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Abstract: In this paper we build a pragmatic model on competition in oligopoly markets. To achieve
this goal, we use an approach based on studying the response functions of each market participant,
thus making it possible to address both Cournot and Bertrand industrial structures with a unified
formal method. In contrast to the restrictive theoretical constructs of duopoly equilibrium, our study
is able to account for real-world limitations like minimal sustainable production levels and exclusive
access to certain resources. We prove and demonstrate that by using carefully constructed response
functions it is possible to build and calibrate a model that reflects different competitive strategies
used in extremely concentrated markets. The response functions approach makes it also possible
to take into consideration different barriers to entry. By fitting to the response functions rather
than the profit maximization of the payoff functions problem we alter the classical optimization
problem to a problem of coupled fixed points, which has the benefit that considering corner optimum,
corner equilibria and convexity condition of the payoff function can be skipped.

Keywords: duopoly equilibrium; response functions; imperfect competition; entry barriers

JEL Classification: C02; D43; C62

1. Introduction

Markets dominated by a small number of players are getting more common than ever. This process
has been fueled by industry consolidation, rise in international expansion and natural desire to benefit
from economies in scale, all resulting in a number of mergers and acquisitions that leave few companies
dominating a particular market. Cournot in 1838, in Cournot (1897), was the first to build a complete
model of a market where few players control the price and supply quantity of the goods being
traded. The original model is able to correctly estimate equilibrium conditions provided that market
participants comply with the following requirements:

(i) There are two players each with sufficient market power to affect the price of the goods
being sold;

(ii) There is no product differentiation;
(iii) Decisions on production output are taken simultaneously;
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(iv) There is no cooperation between market participants and each one reacts in a rational way,
seeking to maximize its profit.

If the two companies are not necessarily rational, a different solution can be found as for example
in (Rubinstein 2019; Ueda 2019).

Cournot’s approach is known nowadays as a static oligopoly model, which means that each
company, participating in the oligopoly market considers the production of others to remain fixed at
least for a given period of time, i.e., player i assumes that in time t the other participants produce the
quantities that they have produced in time t− 1. In the dynamic case, each company attempts to guess
what change of production the other players will make in time t Cellini and Lambertini (2004).

Cournot’s duopoly model can be divided into two kinds—symmetric and asymmetric Sinha (2016).
In the latter case, we consider an efficient company and a less-efficient one, producing homogeneous
goods. Both are asymmetric in terms of their pre-innovation production costs. While both companies
may have a fixed marginal cost of production, the efficient one has a lower cost c1, and the less-efficient
one has a higher cost c2—where c1 < c2. Companies still compete in quantities, as in Cournot’s
duopoly. In the symmetric case both firms are equally efficient. It is important to note under which
case a particular market falls, because asymmetric oligopoly may also end up dealing with products
that are similar but of different quality. This is a question that falls beyond the scope of our study and
we shall assume that there is no significant difference in the quality characteristics of the products
produced and sold by each market participant.

Considering the demand, there are two distinct cases that have to be analyzed:

(i) Demand is known and does not change. In this case the Cournot’s duopoly solution applies as
it is.

(ii) Demand may change over time. In the case, it is possible to reach a situation in which there is
uncertainty about market equilibrium—as in Zapata et al. (2019).

We analyze a special case of Cournot’s duopoly in which the participating companies face different
market demand in each of the scenarios.

A generalization of Cournot’s model is the Stackelberg duopoly Anderson and Engers (1992),
where one firm is a leader and the other is a follower. This model is applicable when firms choose their
output sequentially and not simultaneously. Cournot’s model and equilibrium are in fact the direct
predecessor of Nash’s equilibrium point. Bertrand has introduced another kind of a duopoly model,
where firms compete on prices rather than on outputs.

Contemporary markets can be subject to different regulations and barriers. Thus there are
constraints applicable that influence the stability of market equilibrium and time required to reach it.
We can summarize these constraints as:

(a) The number of market participants;

Starting with the duopoly case in Cournot’s seminal work Cournot (1897) it is important to take
into account the scalability of suggested solutions, due to the fact that there are various market
structures in contemporary economics with high concentration and limited number of players.

(b) The interdependence, availability, and access to information;

Companies operating in an environment with high concentration ratios (as measured by share
of the largest participants compared to the total market volume) cannot take decisions in a
completely isolated way. They need to take into account the effects their decisions have on the
other participants, as well as their imminent reaction.

(c) The price and non-price competition terms;

In order to account for the actual behavior of companies operating under oligopoly markets,
it is necessary to take into consideration the non-price competition. In some cases, product
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differentiation may not exist (for example in the case of raw materials) but there may be loyalty
schemes or aggressive advertisement campaigns that affect the equilibrium in an indirect way.

(d) Consistency of behavior and time dependence of market conditions;

Solutions that consider time-dependency of company behavior and market
changes Barbagallo and Cojocaru (2009) and Chan et al. (2018) are better able to describe
contemporary oligopoly markets.

(e) Market entry and exit barriers;

Entry and exit barriers can directly influence the number of companies operating on the
oligopoly market. They also play an important role in shaping the decisions of each participant
as barriers can be considered as additional limiting/boundary conditions.

(f) Goals and profit maximization behavior;

We assume that profit maximization is the sole purpose of all market participants in the oligopoly
markets. It is possible that there are periods of time, or even specific markets in which this is
not the case (for example as described in Klemm 2004) and the resulting equilibrium is different.
In the long term, economic agents would need to go back to profit maximization as they may be
otherwise subject to acquisition or change in management.

(g) Linear and non-linear changes in market conditions and firm behavior.

Taking into consideration these critical factors is very important in order to create a formal
description of oligopoly markets that is adequate to the reality we live in.

Restraints could emerge as milestones at every production stage, at a different scale, size and
intensity. Moreover, each of the restraints could influence each other, in a different direction and with
different strength, and in parallel they could be influenced by the introduced production system and
the existing market environment. The market is a vital substance, and the environment in which it
functions and “breathes” would challenge the play of both actors, and could perform various scenarios
of their action. Hence, these influences could affect the preliminary set up goals and price-polices of
each of the observed players.

An extensive study on the oligopoly markets can be found in Bischi et al. (2010);
Matsumoto and Szidarovszky (2018); Okuguchi (1976); Okuguchi and Szidarovszky (1990).
Some recent results on Oligopoly markets are Alavifard et al. (2020); Geraskin (2020);
Siegert and Ulbricht (2020); Strandholm (2020); Xiao and Wang (2020) and especially in duopoly
markets Baik and Lee (2020); Liu and Sun (2020); Wang et al. (2020). All these items cannot be
exhausted, even the published research on the subject in 2020. It is seen from the cited items that
different techniques can be applied. We will present a different approach for the investigation of
equilibrium in duopoly markets, based on the response functions, cyclic maps and coupled fixed
(or best proximity) points.

