For example, in the case
of the test set I, we achieved a P@1 value of 0.996, which means that only 13 of the 3300 queries did
not yield a relevant document on the top rank. Furthermore, the MAP value of 0.972 indicates that
almost all relevant documents appear at the beginning of the ranked list. The results for the training
set are similar, indicating a comparable complexity of both data sets.

The parameters and feature design of the shingles were chosen in such a way that the brute-force
approach yielded close to perfect results for the given task. For a comparison, we also performed an
experiment using a temporal alignment procedure, similar to the classical state-of-the-art approaches
for cover song retrieval by Serra et al. [24,25,54]. In essence, these approaches are based on the
combination of enhanced chroma representations with non-linear temporal alignment procedures.
In our experiments, we performed subsequence dynamic time warping (SDTW) [7] (Chapter 7) to align
the feature sequences of a query and a database document. The approaches of Serra et al. [24,54] used
local alignment procedures that aligned subsequences of the query to subsequences of the database
document (e.g., Smith—-Waterman, or Qmax algorithm). This was motivated by the task of popular
music cover song retrieval where the query is a complete recording. In this case, query and relevant
database documents typically have a different structure. However, in our case, we are dealing with
Western classical music, and the query is only a 20 s excerpt. Therefore, we can expect that the query is
entirely represented as a musically corresponding subsequence in the relevant database documents.
Under this assumption, SDTW is more or less equivalent to the Smith-Waterman algorithm. For SDTW,
we used the Euclidean distance, the step size condition {(2,1), (1,2), (1,1)}, and the weights (2,1,1)
for vertical, horizontal, and diagonal steps, respectively. As a result of SDTW, we obtained a matching
function; the minimum of this matching function was used as a distance measure for ranking the
documents. Table 3 (middle rows) shows the retrieval results for this experiment, using the CENS
features described in Section 3. These results are very close to the results of the shingle-based brute-force
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approach. This confirms that in our music scenario, no alignment procedure is needed when using
CENS processing.

One main motivation for using CENS smoothing is to introduce robustness to local tempo
variations. When an alignment procedure is used, such smoothing is not needed. Therefore, we also
conducted an alignment experiment, using the original chroma features without CENS post-processing.
In this setting, the feature rate was 10 Hz instead of 1 Hz. Table 3 (lower rows) shows the retrieval
results using these features. In the case of the test set I,, we achieved a P@1-value of 0.999, which
means that almost all queries yielded a relevant document on the top rank. In all evaluation measures,
we see small improvements over the shingle-based brute-force approach. However, this goes along
with a dramatic increase in runtime. The runtime for the overall retrieval experiment in our setting
increased from about a minute for the shingle-based brute-force approach (1 Hz features) to several
hours for the alignment-based approach using 10 Hz features. We describe further aspects related to
runtime in Section 5.7.

In summary, we showed that we can get close-to-perfect results with the brute-force approaches.
In other words, when only looking at retrieval quality, the problem of cross-version retrieval for
Western classical music can be regarded as being largely solved. However, brute-force approaches are
time-consuming. The main focus of this paper is efficiency, and we want to see to which extent we
can keep the retrieval quality while reducing the shingle dimensionality. Therefore, in the following,
we are not aiming for improving the brute-force approaches, but for keeping a comparable result while
using low-dimensional embeddings of the audio shingles. If not mentioned otherwise, brute-force
always refers to the shingle-based brute-force approach in the following.

Table 3. Retrieval results for various brute-force approaches: The shingle-based brute-force approach
(K = 240), an alignment-based brute-force approach using chroma energy distribution normalized
statistics (CENS) features (1 Hz), and an alignment-based brute-force approach using chroma features
(10 Hz) without CENS post-processing.

