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Abstract: A shape identification scheme was developed to determine the geometric shape of the
inaccessible parts of two-dimensional objects using the measured temperatures on their accessible
surfaces. The finite volume method was used to calculate the measured point’s temperature in the
forward problem. In the inversion problem, the decentralized fuzzy adaptive Proportion Integral
Differential (PID) control (DFAC) algorithm was used to compensate for the inversion boundary
by using the difference between the measurement temperature and the calculation temperature.
More accurate inversion results were obtained by introducing the weighted and synthesized normal
distribution. In the inversion problem, the effects of the initial guess, the number of measuring points,
and the measurement error were studied. The experiment calculation and analysis showed that the
methods adopted in this paper still maintain good validity and accuracy with different initial guesses
and decrease the number of measuring points and the existence of measurement errors.

Keywords: Inverse problem; Inverse Geometry Problem; heat transfer; Fuzzy Adaptive Control PID
algorithm; inverse heat conduction problem

1. Introduction

In studies of heat conduction problems (forward problems), the geometric shape of the studied
object, thermal conductivity, initial conditions, boundary conditions, and inner heat source are all
known. The temperature field in the domain can then be directly obtained using numerical heat
transfer analysis. Accordingly, if the temperature values at specific points in the system are known but
one or more of the initial conditions, boundary conditions, geometry, inner heat source, or thermal
conductivity are unknown, these unknowns’ details can be estimated using inverse problem methods.
There are inverse heat conduction problems (IHCPs) that are well known to be ill posed. The IHCP has
been successfully applied in many industrial and engineering fields [1–11].

Inverse geometry problems (IGPs) are considered to be inverse problems in which the geometric
shapes of some parts of a studied object are unknown and must be determined based on measured
temperature data in other parts of the object. In most cases, these temperatures are measured on the
outer surfaces of the solid body using a set of thermocouples or a thermal image scanning system.
These IGPs can be distinguished by three important aspects [12]: (1) defects in detection [13,14],
(2) shape design [15–17], and (3) identification of boundaries [18]. In this paper, we focus on the
boundary identification problem.
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IGPs, as one branch of IHCPs, have been studied by a significant number of scholars with
different optimized algorithms. The optimized algorithms, which are used to minimize the
objective function, are mainly divided into gradient- and non-gradient-based optimization algorithms.
Gradient-based optimization algorithms include the conjugate gradient method (CGM) [6,17,19,20], the
Levenberg–Marquardt method (L-MM), the steepest descent method (SDM), and the Gauss–Newton
algorithm. Non-gradient-based optimization algorithms include genetic algorithms (GAs), neural
network algorithms (NNAs), particle swarm optimization (PSO), the artificial bee colony algorithm
(ABCA), and so forth.

Huang et al. [19–21] used the BEM with CGM/LM to study irregular geometrical inverse problems.
The boundary identification problems they studied included frost growth on an evaporating tube and
irregular geometric boundary identification with time in two-dimensional unsteady heat conduction
problems. Fan et al. [18] determined the geometric shape of flat plate using the CGM. Fan et al. [22]
used the FEM and the CGM to study the internal defects of a two-dimensional pipeline and discussed
the effects of the initial guess and measurement errors on the inversion results. Li Bin et al. [23,24]
used the BEM and the CGM to study the geometrical shapes of the inner walls of a two-dimensional
cylinder. They discussed the influence on the inversion results of the inner wall shape of the initial
guess, the measurement error, and the number of measured points. Tian [25] solved a two-dimensional
steady-state thermal boundary problem using PSO. Xiao, Lin et al. [26,27] introduced an improved
PSO algorithm that can search for more solutions simultaneously, which makes it possible to give
an unbiased estimate that provides a better way to find the optimal solution in the search space.
Wang et al. [28] applied a hybrid CGM with SPSO to solve two-dimensional steady-state boundary
shape identification, which improved the convergence speed. Partridge et al. [29] applied the GA to
estimate the size and location of a dermatome based on the information of skin surface temperature.
Zhu [30] applied the CGM and GA to study the inversion of two-dimensional boundary conditions
and analyzed the shortcomings of the CGM and GA.

The CGM is currently the most popular gradient-based optimization algorithm. However, the
CGM, which is a local search algorithm, also has drawbacks, such as that it easily converges to a
locally optimal solution. The inversion result depends crucially on the initial guess. More importantly,
when the temperature measurement information is not complete or there is a large measurement
error, the inversion results obtained based on the gradient optimization method may deteriorate. In
addition, when the number of inversion points is larger, the calculation of the gradient matrix is
difficult and time consuming, which directly affects the engineering application of gradient-based
optimization algorithms.