2. Modeling Real-World Oligopoly Markets

Let us consider two companies that offer identical goods or services. These could range from
health-care in a specific region to simple grocery delivery in a neighborhood. While the assumption for
having homogeneous goods is quite restrictive, it helps to start with a simple model and then extend
it by adding non-price competition and brand loyalty, to name a few extra factors. In support of the
approach we have used, it should be noted that oligopoly markets with heterogeneous goods can be
analyzed with the same instruments as the ones we employ. The only requirement is to define and
estimate parameters of the response function of each market participant. In the case of identical goods
it is much easier to do this. For complex products that include a variety of factors, such as positioning
through non-price attributes, response functions may be harder to define and are often composite ones.
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To investigate the existence and uniqueness of market equilibrium we employ game theory
terminology. This is supported by the notion that company profits depend on its own output, as well
as on the production of the other market participants. Under duopoly markets the result fits naturally
into game theory basic cases of strategic interaction. Thus the static Cournot’s oligopoly is a fully
rational game, based on the following assumptions:

(i) Each company, in taking its optimal production decision rationally, must know before hand all
its rival’s production and both firms should take their decisions simultaneously;

(ii) Each firm has a perfect knowledge of the market demand function.

The dynamic model is a game in which case restrictive assumption (i) is replaced by some kind of
expectation on the rivals’ outputs. While the simplest way is to use naive expectation that production
or each market participant will remain at its most recent level, it is also possible to impose more
realistic views as in McManus and Quandt (1961); Teocharis (1960). As a starting point, let us consider
a situation in which there are two players ”A“ and ”B“ producing at moment n + 1 goods F(xn, yn)

and f (xn, yn), provided that at moment n they have produced xn and yn respectively. Such general
notation does not yet imply anything regarding market participants. Depending on the functions
F(xn, yn) and f (xn, yn) the model can be static or dynamic, as well as symmetric or asymmetric.

However in order to have market equilibrium, the pair (x, y) should satisfy the equations
x = F(x, y) and y = f (x, y).

Thus we will search for sufficient conditions, depending only on the response functions, that will
ensure the existence and uniqueness of the equilibrium pair. Compared to the classical approaches in
oligopoly markets, this way has several important advantages:

• It is possible to account for protective capacity present in contemporary production environments,
which allows to have minimal (or even zero) marginal costs within some output ranges;

• It is possible to assess whether the marker can reach equilibrium, regardless of the initial position;
• And finally it is possible to assess the time necessary to reach equilibrium and whether this

situation can remain stable.

3. The Basic Model

Let us first start with a duopoly model Friedman (2007) and Smith (1987)—two companies
competing for the same consumers and striving to meet the demand with overall production of
Z = x+ y. The market price is defined as P(Z) = P(x+ y), which is the inverse of the demand function.
Market players have cost functions c1(x) and c2(y), respectively. Assuming that both firms are acting
rationally, the profit functions are Π1(x, y) = xP(x + y) − c1(x) and Π2(x, y) = yP(x + y) − c2(y)
of the first and the second firm, respectively. The goal of each company is to maximize its profit,
i.e., max{Π1(x, y) : x, assuming that y is fixed} and max{Π2(x, y) : y, assuming that x is fixed}.
Provided that functions P and ci, i = 1, 2 are differentiable, we get the equations∣∣∣∣∣

∂Π1(x,y)
∂x = P(x + y) + xP′(x + y)− c′1(x) = 0

∂Π2(x,y)
∂y = P(x + y) + yP′(x + y)− c′2(y) = 0.

(1)

The solution of (1) presents the equilibrium pair of production in the duopoly
market Friedman (2007); Smith (1987).

Often Equations (1) have solutions in the form of x = b1(y) and y = b2(x), which are called
response functions (Friedman 2007).
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It may turn out difficult or impossible to solve (1) thus it is often advised to search for an
approximate solution. Another drawback, when searching for an approximate solution is that it may
not be stable. Fortunately we can find an implicit formula for the response function in (1) i.e.,

x =
c′1(x)− P(x + y)

P′(x + y)
= F(x, y) and y =

c′2(y)− P(x + y)
P′(x + y)

= f (x, y).

It is still possible that we may end up with response functions, that do not lead to maximization
of the profit Π. As it is often assumed, each participant response depends on its own production
level and that of the pother payers. For example, if at a moment n the output quantities are (xn, yn),
and the first player changes its productions to xn+1 = F(xn, yn), then the second one will also change
its output to yn+1 = f (xn, yn). We will define the iterated sequence {(xn, yn)}∞

n=1 in the Appendix A
in Definition A5. We have an equilibrium if there are two productions x and y, such that x = F(x, y)
and y = f (x, y). The functions Πi are called payoff functions. To ensure that the solutions of (1)
will present a maximization of the payoff functions, a sufficient condition is that Πi are concave
functions Bischi et al. (2010); Matsumoto and Szidarovszky (2018); Okuguchi and Szidarovszky (1990),
by using of response function we alter the maximization problem into a coupled fixed point one
thus all assumptions of concavity and differentiability can be skipped. The problem of solving the
equations x = F(x, y) and y = f (x, y) is the problem of finding coupled fixed points for an ordered
pair of maps (F, f ) Guo and Lakshmikantham (1987). Yet an important limitation may be that players
cannot change the output too fast and thus the player may not perform to maximize their profits.

Focusing on response functions, allows to put together Cournot and Bertand models. Indeed
let the first company have reaction be F(X, Y) and the second one f (X, Y), where X = (x, p) and
Y = (y, q). Here x and y denote the output quantity and (p, q) are the prices set by players. In this case
companies can compete in terms of both price and quantity.

4. Existence and Uniqueness in Duopoly Models

In the case of two major players taking all or most of the market, we need to consider special
cases depending on intersection of production set. The situation in which production sets of both
companies have an empty intersection may seem extreme, but it is not impossible. For example if
one of the companies is working at a very large scale it may simply be impractical to sustain a low
level of output. On the other hand, if the company is just too small to undertake large projects it
may also happen that expanding its production beyond a certain limit is not feasible. Therefore, it is
possible that long term contracts or technical issues prohibit a certain type of action and impose special
limitations. The mathematical justifications of the results are presented in Appendix A.