Brute-Force Approach  DataSet P@1 Py MAP

. B D, 0993 0936 0.966
Shingles (K = 240) D, 0996 0941 0972
D, 0991 0947 0971

SDTW (CENS, 1 Hz) D, 0994 0947 0975
D, 0.995 0.966 0.980

SDTW (Chroma, 10Hz) 0999 0978 0.989

5.4. PCA

As the second approach, we applied dimensionality reduction with PCA as described in
Section 4.2. We used the training set D; to learn the PCA basis and evaluate the approach with
the test set ;. Table 4 shows the evaluation results for two different PCA-based reduction strategies:
The left columns (GRO) refer to the reduction of individual chroma vectors as done by Grosche and
Miiller [12], and the right columns (PCA) refer to the proposed reduction of entire shingles. The rows
correspond to the considered dimensionalities 40, 60, and 80. Let us take the case of K = 40 as an
example. In the first approach (GRO), each chroma vector was reduced to two dimensions, leading
to the dimensionality of K = 2 x 20 = 40. This strategy resulted in an MAP value of 0.832. In the
shingle-based reduction (PCA), an entire 240-dimensional feature sequence was reduced altogether
to a 40-dimensional vector. This approach led to an MAP value of 0.964. In general, our experiments
showed that a shingle-based reduction leads to better retrieval results. This is not surprising, because
this approach can exploit temporal redundancies for dimensionality reduction. In the following,
we aim to reduce the dimensionality to a degree that would not have been possible with the first
approach (GRO). Columns 2—4 of Table 5 show the evaluation results obtained with our shingle-based
approach for much lower dimensionalities. The retrieval quality consistently increases with an increase
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of dimensionality from an MAP value of 0.580 for K = 3 to 0.952 for K = 30. Let us consider the
dimensionalities of 6 and 12 as exemplary cases. For K = 6 the P@1 value is 0.857, i.e., for 472 of the
3300 queries, the top-ranked document was not relevant. For K = 12 (P@1: 0.957), this is the case for
only 142 queries.

Table 4. Retrieval results for principle component analysis (PCA)-based dimensionality reduction of
individual chroma vectors (GRO) [12] and entire shingles (PCA, proposed) using the test set ;.

GRO [12] PCA
K P@l Pr  MAP P@l Pr  MAP

40 0930 0.773 0.832 0991 0926 0964
60 0975 0.871 0921 0993 0938 0971
80 0.987 0.903 0.948 0994 0942 0973

Table 5. Retrieval results for our proposed PCA- and DNN-based dimensionality reduction methods
using the test set D5.

PCA DNN
K P@1 Pg MAP P@1l Pgr MAP
3 0.603 0.550 0.580 0.671 0.647 0.683
4 0.807 0.714 0.754 0772 0.718 0.755
5 0.830 0.712 0.758 0.821 0.766 0.806
6 0857 0.724 0.771 0.890 0.816 0.856
7 0.888 0.739 0.790 0908 0.827 0.869
8 0904 0.754 0.806 0936 0.856 0.898

9 0927 0.778 0.834 0946 0.867 0910
10 0945 0.811 0.868 0954 0.877 0919
11 0951 0.813 0.872 0.957 0.888 0.927
12 0957 0.819 0.877 0964 0.887 0928
15 0974 0.846 0.904 0969 0.901 0.940
20 0985 0.878 0.932 0970 0.905 0.942
30 0990 0.908 0.952 0981 0927 0.959

5.5. Neural Network with Triplet Loss

As the third approach, we applied dimensionality reduction with a deep neural network (DNN)
as described in Section 4.3. For training the neural network, we used triplets of shingles from the
training set D;. They were generated with the constraint that the central time positions of the anchor
and positive shingles corresponded to the same musical position in different versions of the same
piece. The negative shingle did not musically correspond to the anchor shingle. To generate such
musically meaningful triplets, we needed to compute musically corresponding time positions in
all versions of the same pieces in a pre-processing stage. We used a dynamic-time-warping-based
music synchronization approach [7] (Chapter 3) for this purpose. Furthermore, random circular shifts
along the chroma axis were applied to avoid biasing the network towards the musical keys in our
data set. The shifts applied to the anchor and the positive examples were the same, while the shift
applied to the negative example was chosen independently. This triplet generation procedure led to a
combinatorial explosion of possible triplets. For that reason, not all possible triplets were provided to
the network during training. We defined an “epoch” to consist of 2000 batches with a batch size of
128 triplets, used for batch gradient descent with the Adam optimizer [55]. Other triplet loss studies
sometimes control the triplet generation by a specific procedure called “semi-hard triplet mining” [33].
Preliminary experiments (not reported here) showed that in our case, there were no improvements
by this method. Therefore, we do not apply this procedure in the experiments reported in this paper.
In our first experiments, we fixed &« = 1.3 (see Section 5.6 for a discussion) as well as a learning rate of
1073 and trained a neural network for 10 epochs. It turned out that a larger number of epochs did not
improve the retrieval results.
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Columns 5-7 of Table 5 show the evaluation results for a range of different dimensionalities from
3 to 30 using the test set D,. In general, the retrieval quality increases with an increase of K from an
MAP value of 0.683 for K = 3 to 0.959 for K = 30. Let us consider some cases as examples. For K = 6,
the P@1 value is 0.890, i.e., for 363 of the 3300 queries, the top-ranked document was not relevant.
For K = 12 (P@1: 0.964), this is the case for only 119 queries. Compared to the PCA-based approach,
the neural network especially improved the retrieval results for smaller dimensionalities like 6 or §,
where the MAP value is greater by more than 0.08 (e.g., K = 8, MAP for PCA: 0.806 and for DNN:
0.898). We observed rather small improvements in P@1, but there was a considerable increase of Pg
(e.g., K =8, Pr for PCA: 0.754 and for DNN: 0.856).