Non-gradient-based optimization algorithms are usually global search algorithms and have good
adaptability to overcome the difficulty of gradient-based optimization algorithms easily converging to
a local minimum. Moreover, they do not involve the calculation of a Jacobian partial derivative matrix
in the inversion process. However, this class of methods often has high computational costs in the
search process and has a slow convergence rate in the latter stage, which limits its application in IHCPs.
In particular, when the measurement information is incomplete or there is a large measurement error,
the inversion results obtained according to such methods will also have some gaps.

Decentralized fuzzy inference was successfully applied to invert thermal conductivity by
Wang et al. [2], and the accuracy and stability of the algorithm were verified. There are few reports
on the application of the decentralized fuzzy adaptive PID control (DFAC) to IGPs. In this study, the
finite volume method (FVM) was used to solve the forward problem, the DFAC algorithm was used to
compensate for the initial guess of the estimate boundary in order to minimize the residual between
the calculated and the measured values of the temperature, and the true geometry boundary was
obtained. To study the effectiveness and stability of the proposed method, the effects of initial guesses,
measurement points, and measurement errors on the results were analyzed and discussed.
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2. Forward Problem Description (Mathematical Formulation)

The two-dimensional steady-state heat transfer system (domain Ω) is shown in Figure 1, which
was based on heat transfer from the walls of industrial equipment in real operational environments.
The shape of the accessible boundary Γ was given but the inaccessible inner boundary ΓI was unknown.

Figure 1. Physical model of inner wall boundary identification of thermal equipment.

The boundary conditions at x = 0 and x = L are adiabatic; the boundary condition of the unknown
boundary ΓI (y = f (x)) is the robin boundary condition with a fluid temperature of TI and a heat
transfer coefficient of hi. The boundary condition of Γ (y = 0) is a combination of convection and
radiation, where the ambient temperature is To, the heat transfer coefficient is To, and the absorptivity
is ε. The points marked “∆” are temperature sensor positions, assuming a uniform distribution of
M measurement points set on Γ. For the domain Ω′, which is the effective absorptivity model of the
physical environment (surface radiation), the boundary condition at Γr is constant temperature Tr and
the effective absorptivity is ε′.

Assuming that the material properties of the problem domain Ω are a constant thermal
conductivity k, Ω and Ω′ are gray bodies, and ε = ε′, the governing equation of this two-dimensional
steady-state heat conduction system can be expressed as

∂2T
∂x2 +

∂2T
∂y2 = 0 in Ω (1)

The boundary conditions are as follows:
When x = 0 and x = L, the heat conduction equation is

∂T
∂n

∣∣∣∣∣
x=0,x=L

= 0. (2)

When y = 0, the heat conduction equation is

− k
∂T
∂n

∣∣∣∣∣
y=0

= ho(To − Txi) + εσ′
(
Tr

4
− Txi

4
)
. (3)

Namely,

− k
∂T
∂n

∣∣∣∣∣
y=0

= ho(To − Txi) + hr(Tr − Txi) , i = 0, . . . , M xi ∈ Γ (4)

where the equivalent radiative heat transfer coefficient hr = ε σ′
(
Tr

2 + Txi
2
)
∗ Tr + Txi. The

Stefan–Boltzmann constant σ′ is 5.669 × 10−8 W/(m2k4).
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When y = f (x), the heat conduction equation is

− k
∂T
∂n

∣∣∣∣∣
y= f (x)

= hi(T − TI), x ∈ ΓI (5)

The FVM was used to solve the forward problem of Equations (1) and (2). To simplify the forward
problem and remeshing process for IGPs, the mesh grid of FVM was fixed to a small value such as
0.001 m.

3. The Inverse Problem

3.1. Objective Function of Inverse Problem

For the physical model of Figure 1, the inaccessible boundary ΓI is unknown, while everything
else in the forward problem is given. We assumed that M measurement points are evenly distributed
on the boundary Γ. There are

T(xi, 0) = Ti, i = 1, 2, . . . , M. (6)

Then, the geometry identification problem can be transformed to an extreme value problem, and
the objective function can be expressed as

J =
M∑

i=1

[
Ti − T∗i

]2
(7)

where T∗i is the measured temperature along the Γ, and each Ti is the calculated value of the forward
problem based on the inversion boundary of the unknown boundary. The solutions of IGPs were
obtained by minimizing the objective function (7) using the DFAC.

3.2. Stop Criterion

The stopping criterion of the iteration was selected as follows. If the problem contains no
measurement errors, the inverse iterative process will terminate when this inequality is satisfied:

J =
M∑

i=1

[
Ti − T∗i

]2
< εobj (8)

where εobj is a small positive number to be specified as a solution parameter, such as 0.001.
The known boundary temperatures are measured and always contain measurement errors in

practical engineering applications. Therefore, we did not expect the objective function (Equation (12))
to be equal to zero at the final iteration. We assumed that the measurement temperature was composed
of the exact temperature and random error, as

T∗i = Tex
i +ωσ, i = 1, 2, . . . , M (9)

where σ is the maximum error of the measured temperature, and ω is a normal distribution random
variable with zero mean and unit standard variation.