4.1. Players’ Production Sets Have a Nonempty Intersection

Assumption 1. Let there be a duopoly market, satisfying the following assumptions:

(1) The two firms are producing homogeneous goods that are perfect substitutes.
(2) The first firm can produce qualities from the set Ax and the second firm can produce qualities from the set

Ay, where Ax and Ay be closed, nonempty subsets of a complete metric space (X, ρ).
(3) Let there exist a closed subset D ⊆ Ax × Ay and maps F : D → Ax and f : D → Ay, such that

(F(x, y), f (x, y)) ⊆ D for every (x, y) ∈ D, be the response functions for firm one and two respectively.
(4) Let there exist α, β, γ, δ > 0, max{α + γ, β + δ} < 1, such that the inequality

ρ(F(x, y), F(u, v)) + ρ( f (z, w), f (t, s)) ≤ αρ(x, u) + βρ(y, v) + γρ(z, t) + δρ(w, s) (2)

holds for all (x, y), (u, v), (z, w), (t, s) ∈ Ax × Ay.

Then
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(I) There exists a unique pair (ξ, η) in D, such that ξ = F(ξ, η) and η = f (ξ, η), i.e., a market
equilibrium pair. Moreover the iteration sequences {xn}∞

n=0 and {yn}∞
n=0, defined in

Definition A5 converge to ξ and η respectively.
(II) A priori error estimates hold

max {ρ(xn, ξ), ρ(yn, η)} ≤ kn

1− k
(ρ(x1, x0) + ρ(y1, y0)); (3)

(III) A posteriori error estimates hold

max {ρ(xn, ξ), ρ(yn, η)} ≤ k
1− k

(ρ(xn−1, xn) + ρ(yn−1, yn)); (4)

(IV) The rate of convergence for the sequences of successive iterations is given by

ρ(xn, ξ) + ρ(yn, η) ≤ k (ρ(xn−1, ξ) + (yn−1, η)) , (5)

where k = max{α + γ, β + δ}.

If in addition f (x.y) = F(y, x) then the coupled fixed point (x, y) satisfies x = y.
The proof is a direct consequence of Theorem A1.

Remark 1. Let the two players have one and the same response function. That is if player one has a production
x and player two has a production y then the first player reaction will be F(x, y) and the second player reaction
will be f (x, y) = F(y, x). It follows that the equilibrium pair (x, y) will satisfy x = y, i.e., both firms will have
equal production. This means that if both firms have one and the same technology, one and the same knowledge
on the market that will affect to one and the same response functions, then the equilibrium will be reached at the
level of equal productions.

4.2. Equilibrium, When Players’ Production Sets Have a Nonempty Intersection

Let us consider a duopoly market. Let the two firms produce qualities from the set Ax

and the second firm can produce qualities from the set Ay, where Ax and Ay are nonempty
subsets of a complete metric space (X, ρ). Any of the firms can produce a bundle of products
x = (x1, x2, . . . xn) ∈ X. Assumption 1 ensures the existence and uniqueness of the production bundles
(x1, x2, . . . xn), (y1, y2, . . . yn) ∈ X of n-goods, that present the equilibrium in a duopoly economy.

4.2.1. A Linear Case, When Each Player Is Producing a Single Product, Goods Being Perfect Substitutes

Let us consider a market with two competing firms, each firm producing just one product, and both
goods are perfect substitutes. Let the two firms produce quantities x ∈ Ax and y ∈ Ay, respectively,
where Ax, Ay ⊂ [0,+∞) and (X, ρ) be the complete metric space (R, | · |). Let us consider the response
functions of player one F(x, y) = a− s− px− qy and player two f (x, y) = a− r− µy− νx, where

(1) a, s, r, p, q, µ, ν > 0, s < a, r < a, max{p + µ, q + ν} < 1

(2) Ax =
[
0, a−s

p

]
∩
[
0, a−r

µ

]
and Ay =

[
0, a−s

q

]
∩
[
0, a−r

ν

]
(3) D can be defined in three ways:

(3a) D =
[
0, aµ−aq−sµ−qr

µp−νq

]
×
[
0, ap−aν+sν−pr

µp−νq

]
, provided that

a− s ≤ aµ− aq− sµ− qr
µp− νq

and a− r ≤ ap− aν + sν− pr
µp− νq

(3b) D = [0, a− s]× [0, a− r], provided that µr + νs− aµ− aν + a− r > 0 and ps + qr− ap−
aq + a− s > 0
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(3c) D =


0 ≤ x ≤ a− s

p

0 ≤ y ≤ a− r− µx
ν

.

It is easy to check that F : D ⊂ Ax × Ay → Ax, f : D ⊂ Ax × Ay → Ay and (F(D), f (D)) ⊆ D.
Indeed let us consider case (3a). From the assumptions that a, s, r, p, q, µ, ν > 0 we get

F(x, y) ≤ F(0, 0) = a− s ≤ aµ− aq + sµ− qr
µp− νq

,

F(x, y) ≥ F
(

aµ− aq + sµ− qr
µp− νq

,
ap− aν + sν− pr

µp− νq

)
= 0,

and
f (x, y) ≤ f (0, 0) = a− r ≤ ap− aν + sν− pr

µp− νq
,

f (x, y) ≥ f
(

aµ− aq + sµ− qr
µp− νq

,
ap− aν + sν− pr

µp− νq

)
= 0.

Therefore F : D → Ax, f : D → Ay and (F(D), f (D)) ⊆ D.
It can be proven in a similar fashion that (F(D), f (D)) ⊆ D and for the cases (3b) and (3c).
From the inequalities

|F(x, y)− F(u, v)| = |p(x− u) + q(y− v)| ≤ p|x− u|+ q|y− v|

and
| f (z, w)− f (t, s)| = |µ(z− t) + ν(w− s)| ≤ µ|z− t|+ ν|w− s|

it follows that

|F(x, y)− F(u, v)|+ | f (z, w)− f (t, s)| ≤ p|x− u|+ q|y− v|+ µ|z− t|+ ν|w− s|

and thus the ordered pair (F, f ) satisfies Assumption 1 with constants α = p, β = q, γ = µ, δ = ν,
because max{p + µ, q + ν} < 0. Consequently there exists an equilibrium pair (x, y) and for any
initial start in the economy the iterated sequences (xn, yn) converge to the market equilibrium (x, y).
The equilibrium pair is

x =
aµ− aq− sµ + qr + a− s

µp− νq + µ + p + 1
, y =

ap− aν + sν− pr− a + r
µp− νq + µ + p + 1

.

Let us consider a particular case: a = 100, s = 20, r = 30, p = 1
2 , q = 1

8 , µ = 1
3 , ν = 1

6 .
Values selected for this case are arbitrarily chosen with only general conditions in mind. However,

in an actual situation the values of p, q, µ and ν reflect the actual management and marketing policy of
the market participants.

In this case F(x, y) = 80− x
2 −

y
8 , f (x, y) = 70− x

3 −
y
6 , Ax = [0, 210], Ay = [0, 320]. The subset D

can be considered either D = [0, 110]× [0, 200] (3a) or D = {0 ≤ x ≤ 160, 0 ≤ y ≤ 420− 2x} (3c) (see
Figure 1).