5.6. Influence of &

In the following, we analyze the influence of the parameter &, which is used in the loss function
as defined in Equation (8). This parameter can be interpreted as the margin between d(x?,xP) and
d(x®,x"). Figure 4 shows the evaluation results (MAP) for various a values. For this experiment,
we only used the dimensionalities of K = 6 and K = 12 as examples to illustrate general tendencies.
For a given & and K, 25 neural networks were trained for 10 epochs with different random initializations.
Then, they were used for dimensionality reduction in the retrieval scenario, resulting in 25 MAP values.
From these, we computed the mean (i) and the standard deviation (¢). The solid lines show y and the
light areas show +0 around y. For both K = 6 and K = 12, we see similar trends: « = 0 achieves rather
bad results. In this case, no margin is enforced, and the loss is zero as soon as d(x?,xP) < d(x?,x").
However, increasing « only slightly leads to a clear improvement in MAP. Any « in the range of
[0.1,1.7] produces results of similar quality. For a > 1.7, the results strongly decrease. This can be
explained as follows: Only a small positive margin is needed for retrieving the correct versions. Using
a large margin brings no benefit for retrieval, but makes the training much harder. In summary,
for 0.1 < a < 1.7, we see a stable overall behavior of the results with a small standard deviation,
showing robustness to the initialization used.

1.0
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= K=12
0.9

0.8

MAP

0.7
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0.5 -1 T T T T T T T T
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Figure 4. Mean average precision (MAP) evaluation results for dimensionality reduction with various
neural networks using the triplet loss with different « values.

5.7. Runtime Experiment

We showed that we can substantially reduce the dimensionality of the audio shingles while
keeping their discriminative power. Such low-dimensional embeddings are beneficial when using
indexing techniques for efficient nearest neighbor retrieval. To show this property, we conducted an
experiment where we computed the distances of the 3300 queries to the documents of our test set Dy
(as done for the previous experiments). We measured the runtimes for the alignment-based approaches
(described in Section 5.3) and for the shingle-based approaches. In the case of the shingle-based
approaches, we employed three different nearest neighbor search strategies. The first search strategy is
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a full search by just computing all distances between the shingles of the database documents and the
query shingles. For the second and third search strategies, we used k-d trees, which are standard data
structures for searching in multidimensional spaces [56]. In the second strategy (Doc-Trees), we built
one tree for each of the 330 documents of the test set and searched for the nearest neighbor to the query
in each tree. As a consequence, each document occurred precisely once in the ranked list (as in the
previous experiments). In the third strategy (Db-Tree), we built a single tree for all documents of the
database and searched for the 330 nearest embeddings to the query. With this strategy, we were not
able to rank all documents of the database because some of the returned embeddings originated from
the same document. Note that the reported runtimes depend on the used implementations. So, rather
than focusing on the absolute times, we want to emphasize the relative tendencies as well as the orders
of magnitude.

We performed our experiments using Python 3.6.5 on a computer with an Intel Xeon
CPU E5-2620 v4 (2.10 GHz) and 31GiB RAM. For the alignment-based approaches, we used the
SDTW implementation of librosa 0.7.1 [57], which is written in Python and accelerated by the
just-in-time compiler numba. For the full search, we used the efficient pairwise-distance calculation of
scipy 1.0.1 [58], which calls a highly optimized implementation in C. For the k-d trees (using a default
leaf size of 30), we used the implementation of scikit-learn 0.20.1 [59], which is written in Cython.

Table 6 presents the runtimes for selected settings, averaged over several iterations of the retrieval
experiment. The first column specifies the retrieval approach, the second column lists the runtimes for
the full search strategy, and the third column lists the runtimes for the Db-Tree search strategy. For the
alignment-based approach using 10 Hz features (first row), the runtime was about 6.5 h. When using
1 Hz features (second row), the runtime decreased to about 6 minutes. It is not surprising that the
first alignment-based approach was much slower, since the feature rate was ten times higher and the
alignment algorithms were of quadratic complexity. For the brute-force shingle approach (K = 240,
third row), the runtime was significantly lower than for both alignment-based approaches. It took
23.0s for the full search strategy and 76.9 s for the Db-Tree search strategy. In our setting and with the
used implementations, the Db-Tree strategy was slower than full search for K = 240. It is well known
that k-d trees degenerate for high dimensions [60]. With dimensionality reduction to K = 30 or K = 12
(fourth and fifth row), both search strategies were in a similar range (e.g., for K = 12, full search: 1.85s,
Db-Tree: 1.1s). For lower dimensions (K = 6, sixth row), the Db-Tree search strategy substantially
accelerated the nearest neighbor search (full search: 1.2s, Db-Tree: 0.45s).