3.3. Decentralized Fuzzy Adaptive PID Control Method

3.3.1. Decentralized Fuzzy Adaptive PID Control Inversion System

The decentralized fuzzy adaptive PID control inversion system for IGPs was established as shown
Figure 2. Then, a multiple-input multiple-output decentralized fuzzy adaptive PID control system was
established. The system included M one-dimensional fuzzy adaptive PID control units (FACUs). ∆Ti,
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which is difference between the calculated temperature and the measured temperature, was used to
correspondingly compensate for the guess of the boundary. ∆Ti is

∆Ti = Ti − T∗i , i = 1, 2, . . . , M (10)

where Ti
* is the measured temperature at the ith measurement point, and Ti is the calculated temperature

by solving the forward problem.

Figure 2. Decentralized fuzzy adaptive Proportion Integral Differential (PID) control inversion system.

∆Ti is the input value of FACUi, and the components ∆ui are obtained. Then, after weighting
and synthesizing, the compensations of ∆yit,j are generated, and the new inverse boundary yit+1,j is
updated as follows:

yit+1, j = yit, j + ∆yit, j, j = 1, 2, . . . , N (11)

where it denotes the iteration number, and N represents the unknown boundary discrete points.

3.3.2. Fuzzy Adaptive Control PID Units

Each independent measurement point is a single FACU. The FACU model is shown in Figure 3.

Figure 3. Fuzzy adaptive PID control system model.

The measurement and inverted information in the heat conduction system have certain spatial
distribution characteristics. Therefore, the inverse heat conduction problem can also be regarded
as a kind of feedback control problem, that is, a closed-loop system, where the observation results
(measured temperature) of the system are the setting value, the parameters to be solved are the
controlled object, and the calculated temperature of the positive problem is the sensor measurement
information. e = ∆T is obtained according to Equation (10); if ∆T > 0, in order to eliminate or reduce
the deviation, it is necessary to increase y; if ∆T < 0, to eliminate or reduce the deviation, it is necessary
to decrease y. Then, ∆u is defined as follows:

∆u = kp ∆T + ki∆
it∑

h=0

∆T (12)
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where kp and ki are the feedback factor, and kp and ki are adaptive updates by fuzzy inference.

3.3.3. Weighting and Synthesizing Scheme

∆ui is the compensation for the boundary of all nodes at an unknown boundary when only the ith
measured temperature is considered. Actually, the value of all nodes at the unknown boundary has a
different effect on the temperature of all measured points. So, the whole measured temperature should
be considered when compensating for the unknown boundary implementation. The weighting and
synthesizing scheme are performed by Equation (13):

∆y1

∆y2
...

∆yN

 =


α1,1 α1,2 . . . α1,M
α2,1 α2,2 . . . α2,M

...
... . . .

...
αN,1 αN,2 . . . αN,M




∆u1

∆u2
...

∆uM

 (13)

where αj,i is the weighting factor, which reflects the influence of jth discrete point of f(x) on the ith
temperature at the measured point; the larger αj,i is, the greater the influence. Based on the normal
distribution weighting method, the weighting coefficient αj,i is determined by Equation (14):

α j,i =
exp

[
−(

∣∣∣x j−xi
∣∣∣

∅ )2
]

∑M
i exp

[
−(

∣∣∣x j−xi
∣∣∣

∅ )2
] , j = 1, 2, . . . , N (14)

where xi, xj are the x-axis values of the inversion and measurement points, and Φ is the variance
coefficient of normal distribution. The largerΦ is, the smoother the distribution curve of the weighting
coefficient is, the more measurement information is effectively used in the inversion process, but the
slower the inversion speed is; the smaller Φ is, the more centralized the distribution of the weighting
coefficient is, the less measurement information is effectively used, but the faster the inversion speed is.

3.4. Implementation of Inverse Geometry Problem

The process for solving the IGPs is as follows:

(1) Initialize the guess of the unknown boundary and set the iterative time it = 0.
(2) Solve the forward problem by FVM: solve Equations (1) and (2) using the FVM and get the

calculated temperature Ti at the inspection surface.
(3) Calculate the objective function Equation (7) and judge if the specified stopping criterion is

satisfied (Equation (8)). If not, go to step 4.
(4) Calculate the optimal positions yi

n+1 of the unknown boundary according to the temperature
measurement points’ coordinates using Equation (11).

(5) Set it = it + 1 and repeat steps 2–5 until the stop criterion is satisfied.