We get in this case that the equilibrium pair of the production of the two firms is (49.51, 45.85)
and the total production will be x + y = 95.36. Values of the iterated sequence are presented in Table 1
and numbers of iterations needed for the a priori and a posteriori error estimate are shown in Table 2
and Table 3, respectively.



Adm. Sci. 2020, 10, 70 8 of 32

Figure 1. The set D in the case (3c).

Table 1. Values of the iterated sequence (xn, yn) if started with (40, 60).

n 0 1 2 5 10 20 30

xn 40 52.5 47.92 49.85 49.49 49.51205 49.51219

yn 60 46.6 44.72 46.11 45.83 45.85354 45.85366

Table 2. Number n of iterations needed by the a priori estimate if stared with (100, 20).

ε 0.1 0.01 0.001 0.0001 0.00001

n 41 53 66 79 91

Table 3. Number n of iterations needed by the a posteriori estimate if started with (100, 20).

ε 0.1 0.01 0.001 0.0001 0.00001

n 14 18 23 27 32

To get the data to fill the above tables and the tables in the forthcoming examples we use Maple
2016 software.

Let us consider a classic example, where the price function is linear and so are the cost functions
of both players. Assuming the feasible market price is defined by P(x, y) = 120− x− y, it is expected
that additional output x from the first company as well as extra production y of the second one will
cause a decrease in prices. Therefore under equilibrium conditions x + y will be the total production
of the two firms and it will also be reflected in prices. Let the two firms have cost functions equal to
30x and 20y, respectively. The profit of the first one is

Π1(x, y) = xP(x, y)− 30x = x(120− x− y)− 30x = 90x− x2 − xy

and the profit of the second one is

Π2(x, y) = yP(x, y)− 20y = y(120− x− y)− 20y = 100y− y2 − xy.



Adm. Sci. 2020, 10, 70 9 of 32

Following the Cournot model after solving (1) we get the response functions F : D → Ax and
f : D → Ay of the two firms F(y) = 90−y

2 and f (x) = 100−x
2 , where Ay = [0, 90], Ax = [0, 100] and

D = Ax × Ay. Consequently it is a special case of the general example with a = 60, s = 15, r = 10,
p = 0, q = 1

2 , µ = 1
2 , ν = 0.

It is possible to find the constants in this case with the help of some Computer Algebra System
(CAS), such as Maple, MathLab, MathCad or Mathematica. We will illustrate it by using Maple 2016.
Writing the command

solve
({∣∣∣∣90− y

2
− 90− v

2

∣∣∣∣ ≤ p|y− v|, 0 ≤ y ≤ 90, 0 ≤ v ≤ 90
}

, a
)

;

the software returns that p ≥ 1
2 . The same result can be obtained and for the inequality | f (x)− f (u)| ≤

µ|x− u|. Unfortunately when trying to solve the forthcoming more complicated examples Maple was
not of good use, therefore we have preferred to use some of the classical inequalities and to make the
calculations by hand.

Thus there exists an equilibrium pair (x, y) and for any initial start in the economy where
iterated sequences (xn, yn) converge to the market equilibrium (x, y). We estimate in this case that the
equilibrium pair of the production is (80/3, 110/3) and the total output will be a = 190/3.

Let us assume that the two firms have started with output x0 = 40 and y0 = 60. In the following
table (see Table 4) we present how, depending on the response functions F and f the output of each
company will change.

Table 4. Values of the iterated sequence (xn, yn) if started with (40, 60).

n 0 1 2 5 10 20

xn 40 15 30.0 25.94 26.68 26.67

yn 60 30 42.5 36.25 36.69 36.67

Let us assume that the two firms have started from productions x0 = 100 and y0 = 20. In the next
table (see Table 5) we present how using the response functions F and f the productions of the two
firms will change.

Table 5. Values of the iterated sequence (xn, yn) if started with (100, 20).

n 0 1 2 5 10 20

xn 100 35 45.0 27.19 26.74 26.67

yn 20 0 32.5 34.38 36.65 36.67

Numbers of iterations needed for the a priori and a posteriori error estimate are shown in Table 6
and Table 7 are presented in the case (x0 = 100, y0 = 20), respectively.

Table 6. Number n of iterations needed by the a priori estimate if started with (100, 20).

ε 0.1 0.01 0.001 0.0001 0.00001

n 11 15 18 21 25

Table 7. Number n of iterations needed by the a posteriori estimate if started with (100, 20).

ε 0.1 0.01 0.001 0.0001 0.00001

n 11 15 18 21 25
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4.2.2. A Nonlinear Case, When Each Player Is Producing a Single Product, While Goods Sold Are
Perfect Substitutes

Let us consider a market with two competing firms, producing perfect substitute products with
quantities x ∈ Ax and y ∈ Ay, respectively, where Ax, Ay ⊂ [0,+∞) and (X, ρ) is the complete metric
space (R, | · |). Let us assume that each firm produces at least one item, i.e., x, y ≥ 1. Let us consider the

response functions of player one F(x, y) = 90−x− y
8−
√

y
2

2 and player two f (x, y) = 100− x
4−y−

√
x

3 , where

1. Ax = [1, 44] and Ay = [1, 33]
2. D can be defined as D = Ax × Ay

It is easy to check that F : D = Ax × Ay → Ax, f : D = Ax × Ay → Ay and (F(D), f (D)) ⊆ D.
Indeed, we get

F(x, y) ≤ F(1, 1) = 44, F(x, y) ≥ F (44, 33) = 13.31

and
f (x, y) ≤ f (1, 1) = 32.33 < 33, f (x, y) ≥ f (44, 33) = 5.46

and therefore F : D → Ax, f : D → Ay and (F(D), f (D)) ⊆ D.
There exists ξ between the points y and v so that there holds

∣∣√y−
√

v
∣∣ = 1

2
√

ξ
|y− v|. From the

assumption that y, v ≥ 1 we get that
∣∣√y−

√
v
∣∣ ≤ 1

2 |y− v|. Using this last inequality we obtain

|F(x, y)− F(u, v)| ≤ 1
2
|x− u|+ 1

16
|y− v|+ 1

8
|y− v| = 1

2
|x− u|+ 3

16
|y− v|

and
| f (z, w)− f (t, s)| ≤ 1

12
|z− t|+ 1

3
|w− s|+ 1

6
|w− s| = 1

12
|z− t|+ 1

2
|w− s| .