Table 6. Time (in seconds) needed for searching 3300 queries, for selected approaches.

Approach Full Search  Index (Db-Tree)
Brute Force, SDTW (Chroma, 10 Hz) 23,190.1 -
Brute Force, SDTW (CENS, 1 Hz) 351.5 -
Brute Force, Shingles (K = 240) 23.0 76.9
DNN (K = 30) 3.3 5.0
DNN (K = 12) 1.8 1.1
DNN (K = 6) 1.2 04

Figure 5 shows the runtime (x and =£c for 100 iterations of the retrieval experiment) for the
dimensionality reduction approaches. For the full search strategy, we see an almost linear relationship
between the dimensionality K and the runtime. This strategy is independent of the underlying data
distribution. For that reason, we do not distinguish between PCA- and DNN-based dimensionality
reduction for the full search strategy. This is different for the tree-based search strategies (Db-Tree and
Doc-Trees), where the data distributions of the PCA- and DNN-based embeddings lead to different
search times. We also see an almost linear relationship for the Doc-Trees search strategy for both PCA-
and DNN-based retrieval approaches. In general, for this strategy, the runtime is higher than for the
full search. In our case, the data size of a single document is too small for the Doc-Trees strategy to give
any benefit over the full search strategy. For the Db-Tree strategy, we see a slightly exponential growth
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of runtime with growing K. When the dimensionality falls below 15, the Db-Tree strategy starts to give
benefits for the fast nearest neighbor search.

PCA/DNN, Full Search
PCA, Db-Tree
DNN, Db-Tree
PCA, Doc-Trees
DNN, Doc-Trees

Phitd

Time (s)
S

Figure 5. Time (in seconds) needed for searching 3300 queries using the shingle-based approaches
depending on the embedding dimensionality K with various nearest neighbor search strategies.

We want to emphasize again that the absolute runtimes are implementation-dependent. Therefore,
we want to highlight some general tendencies: The shingle-based approaches are significantly faster
than the alignment-based approaches. In general, the experiments confirm that lower dimensionalities
accelerate the nearest neighbor search. In particular, when using small dimensions (below 15 in our
setting), we can further speed up the search by standard multidimensional indexing strategies.

6. Extended Experiments

In this section, we investigate the scalability and generalizability of our approach by evaluating the
embedding methods on a larger and more diverse data set. In this way, we also provide deeper insights
into the benefits and limitations of our dimensionality reduction approaches. First, in Section 6.1,
we describe our extended data set, which is only used for testing. Then, in Section 6.2, we discuss
the evaluation results obtained using the embedding methods trained on the smaller training set
described in Section 5.1. Next, in Section 6.3, we investigate the discriminatory capacity of the
low-dimensional embeddings by using a longer query length employing multiple shingles per
query. Finally, in Section 6.4, we analyze the distances that appear in the nearest neighbor search
to better understand the complexity of the retrieval problem depending on the composers and genres
of classical music.

6.1. Extended Data Set

To test the scalability and generalizability of our approach, we compiled an extended data set D,
which is listed in Table 7. Including the test set D, (see Table 2), the extended data set additionally
comprises a variety of further composers and genres, including piano and violin concertos (Brahm:s,
Schumann, Tchaikovsky), symphonies (Mahler, Mozart), opera music (Wagner), and character pieces
in piano solo and orchestral versions (Mussorgsky). The data set D3 consists of 535 recordings (205,522
shingles) and contains about 60 h of audio material, compared to the 16 h of the previous test set .
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Table 7. Extended data set D3. This data set includes the test set D,. Duration format hh:mm:ss.

Composer Piece Genre Versions Dur & Dur
Test set Dy, consisting of 12 different pieces (see Table 2) 330 16:13:37