4. Experiment and Analysis

In the experiment, a two-dimensional flat plate furnace wall was considered, as shown in Figure 1.
The boundary conditions were given except that the inaccessible boundary was unknown. To = 20 ◦C,
ho = 10 W/

(
m2K

)
, Ti = 150 ◦C, hi = 1000 W/

(
m2K

)
, and ε = ε′ = 0.8. The thermal conductivity

k = 5 W/(m·K), c = 500 KJ/(Kg·K), and ρ = 7930 Kg/
(
m3

)
. The measurement points M were located

evenly spaced along the accessible boundary.
The function of the unknown boundary was defined as follows:
Case 1:

y = f (x) = 0.1 +
2
9

x, x ∈ [0, 0.9] (15)
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Case 2:
y = f (x) = 0.2− 0.1 ∗ sin

(2πx
0.9

)
, xε[0, 0.9] (16)

4.1. Impacts of Initial Guess

The measurement error σ = 0.0 ◦C, and the measurement point was taken as M = 41. The initial
guesses were set as 0.1, 0.2, and 0.3 for cases 1 and 2. The inversion results of the different initial
guesses are shown in Figures 4 and 5, and the average relative error is shown in Table 1.

Figure 4. Identification results of different initial guess boundaries of case 1.

Figure 5. Identification results of different initial guess boundaries of case 2.

Table 1. Impacts of initial guess of cases 1 and 2.

Initial Guess (m) Case 1 Average Relative Error (%) Case 2 Average Relative Error (%)

0.1 0.92 0.95
0.2 0.95 1.04
0.3 0.89 1.63

Table 1 and Figures 4 and 5 show that the identification results were insensitive to the initial
guesses of the unknown boundaries.
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4.2. Impact of the Number of Measurement Points

The measurement error was σ = 0.1 ◦C, and the measurement points were taken as M = 11, 21,
and 41. The inversion results of different numbers of measurement points are shown in Figures 6 and 7,
and the average relative error is shown in Table 2.

Figure 6. Identification results of different measurement points for inversion results of case 1.

Figure 7. Identification results of different measurement points for inversion results of case 2.

Table 2. Impacts of different measurement points of cases 1 and 2.

Measurement Points Case 1 Average Relative Error (%) Case 2 Average Relative Error (%)

11 1.6 2.5
21 1.1 1.6
41 1.0 1.4

The results are as follows:

Case 1: When M = 11, the average relative error was 1.6%; when M = 21, the average relative error was
1.1%; and when M = 41, the average relative error was 1.0%.

Case 2: When M = 11, the average relative error was 2.5%; when M = 21, the average relative error was
1.6%; and when M = 41, the average relative error was 1.4%.
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By increasing the measuring points, the average relative error decreased and the inversion
accuracy improved.

4.3. Impact of Measurement Error

The measurement point was set as M = 41, and the initial guess = 0.1 m. Impacts of different
measurement errors (σ = 0.0, 0.1, 0.5, 1, and 2 ◦C for case 1 and σ = 0.0, 0.1, 0.5, and 1 ◦C for case 2)
were analyzed. The inversion results of different measurement errors are shown in Figures 8 and 9.

Figure 8. Identification results of different measurement errors for inversion results of case 1.

Figure 9. Identification results of different measurement errors for inversion results of case 2.

The results are as follows:
Case 1:

• when σ = 0.0 ◦C, the average relative error was 0.92%;
• when σ = 0.1 ◦C, the average relative error was 1.03%;
• when σ = 0.5 ◦C, the average relative error was 2.35%;
• when σ = 1.0 ◦C, the average relative error was 3.03%;
• when σ = 2.0 ◦C, the average relative error was 4.40%.
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Case 2:

• when σ = 0.0 ◦C, the average relative error was 0.95%;
• when σ = 0.5 ◦C, the average relative error was 2.31%;
• when σ = 1.0 ◦C, the average relative error was 2.79%.

The results showed that when there were some measurement errors, the inversion results were
still satisfactory. When the measurement error was less than 1 ◦C, the accuracy of the inversion solution
could still meet the general engineering requirements, and the larger the measurement error, the more
distorted the inversion results. Therefore, it was beneficial to improve the inversion results to improve
the measurement accuracy as much as possible in the experiment.

5. Conclusions

In this study, the decentralized fuzzy adaptive PID control algorithm and finite volume
method were used for inversion of the unknown boundary in a two-dimensional steady-state heat
transfer system. Several effect factors were considered, involving different initial guess boundaries,
measurement points, and measurement errors. The results of the experiment showed that identification
results can be satisfactory even if there are measurement errors. Also, the identification results are
insensitive to the initial guesses of the unknown boundaries and the number of measurement points.
Through the calculation and analysis of the experiment, the stability and accuracy of the boundary
inversion algorithm were verified.
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