Therefore

|F(x, y)− F(u, v)|+ | f (z, w)− f (t, s)| ≤ 1
2
|x− u|+ 3

16
|y− v|+ 1

12
|z− t|+ 1

2
|w− s|

and thus the ordered pair (F, f ) satisfies Assumption 1 with constants α = 1/2, β = 3/16, γ = 1/12
and δ = 1/2, max{1/2 + 1/12, 3/16 + 1/2} = max{7/12, 11/16} = 7/12. Consequently there
exists an equilibrium pair (x, y) and for any initial start in the economy the iterated sequences (xn, yn)

converge to the market equilibrium (x, y). We get in this case that the equilibrium pair of the production
of the two firms is (28.3, 21.9) (see Table 8) and the total production will be a = 50.2. Number of the
needed iterations is presented in Tables 9 and 10.

Table 8. Values of the iterated sequence (xn, yn) if started with (10, 50).

n 0 1 2 5 10 20 30

xn 10 35.10 25.56 28.61 28.29 28.30747 28.30750

yn 50 14.77 23.50 21.99 21.89 21.90064 21.90066

Table 9. Number n of iterations needed by the a priori estimate if started with (10, 50).

ε 0.1 0.01 0.001 0.0001 0.00001

n 39 50 62 73 84

Table 10. Number n of iterations needed by the a posteriori estimate if started with (10, 50).

ε 0.1 0.01 0.001 0.0001 0.00001

n 12 16 20 24 28
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If we try to solve the system of equations x = F(x, y) and y = f (x, y) from the previous section,
where for example F(x, y) = 80− x

2 −
y
8 and f (x, y) = 70− x

3 −
y
6 , with the help of Maple then we

will get the exact result. Unfortunately when the response functions are not linear the software can
give us just some approximation. No information is available about the uniqueness and the stability of
the solution. The same observations have been made in Zlatanov (2021), the exact solution is possible
to find with the help of the theory of coupled best proximity points, but the approximation solution,
regardless of the precision, is never the exact one.

Let us consider again a case with two players, producing two products, but let them know the
market demand function and behave rational, i.e., they are trying to maximize their profits, assuming
that the rival player will do the same.

Let there be no limit on the market, but let us assume that the total consumption is 100%. That is,
the market will consume a constant 1, which is 100%, and the production of both firms will be a
percentage of the consumption x and y, respectively, i.e., x, y ∈ [0, 1]. Let the market price be defined

by P(x, y) = 1− x+y
2 −

x2+y2

24 , where x is the production of one of the firms, y is the production of
the other one, assuming that number 1 presents 100%. Let the two firms have cost functions equal to
Cx(x) = x/2 + x2/16 and y/6 + y2/12, respectively. The profit of the first firm is

Π1(x, y) = xP(x, y)− Cx(x) =
7x
8
− 9x2

16
− xy

2
− x3

24
− xy2

24

and the profit of the second firm is

Π2(x, y) = yP(x, y)− Cy =
5y
6
− 13y2

24
− xy

2
− y3

24
− x2y

24
.

Following Cournot model after solving (1) we get the response functions F and f of the two players

F(x, y) =
7
8
− x

8
− y

2
− x2

8
− y2

24
and f (x, y) =

5
6
− x

2
− y

12
− y2

8
− x2

24
,

which satisfy F : [0, 1]× [0, 1] → [0, 1] and f : [0, 1]× [0, 1] → [0, 1], i.e., D = [0, 1]× [0, 1]. Using the
inequality |x2 − y2| = 2ξ|x− y| ≤ 2|x− y|, for any x, y ∈ [0, 1] and some ξ between x and y we obtain

|F(x, y)− F(u, v)| ≤ 3
8
|x− u|+ 7

12
|y− v|

and
| f (z, w)− f (s, t)| ≤ 7

12
|z− t|+ 7

24
|w− s| .

Therefore

|F(x, y)− F(u, v)|+ | f (z, w)− f (s, t)| ≤ 3
8
|x− u|+ 7

12
|y− v|+ 7

12
|z− s|+ 7

24
|w− t|

and thus the ordered pair (F, f ) satisfies Assumption 1 with constants α = 3/8, β = 7/12, γ = 7/12
and δ = 7/24. There holds max{α + γ, β + δ} < 0.958. Thus there exists an equilibrium pair (x, y) and
for any initial start in the economy the iterated sequences (xn, yn) converge to the market equilibrium
(x, y). We get in this case that the equilibrium pair of the production of the two firms is (0.537, 0.451),
i.e., the first firm will have a share of 53.7% and the second one a share of 45.1% of the sold goods (see
Table 11 if the starting point is (50%, 50%), Table 12 if the starting point is (10%, 90%) and Table 13 if
the starting point is (100%, 0%)) . The total production will be 0.989, i.e., 98.9% of the total demand of
the market.
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Table 11. Values of the iterated sequence (xn, yn) if started with (50%, 50%).

n 0 1 2 5 10 20

xn 50% 51.8% 53.3% 53.66% 53.735% 53.732%

yn 50% 46.4% 45.9% 45.17% 45.184% 45.181%

Table 12. Values of the iterated sequence (xn, yn) if started with (10%, 90%).

n 0 1 2 5 10 20

xn 10% 34.6% 49.2% 53.16% 53.749% 53.732%

yn 90% 58.4% 52.4% 45.19% 45.201% 45.181%

Table 13. Values of the iterated sequence (xn, yn) if started with (100%, 0%).

n 0 1 2 5 10 20

xn 100% 66.6% 61.4% 53.68% 53.757% 53.732%

yn 0% 25.0% 40.6% 44.55% 45.201% 45.181%

4.2.3. Each Player Is Producing Two Product Types, Goods from Each Type Being Perfect Substitutes

Let us consider a market with two competing firms, and each firm is producing two product
types. For simplicity we assume that goods from each type produced by major players are perfect
substitutes. While it is possible that two types have nothing it common, it still means that within
each type customers can freely replace a product from the first company with one manufactured
by the second one. Let us assume that each firm produces at least one item from each product,
i.e., x = (x1, x2), y = (y1, y2), x1, x2, y1, y2 ≥ 1. Let us denote the production of the two players by
x = (x1, x2) and y = (y1, y2), respectively.

Let the market of the two goods be endowed with the p norm, p ∈ [1, ∞), i.e.,

ρ((x1, x2), (y1, y2)) = ‖(x1, x2)− (y1, y2)‖p = (|x1 − y1|p + |x2 − y2|p)1/p .

Let us consider the response functions F(x, y) = (F1(x, y), F2(x, y)) and f (x, y) =

( f1(x, y), f2(x, y)) defined by

F(x, y) =


90− x1 + x2

2
− y1 + y2

3
3

,

90− x1 + x2

2
− y1 + y2

3
3

;

f (x, y) =


100− x1 + x2

4
− y1 + y2

3
4

100− x1 + x2

4
− y1 + y2

3
4

.

where

1. Ax = [0, 30]× [0, 30] and Ay = [0, 25]× [0, 25]
2. D = [0, 30]× [0, 30]× [0, 25]× [0, 25]

It is easy to see that (F(x, y), f (x, y)) ⊆ D, whenever (x, y) = ((x1, x2), (y1, y2)) ∈ D.