Op. 83, Mov. 1 piano concerto 6 1:44:23  0:17:24

Brahms Op. 83, Mov. 2 6 0:52:08 0:08:41

Op. 83, Mov. 3 6 1:12:31 0:12:05

Op. 83, Mov. 4 6 0:55:08 0:09:11

Symphony No. 1, Mov. 1 symphony 5 1:15:16  0:15:03

Mahler Symphony No. 1, Mov. 2 5 0:35:40  0:07:08

Symphony No. 1, Mov. 3 5 0:54:42 0:10:56

Symphony No. 1, Mov. 4 5 1:36:53  0:19:23

KV 550, Mov. 1 symphony 5 0:35:40  0:07:08

Mozart KV 550, Mov. 2 5 0:50:12  0:10:02

KV 550, Mov. 3 5 0:20:10  0:04:02

KV 550, Mov. 4 5 0:32:54 0:06:35

Pict. at an Exhib., Promenade character piece 6 0:09:07  0:01:31

Pict. at an Exhib., No. 1 (piano solo or 6 0:14:50 0:02:28

Pict. at an Exhib., No. 2 orchestral 6 0:24:48 0:04:08

Pict. at an Exhib., No. 3 arrangement) 6 0:06:49  0:01:08

Pict. at an Exhib., No. 4 6 0:17:51 0:02:58

Mussorgsky  Pict. at an Exhib., No. 5 6 0:07:39 0:01:16

Pict. at an Exhib., No. 6 6 0:13:51 0:02:18

Pict. at an Exhib., No. 7 6 0:08:13 0:01:22

Pict. at an Exhib., No. 8 6 0:11:31 0:01:55

Pict. at an Exhib., No. 9 6 0:20:18 0:03:23

Pict. at an Exhib., No. 10 6 0:32:41 0:05:27

Op. 54, Mov. 1 piano concerto 5 1:13:59 0:14:48

Schumann Op. 54, Mov. 2 5 0:24:43 0:04:57

Op. 54, Mov. 3 5 0:51:47  0:10:21

Op. 23, Mov. 1 piano concerto 8 2:33:39 0:19:12

Op. 23, Mov. 2 8 0:50:34 0:06:19

Tehaikovsk Op. 23, Mov. 3 8 0:52:59 0:06:37

Y Op. 35 Mov. 1 violin concerto 6 1:47:27 0:17:54

Op. 35, Mov. 2 6 0:38:30 0:06:25

Op. 35, Mov. 3 6 0:54:06  0:09:01

Wagner WWYV 86 B, Act 1 opera 18 19:15:20  1:04:11
% 535 59:49:56

6.2. Evaluation

For our extended experiments, we kept the settings from the previous experiments and applied
the same embedding methods as described in Section 4. In particular, the embedding methods were
trained on the smaller training set ID; (see Table 2) as before, and were then evaluated with the extended
data set D3, containing composers and genres of classical music that are not contained in the training
set. The retrieval for a larger and more diverse data set obviously constitutes a harder task. For this
reason, we can expect the retrieval results to decrease.

Figure 6 shows the MAP evaluation results for different embedding dimensionalities K on the
smaller test set )y, as reported in the previous Section 5 (a) and on the extended data set D3 (b). As
expected, we see a decrease in retrieval quality for the larger data set. The results for the brute-force
approach decrease from an MAP of 0.996 for D, to 0.924 for D3. The results based on the embedding
approaches decrease even more. In particular, the smaller dimensionalities result in an MAP of less
than 0.6; e.g., for K = 6, the MAP is 0.441 and 0.500 for PCA and DNN, respectively. This confirms our
assumption that the extended data set constitutes a harder task and leads to an increased probability for
false negatives. One reason for the increased difficulty of the task is that there is a higher potential for
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confusion between the documents due to the increased data set size. Another reason is the increased
diversity of database documents.

@ (b)
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Figure 6. Evaluation results for the smaller test set D, (a) and the extended data set D5 (b).

To gain more insights into these results, we now analyze the evaluation for each of the individual
composers of the data set. In the following, we fix the dimensionality of K = 12 as a typical example
that gives a good trade-off between retrieval quality and speed, as shown in the previous experiments.
Table 8 shows the detailed evaluation results for K = 12. The rows correspond to the composers
of the data set, and the last row reports the averaged evaluation measures over all queries and all
composers. Note that composers with many queries have a stronger impact on this average compared
to composers with few queries. The queries from the Chopin recordings result in an MAP value of
0.932 with the brute-force approach, 0.686 with PCA, and 0.825 with DNN. These numbers are lower
than the ones we obtained for the smaller test set (0.972 for brute-force, 0.877 for PCA, and 0.928 for
DNN; see Table 5). In particular, PCA suffers from using the larger test data set. The moderate loss
for the DNN approach could point towards overfitting, because Chopin is also the most prominent
composer of the training set. The queries from the Mahler recordings result in an MAP value of 0.940
with the brute-force approach, 0.755 with PCA, and 0.617 with DNN. Here, the DNN is considerably
worse than the linear PCA-based projection. The late-romantic style of Mahler could be too different
from the styles of the training set. The queries from the Schumann recordings result in an MAP value
of 0.918 with the brute-force approach, 0.462 with PCA, and 0.553 with DNN. In this case, the DNN
achieves better results than those of the PCA. Note that Schumann is not part of the training set and
that the respective work is a piano concerto, which is a classical music genre that is also not covered in
the training set.

Table 8. Composer-wise evaluation results using the extended data set Ds.

Queries Brute Force PCA (K =12) DNN (K = 12)

P@1 Pr MAP P@1 Py MAP P@1 Pr MAP
Beethoven 160 0.963 0.827 0.879 0.631 0.456 0.521 0.669 0.477 0.538
Chopin 2930 0.996 0.876 0.932 0.899 0.626 0.686 0936 0.765 0.825
Vivaldi 210 0.967 0921 0.953 0.790 0.645 0.716 0.819 0.646 0.728
Brahms 240 0.992 0960 0.976 0.754 0.543 0.619 0.796 0.593 0.667
Mahler 200 0.950 0.920 0.940 0.845 0.682 0.755 0.700 0.539 0.617
Mozart 200 1.000 0.864 0.907 0.630 0.390 0.443 0560 0.349 0.399
Mussorgsky 660 0.967 0.834 0.877 0.718 0.482 0.545 0.642 0.452 0.516
Schumann 150 0.980 0.893 0.918 0.553 0.400 0.462 0.653 0.472 0.553
Tchaikovsky 420 0.983 0.892 0.925 0.729 0.493 0.566 0.621 0.492 0.543
Wagner 180 0.983 0.849 0912 0.761 0.625 0.676 0.722 0.584 0.636

Z over queries 0987 0.877 0.924 0.818 0.577 0.639 0.818 0.646 0.708
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A possible explanation for the poorer results of the embedding methods could be that the
embeddings are just overfitted to the composers and styles of the training set and are not very
discriminative in general. In the next section, we will question this argument by considering longer
query audio fragments.

6.3. Dependency on Query Length

A possible explanation for the results of the previous section is that the query length of 20s
is not discriminative enough to identify all versions of the same piece. To analyze this hypothesis,
we increased the query length in the following experiments. An obvious way to do this is to increase
the query shingle length. However, we want to keep our shingle size fixed to keep the same database
structure for different query lengths. Therefore, instead of increasing the query shingle length, we used
multiple successive shingles for each query.

Recall that, in our previous approach (see Section 3), we compared a query (Q) and a document
(D) by performing a nearest neighbor search of a single query shingle S? and all shingles from the
set SP of document submatrices (see Equation (2)). The squared Euclidean distance to the nearest
neighbor ép(SQ) € R is regarded as the document-wise distance between Q and D and was used
for ranking all documents of the database. Here, instead of a single query shingle SQ, we collected a
set of successive shingles SQ from the query recording, as done for the documents (see Equation (2)).
Instead of using a hop size H = 1 (as for the documents), we used a hop size of H = L/2 = 10.
Denoting the number of shingles per query by A := [S?|, a query covers (A — 1) x 10 + 20s of audio
content. For each of these shingles, we computed the document-wise distance Jp, as done previously
(see Equation (6)). To obtain a single distance value between the query and the database document,
the resulting shingle-wise distances were simply averaged:

BEY =7 T ool®) (10)
Ses

Finally, all database documents D € D) were ranked by their averaged distances dp (S?) € R in
ascending order. Note that our previous experiments are the special case of A = 1 (query length: 20s).

For our experiments, we sampled 10 queries from each recording in an equidistant way, as before.
Note each query now consists of multiple shingles. Figure 7 shows the MAP evaluation results for
K = 12 using different query lengths on the extended data set. The retrieval quality considerably
improves with increasing query length, e.g., the brute-force approach improves from an MAP value of
0.924 for A = 1t0 0.976 for A = 5. Similarly, the MAP values for the PCA- and DNN-based approaches
increase strongly with the query length.
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Figure 7. Evaluation results with varying A on the extended data set Ds.
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Table 9 shows the results for each of the composers of the data set for A = 5 (query length:
60s). For Chopin, the DNN (MAP: 0.937) outperforms PCA (MAP: 0.813) and comes close to brute
force (MAP: 0.974). For Mahler, PCA (MAP: 0.935) is slightly better than the DNN (MAP: 0.891).
For Schumann’s piano concerto, the DNN (MAP: 0.840) substantially outperforms PCA (MAP: 0.681).
In contrast to the Chopin results, this cannot be explained by overfitting, because neither Schumann
nor any piano concerto was part of the training set. Furthermore, we achieved an MAP value of 0.967
for the pieces by Brahms using the DNN approach. This is the best result among all composers for this
approach, even better than for the composers of the training set. This shows a certain generalizability
of the DNN embedding method.

In summary, our experiments show that low-dimensional embeddings need a longer query length
to be discriminative enough when using a larger data set. Note that a query length of 60 s is still a
medium duration compared to studies for related tasks. For example, in popular music cover song
retrieval, an entire recording is often used as a query—e.g., in the approach by Serra et al. [24] or the
work by Casey et al. [9] (using entire recordings as queries, though with a short shingle length of 3 s).
Furthermore, we showed that, in general, composers outside the training set do not necessarily lead to
worse retrieval results compared to composers contained in the training set. Thus, we can assume a
certain generalizability of our approach within the common practice period of Western classical music.