Using the inequality a+b
2 ≤

(ap+bp)1/p

21/p , which holds for any a, b ≥ 0 we get the chain of inequalities
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‖F(x, y)− F(u, v)‖p = ‖(F1(x, y), F2(x, y))− (F1(u, v), F2(u, v))‖p

=

∥∥∥∥( (u1+u2)−(x1+x2)
2 +

v1+v2−(y1+y2)
3

3 ,
(u1+u2)−(x1+x2)

2 +
v1+v2−(y1+y2)

3
3

)∥∥∥∥
p

≤ 2
3

(
|u1−x1|+|u2−x2|

2 + |v1−y1|+|v2−y2|
3

)
= 2

3
|u1−x1|+|u2+x2|

2 + 4
9
|v1−y1|+|v2+y2|

2

≤ 2
p−1

p

3 (|x1 − u1|p + |x2 − y2|p)1/p + 2
p−1

p +1

9 (|y1 − v1|p + |y2 − v2|p)1/p

= 2
p−1

p

3 ‖(x1, x2)− (u1, u2)‖p +
2

p−1
p +1

9 ‖(y1, v2)− (y1, v2)‖p

= 2
p−1

p

3 ‖x− u‖p +
2

p−1
p +1

9 ‖y− v‖p

and

‖ f (x, y)− f (u, v)‖p = ‖( f1(x, y), f2(x, y))− ( f1(u, v), f2(u, v))‖p

=

∥∥∥∥( (u1+u2)−(x1+x2)
4 +

v1+v2−(y1+y2)
3

3 ,
(u1+u2)−(x1+x2)

4 +
v1+v2−(y1+y2)

3
3

)∥∥∥∥
p

≤ 2
3

(
|u1−x1|+|u2−x2|

4 + |v1−y1|+|v2−y2|
3

)
= 2

6
|u1−x1|−|u2+x2|

2 + 4
9
|v1−y1|+|v2+y2|

2

≤ 2
p−1

p

6 (|x1 − u1|p + |x2 − y2|p)1/p + 2
p−1

p +1

9 (|y1 − v1|p + |y2 − v2|p)1/p

= 2
p−1

p

6 ‖(x1, x2)− (u1, u2)‖p +
2

p−1
p +1

9 ‖(y1, v2)− (y1, v2)‖p

= 2
p−1

p

6 ‖x− u‖p +
2

p−1
p +1

9 ‖y− v‖p.

Therefore

‖F(x, y)− F(u, v)‖+ ‖ f (z, w)− f (t, s)‖ ≤ 2
p−1

p

(
‖x− u‖

3
+
‖z− t‖

6

)
+ 2

2p−1
p

(
‖y− v‖

9
+
‖w− s‖

9

)
.

From the inequalities 2
p−1

p

3 + 2
p−1

p

6 < 2
3 + 1

3 = 1 and 2
2p−1

p

9 + 2
2p−1

p

9 ≤ 2 4
9 < 1 it follows that the ordered

pair (F, f ) satisfies Assumption 1 with constants α = 2
p−1

p

3 , β = 2
p−1

p +1

9 , γ = 2
p−1

p

6 and δ = 2
p−1

p +1

9 .
Thus there exists an equilibrium pair (x, y) and for any initial start in the economy the iterated
sequences (xn, yn) converge to the market equilibrium (x, y). We get in this case that the equilibrium
pair of the production of the two firms is x = (19.27, 19.27), y = (19.36, 19.36) (see Table 14 and 15)
and the total production will be a = (38.63, 38.63). Numbers of iterations, that a needed to ensure the
a priori (see Table 16) and the a posteriori (see Table 17) are calculated.

Table 14. Values of the iterated sequence (xn, yn) if started with x = (10, 10), y = (50, 50).

n 0 1 2

xn (10, 10) (15.56, 15.56) (21.39, 21.39)

yn (50, 50) (15.42, 15.42) (20.49, 20.49)
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Table 15. Values of the iterated sequence (xn, yn) if started with x = (10, 10), y = (50, 50).

n 5 10 20

xn (19.09, 19.09) (19.28, 19.28) (19.27, 19.27)

yn (19.28, 19.28) (19.36, 19.36) (19.36, 19.36)

Table 16. Number n of iterations needed by the a priori estimate if started with x = (19.27, 19.27),
y = (19.36, 19.36) and p = 2.

ε 0.1 0.01 0.001 0.0001 0.00001

n 16 21 26 31 36

Table 17. Number n of iterations needed by the a posteriori estimate if started with x = (19.27, 19.27),
y = (19.36, 19.36) and p = 2.

ε 0.1 0.01 0.001 0.0001 0.00001

n 9 12 15 18 20

4.3. The Players Are Producing a Single Product and Compete on Both Quantities and Prices

There is a large number of goods where companies can compete on both quality and prices.
In this case the equilibrium would depend on a balanced decision on what market share to target at
a reasonable price. Let us assume that there are only two major players that produce homogeneous
products. The first company can produce qualities from the set Ax ⊆ [0, ∞) at a price p ∈ Px ⊆ [0, ∞)

and the second one can produce qualities from the set Ay ⊆ [0, ∞) at a price p ∈ Px ⊆ [0, ∞), where Ax,
Ay, Px, Py are nonempty subsets. Let Ax × Px, Ay × Py be subsets of a complete metric space (R2, ρ).

Assumption 2. Let there be a duopoly market, satisfying the following assumptions:

(1) The two firms are producing homogeneous, perfect substitute products.
(2) The first firm can produce qualities from the set Ax at a price p ∈ Px and the second firm can produce

qualities from the set Ay at a price p ∈ Px, where Ax × Px, Ay × Py are nonempty, closed subsets of a
complete metric space (R2, ρ).

(3) Let there exist a closed subset D ⊆ Ax × Px × Ay × Py → Ax, such that F : D → Ax × Px, f : D →
Ay × Py and (F(x, p, y, q), f (x, p, y, q)) ⊆ D for every (x, p, y, q) ∈ D be the response functions for
firm one and two respectively.

(4) Let there exist α, β, γ, δ > 0, max{α + γ, β + δ} < 1, such that the inequality

ρ(F(X, Y), F(U, V)) + ρ( f (Z, W), f (T, S)) ≤ αρ(X, U) + βρ(Y, V) + γρ(Z, T) + δρ(W, S), (6)

where we use thenotations X = (x, p1), Y = (y, q1), U = (u, p2), V = (v, q2), Z = (z, p3), W = (w, q3),
T = (t, p4), S = (s, q4), holds for all (x, p1, y, q1), (u, p2, v, q2), (z, p3, w, q3), (t, p4, s, q4) ∈ D.

Then

(I) There exists a unique pair (ξ, p, η, q) in Ax × Px × Ay × Py, which is a common coupled
fixed point for the maps F and f , i.e., a market equilibrium pair. Moreover the iteration
sequences {xn}∞

n=0, {pn}∞
n=0, {yn}∞

n=0 and {qn}∞
n=0, defined in Definition A5 converge to ξ, p, η,

and q respectively.
(II) A priori error estimates hold

S1 = max {ρ((xn, pn), (ξ, p)), ρ((yn, qn), (η, q))}
≤ kn

1−k (ρ((x1, p1), (x0, p0)) + ρ((y1, q1), (y0, q0)));
(7)
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(III) A posteriori error estimates hold

S2 = max {ρ((xn, pn), (ξ, p)), ρ((yn, qn), (η, q))}
≤ k

1−k (ρ((xn−1, pn−1), (xn, pn)) + ρ((yn−1, pn−1), (yn, qn)));
(8)

(IV) The rate of convergence for the sequences of successive iterations is given by

S3 = ρ((xn, pn), (ξ, p)) + ρ((yn, qn), (η, q))
≤ k (ρ((xn−1, pn−1, (ξ, p)) + ρ((yn−1, pn−1), (η, q))) ,

(9)

where k = max{α + γ, β + δ}.

If in addition f (X, Y) = F(Y, X) then the coupled fixed point (X, Y) satisfies X = Y, i.e., x = y
and p = q.

The proof is a direct consequence of Theorem A1.

Remark 2. If we consider Bertrand’s model with the same assumption of equal response functions then not only
the quantities will be equal but also and the prices.

Example of a Duopoly Model, Where Players Compete on Quantities and Prices Simultaneously

Let us consider a market with two competing firms, producing the same product, and selling
it at a price p and q respectively, i.e., X = (x, p), Y = (y, q). Let us consider the response functions
F(X, Y) = (F1(X, Y), F2(X, Y)) and f (X, Y) = ( f1(X, Y), f2(X, Y)) defined by

F(X, Y) =


90− x

2
− y

3
3

,

4− p
2
− q

3
3

;

f (X, Y) =


100− x

4
− y

3
4

5− p
4
− q

3
4

.

Let X = (x, p) and Y = (y, q) be subsets of (R2, ‖ · ‖2) (the two dimensional Euclidean space). Let

1. Ax = [0, 100]× [0, 5] and Ay = [0, 100]× [0, 4]
2. D = [0, 100]× [0, 5]× [0, 100]× [0, 4]

It is easy to see that F : D → [0, 100] × [0, 5], f : D → [0, 100] × [0, 4] and
(F(x, p, y, q), f (x, p, y, q)) ⊆ D for every (x, p, y, q) ∈ D.

Using the inequality a+b
2 ≤

(a2+b2)1/2

21/2 , which holds for any a, b ≥ 0 we get the chain of inequalities
we obtain
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S4 = ‖F(x, p1, y, q1)− F(u, p2, v, q2)‖2

=

∥∥∥∥∥∥∥
90− x

2
− y

3
3

,
4− p1

2
− q1

3
3

−
90− u

2
− v

3
3

,
4− p2

2
− q2

3
3


∥∥∥∥∥∥∥

2

=

∥∥∥∥∥∥∥
 u− x

2
+

v− y
3

3
,

p1 − p2

2
+

q1 − q2

3
3


∥∥∥∥∥∥∥

2

≤ 1
3

√(
|u− x|+ |v− y|

2

)2

+

(
|p1 − p2|+ |q1 − q2|

2

)2

≤ 1
3

(
|u− x|+ |v− y|

2
+
|p1 − p2|+ |q1 − q2|

2

)
=

1
3

(
|u− x|+ |p1 − p2|

2
+
|v− y|+ |q1 − q2|

2

)
≤ 1

3
√

2

√
|u− x|2 + |p1 − p2|2 +

1
3
√

2

√
|v− y|+ |q1 − q2|

=
1

3
√

2
ρ(U, X) +

1
3
√

2
ρ(V, Y)

and
S5 = ‖ f (x, p1, y, q1)− f (u, p2, v, q2)‖2

=

∥∥∥∥∥∥∥
100− x

4
− y

3
4

,
5− p1

4
− q1

3
4

−
100− u

4
− v

3
4

,
5− p2

4
− q2

3
4


∥∥∥∥∥∥∥

2

=

∥∥∥∥∥∥∥
 u− x

4
+

v− y
3

4
,

p1 − p2

4
+

q1 − q2

3
4


∥∥∥∥∥∥∥

2

≤ 1
4

√(
|u− x|+ |v− y|

3

)2

+

(
|p1 − p2|+ |q1 − q2|

3

)2

≤ 1
4

(
|u− x|+ |v− y|

3
+
|p1 − p2|+ |q1 − q2|

3

)
<

1
4

(
|u− x|+ |p1 − p2|

2
+
|v− y|+ |q1 − q2|

2

)
≤ 1

4
√

2

√
|u− x|2 + |p1 − p2|2 +

1
4
√

2

√
|v− y|+ |q1 − q2|

=
1

4
√

2
ρ(U, X) +

1
4
√

2
ρ(V, Y).

Therefore

‖F(X, Y)− F(U, V)‖+ ‖ f (Z, W)− f (T, S)‖ ≤ ‖X−U‖
3
√

2
+
‖Y−V‖

3
√

2
+
‖Z− T‖

4
√

2
+
‖W − S‖

4
√

2
.

From the inequalities 1
3
√

2
+ 1

4
√

2
< 1 it follows that the ordered pair (F, f ) satisfies Assumption 2

with constants α = 1
3
√

2
, β = 1

3
√

2
, γ = 1

4
√

2
and δ = 1

4
√

2
. Thus there exists an equilibrium pair

(x, y) and for any initial start in the economy the iterated sequences (xn, yn) converge to the market
equilibrium (x, y). We get in this case that the equilibrium pair of the production of the two firms is
x = (23.64, 1.03), y = (21.71, 1.09).
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4.4. Players’ Production Sets Have an Empty Intersection

Assumption 3. Let there be a duopoly market, satisfying the following assumptions:

1. The two firms are producing homogeneous perfect substitute products.
2. The first firm can produce qualities from the set Ax and the second firm can produce qualities from the

set Ay, where Ax and Ay are nonempty, closed and convex subsets of a uniformly convex Banach space
(X, ‖ · ‖)

3. Let there exist a closed and convex subset D ⊆ Ax × Ay and maps F : D → Ax and f : D → Ay,
such that (F(x, y), f (x, y)) ⊆ D for every (x, y) ∈ D, are the response functions for firm one and
two respectively

4. Let there exist α, β > 0, α + β < 1, such that

‖F(x, y)− f (u, v)‖ ≤ α‖x− v‖+ β‖y− u‖+ (1− (α + β))d (10)

for all (x, y), (u, v) ∈ Ax × Ay, where d = dist(Ax, Ay) = inf{‖x− y‖ : x ∈ Ax, y ∈ Ay}.