Table 9. Composer-wise evaluation results using the extended data set D3 for A = 5 (query length: 605s).

Queri Brute Force PCA (K =12) DNN (K = 12)

ueries P@l Pgr  MAP P@l Pr  MAP P@l Pr  MAP
Beethoven 160 0956 0921 0.941 0.800 0.598 0.666 0.838 0.633 0.698
Chopin 2930 0997 0943 0974 0973 0727 0813 0979 0.886 0.937
Vivaldi 210 1.000 0986 0.996 0971 0864 0918 0976 0.864 0.925
Brahms 240 1.000 0998 0.999 0996 0912 0.950 0992 0943 0.967
Mahler 200 0985 0976 0982 0960 0.900 0.935 0935 0.846 0.891
Mozart 200 1.000 0966 0.980 0935 0.639 0.704 0.880 0.600 0.670
Mussorgsky 660 0992 0937 0.960 0933 0703 0.773 0.865 0.697 0.756
Schumann 150 0993 0977 0983 0.800 0.630 0.681 0920 0.780 0.840
Tchaikovsky 420 0998 0984 0.990 0952 0776 0.839 0929 0788 0.838
Wagner 180 1.000 0956 0.975 0978 0.884 0.922 0989 0904 0.940
@ over queries 0995 0953 0.976 0956 0744 0.816 0951 0.835 0.886

6.4. Distance Analysis

In the previous section, we addressed issues of scalability and generalizability in relation to the
query length. Now we want to gain further insights into the challenges that occur in the retrieval
scenario. For example, beyond rank-based evaluation measures, we want to find out whether
particular compositions are easier or harder for retrieval than others, e.g., due to harmonic or melodic
characteristics. Recall from Section 3 that the ranks are computed on the basis of the distances that
appear between queries and documents. The retrieval problem is well behaved if the distances between
queries and documents of the same piece of music (relevant documents) are substantially smaller
than the distances between queries and documents of different pieces (non-relevant documents).
To understand how well behaved our problem is, we now analyze the distances that appear in the
nearest neighbor search.
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Recall that we have R € N relevant documents for a given query. We want to compare the
distances to the relevant documents with the distances to the non-relevant documents. Since most
of the non-relevant documents should be easily distinguishable from the relevant ones, we restrict
our analysis to the most difficult non-relevant documents for the task. To balance the numbers of
relevant and non-relevant documents, we only consider the R non-relevant documents with the
smallest distances to the given query. Small distances mean that these non-relevant documents have
the greatest confusion potential with the relevant documents. In the following, we analyze the relation
of the distributions of distances for relevant documents and non-relevant documents, respectively.
The relation between these distributions indicates how difficult the retrieval problem is. However,
the analysis of the relation between the distributions has to be taken with care, because versions with
different difficulties are included in a single distribution. For that reason, a strong separation of the
distributions is a sufficient condition for perfect retrieval results, but not a necessary condition. In other
words, even if the overlap between the distributions is large, the retrieval may still give excellent
results. In this sense, we regard the distributions only as weak indicators and only evaluate them
by visual inspection in the following. For a more statistically rigorous analysis of such distributions,
we refer to the study by Casey et al. [9].

Figure 8 shows such distributions for the brute-force approach, where the distributions of relevant
document distances appear in orange color and the distributions of non-relevant document distances
appear in blue color. The three rows show distributions for the composers that are part of both D, and
D5 (Beethoven, Chopin, and Vivaldi); the three columns correspond to different evaluation settings.
The left column refers to the smaller test set D, with A = 1 (query length: 205s), the middle column
refers to the extended test set D3 with A = 1 (query length: 20s), and the right column refers to
the extended test set D3 with A = 5 (query length: 60s). Considering Chopin in the left column,
we see that the center of the orange distribution is much further to the left than the blue distribution.
This means that the distances to the relevant documents are generally smaller than the distances to
the non-relevant documents. We also see a small overlap between both distributions, which is caused
by the fact that some distances to non-relevant documents are smaller than the greatest distances to
relevant documents. However, since the distances that lead to the overlap could relate to different
queries, we cannot conclude that this necessarily leads to confusion in the retrieval step. In general,
since the overlap is small, the distributions indicate that the retrieval problem is well behaved for
Chopin. For Beethoven and Vivaldi (left column), there is more overlap. This suggests that the Chopin
pieces are “easier” in the sense that they are more discriminative than other pieces. For the extended
data set (middle column), we see similar tendencies for all three composers. The blue distributions
come a bit closer to the orange ones with respect to their relation for the smaller data set (left column).
The orange distributions are identical to the ones for the smaller data set because the distances to the
relevant documents are the same. Only the distances to non-relevant documents decrease, because the
extended data set contains more non-relevant documents with possibly smaller distances. When using
a longer query length (A = 5, right column), the orange and blue distributions are better separated for
all three composers. The distances for the relevant documents only slightly increase because of the
longer query length, but the distances to the non-relevant documents increase strongly, which leads to
a better separation between the distributions.
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Figure 8. Distance distributions for three composers (Beethoven, Chopin, and Vivaldi) for the test set
D, with A = 1 (left column), the extended test set D3 with A = 1 (middle column), and the extended
test set D3 with A = 5 (right column). All distributions are computed for the brute-force approach
(K = 240). The orange color refers to distances for relevant documents and the blue color refers to
distances for non-relevant documents.

So far, we analyzed distributions for the brute-force approach to gain insights into the musical
complexity of the retrieval task. In the following, we want to understand the effect of the embedding
on the distributions. Figure 9 shows further distributions for the extended test set D3 and five selected
composers (Beethoven, Chopin, Vivaldi, Mahler, and Schumann). The left column refers to the
brute-force approach (K = 240) with A = 1 (query length: 20s), the middle column refers to the
DNN embedding approach (K = 12) with A = 1 (query length: 205s), and the right column refers
to the DNN embedding approach (K = 12) with A = 5 (query length: 60s). Note that the absolute
distances between the different approaches are not comparable, but the relations between orange and
blue distributions are meaningful. The distance measure is always the squared Euclidean distance,
cf. Equation (5). However, for the brute-force approach, we have sequences of 20 non-negative
¢>-normalized vectors of size 12, which are then flattened (distance range [0,40]). For the DNN
approach, we have real-valued ¢>-normalized vectors of size 12 (distance range [0, 4]).

For the brute-force approach (left column), the new composers of the extended data set (Mahler,
Schumann) behave similarly to the previous ones. The middle column reflects the weaker results for
the low-dimensional embeddings with a shorter query length. As expected, there are strong overlaps
between the orange and blue distributions. We can also see that there are some distances close to zero
in the orange distributions. This can be explained by the neural network training, where the anchor
and positive embeddings are pushed close together. However, the anchor and negative embeddings do
not seem to be pulled apart the same way. For Chopin, the most prominent composer of the training
set D1, the separation between the distributions is clearer. When using longer queries (A = 5, right
column), all orange and blue distributions are better separated. This holds for Chopin, where the
initial situation (A = 1) is better, as well as for composers with heavily overlapping distributions for
A = 1—e.g., Schumann.
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Figure 9. Distance distributions for five composers (Beethoven, Chopin, Vivaldi, Mahler, and
Schumann) for the brute-force approach (K = 240) with A = 1 (left column), the deep neural network
(DNN) approach (K = 12) with A = 1 (middle column), and the DNN approach (K = 12) with A =5
(right column). All distributions are computed for the extended test set D3. The orange color refers to
distances for relevant documents and the blue color refers to distances for non-relevant documents.

7. Conclusions

In this paper, we proposed two dimensionality reduction methods for learning compact
embeddings of audio shingles (short sequences of chroma vectors) for a cross-version retrieval scenario
in the context of Western classical music. We showed that our strategy of reducing entire shingles
results in better retrieval quality and faster speed compared to those of the previous approach of
reducing individual chroma vectors [12]. In our experiments, we greatly reduced the dimensionality
of shingles—from 240 to below 12—with only little loss in retrieval quality. Both PCA and neural
networks with triplet loss turned out to be effective for this task. In particular, we found that neural
networks are beneficial for small dimensionalities of between 6 and 12. Such small dimensions allow
for indexing by simple nearest neighbor trees, which could be the foundation of fast content-based
audio retrieval in large classical music databases where efficiency is an important issue. We also
showed that the database size has a strong impact on the retrieval results, especially when using
dimensionality reduction methods. Applying such techniques, one needs a longer query length to be
discriminative enough on a larger data set. Increasing the query length from 20 to 60's results in a
high retrieval accuracy, even for low-dimensional embeddings. We also showed that our approaches
generalize to composers of the common practice period of Western classical music which are not
contained in the training set. Furthermore, we analyzed the distances that appear in the nearest
neighbor search to gain insights into the challenges of the retrieval scenario. For example, we showed
that the distance distributions for different composers can differ strongly and give the indication
that certain composers or pieces are more difficult for retrieval than others. In future work, we will
investigate whether training on larger data sets can make the embeddings more robust for shorter query
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lengths. Furthermore, up to now, we used CENS features—which are state-of-the-art for the given
task—as the input. We want to investigate if good embeddings can be learned from less specialized
input features such as “raw” chroma features, spectrograms, or even waveforms.
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