Then there exists a unique pair (ξ, η) in Ax × Ay, which is a coupled best point for the pair of
maps (F, f ), i.e., a market equilibrium pair. Moreover the iteration sequences {xn}∞

n=0 and {yn}∞
n=0,

defined in Definition A5 converge to ξ and η respectively.
If in addition (X,‖ · ‖) has a modulus of convexity of power type with constants C > 0 and q > 1, then

1. A priori error estimates hold

‖ξ − xm‖ ≤ M0
q

√
max{W0,1(x, y), W0,0(x, y)}

Cd
·

q
√
(α + β)m

1− q
√

α + β
; (11)

‖η − ym‖ ≤ N0
q

√
max{W0,1(y, x), W0,0(y, x)}

Cd
·

q
√
(α + β)m

1− q
√

α + β
; (12)

2. A posteriori error estimates hold

‖ξ − xn‖ ≤ Mn−1
q

√
max{Wn−1,n(x, y), Wn−1,n−1(x, y)}

Cd
c. (13)

‖η − y2n‖ ≤ Nn−1
q

√
max{Wn−1,n(y, x), Wn−1,n−1(y, x)}

Cd
c, (14)

where Wn,m(x, y) = ‖xn − xm‖ − d, Mn max{‖xn − yn‖, ‖xn − yn+1‖}, Nn max{‖xn − yn‖, ‖yn −
xn+1‖} and c =

q
√

α+β

1− q
√

α+β
.

The proof is a direct consequence of Theorem A2.

Players’ Production Sets Have an Empty Intersection, Each Player Is Producing Two Goods

Let us consider a market with two competing firms, each firm produces two products and any one
of the items is completely replaceable with a similar product of the other firm. Let us assume that the
first firm can produce much less quantities than the second one, i.e., if x1, x2 are the quantities produced
by the first firm and y1, y2 are the quantities produced by the second one and, then x1, x2 ∈ [0, 1] and
y1, y2 ∈ [2, 3]. Let Ax = [0, 1]× [0, 1] Ay = [2, 3]× [2, 3] be considered as subsets of (R2, ‖ · ‖), which is a

uniformly convex Banach space with modulus of convexity δ‖·‖2
(ε) ≥ ε2

3 of power type Zlatanov (2016).
Let us consider the response functions F(x1, x2, y1, y2) and f (x1, x2, y1, y2) defined by

F(x, y) =

{
3x1

8 + x2
8 −

3y1
16 −

y2
16 + 1

x1
8 + 3x2

8 −
y1
16 −

3y2
16 + 1

, f (x, y) =

{
− 3x1

16 −
x2
16 + 3y1

4 + y2
4 + 5

4
− x1

16 −
3x2
16 + y1

4 + 3y2
4 + 5

4
.
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It is easy to see that F : [0, 1]× [0, 1]× [2, 3]× [2, 3]→ [0, 1]× [0, 1] and f : [0, 1]× [0, 1]× [2, 3]× [2, 3]→
[2, 3]× [2, 3]

Indeed the inequalities 0 ≤ 3x1
8 + x2

8 −
3y1
16 −

y2
16 + 1 ≤ 1 are equivalent to∣∣∣∣∣∣

3y1
16 + y2

16 ≤ 3x1
8 + x2

8 + 1

3x1
8 + x2

8 ≤ 3y1
16 + y2

16

for (x1, x2, y1, y2) ∈ [0, 1]× [0, 1]× [2, 3]× [2, 3].
The inequalities 2 ≤ − 3u1

16 −
u2
16 + 3v1

4 + v2
4 + 5

4 ≤ 3 are equivalent to∣∣∣∣∣∣
3u1
16 + u2

16 ≤ 3v1
4 + v2

4

3v1
4 + v2

4 ≤ 7
4 + 3u1

16 + u2
16

for (u1, u2, v1, v2) ∈ [0, 1]× [0, 1]× [2, 3]× [2, 3].

Using the inequality
(

3a
4 + b

4

)2
≤ 3

4 a2 + 1
4 b2, i.e.,

∣∣∣ 3a
4 + b

4

∣∣∣ ≤ √3a2+b2

2 we obtain

S6 = ‖F(x1, x2, y1, y2)− f (u1, u2, v1, v2)‖2

=
∥∥∥( 3x1

8 + x2
8 −

3y1
16 −

y2
16 + 1, x1

8 + 3x2
8 −

y1
16 −

3y2
16 + 1

)
−
(
− 3u1

16 −
u2
16 + 3v1

4 + v2
4 + 5

4 ,− u1
16 −

3u2
16 + v1

4 + 3v2
4 + 5

4

)∥∥∥
2

=
∥∥∥( 1

4 + 3(x1−v1)
8 + x2−v2

8 , 1
4 + 3(u1−y1)

16 + u2−y2
16

)∥∥∥
2

≤
∥∥∥( 1

4 , 1
4

)∥∥∥
2
+
∥∥∥( 3(x1−v1)

8 + x2−v2
8 , 3(u1−y1)

16 + u2−y2
16

)∥∥∥
2

≤
√

2
4 +

∥∥∥( 3(x1−v1)
8 + x2−v2

8 , 0
)∥∥∥

2
+
∥∥∥(0, 3(u1−y1)

16 + u2−y2
16

)∥∥∥
2

=
√

2
4 + 1

2

∥∥∥( 3(x1−v1)
4 + x2−v2

4 , 0
)∥∥∥

2
+ 1

4

∥∥∥(0, 3(u1−y1)
4 + u2−y2

4

)∥∥∥
2

=
√

2
4 + 1

2

∣∣∣ 3(x1−v1)
4 + x2−v2

4

∣∣∣+ 1
4

∣∣∣ 3(u1−y1)
4 + u2−y2

4

∣∣∣
2

≤
√

2
4 +

√
3|x1−v1|2+|x2−v2|2

4 +

√
3|u1−y1|2+|u2−y2|2

8

≤
√

2
4 +

√
3

4

√
|x1 − v1|2 + |x2 − v2|2 +

√
3

8

√
|u1 − y1|2 + |u2 − y2|2

=
√

3
4 ‖x− v‖2 +

√
3

8 ‖y− u‖2 +
√

2
4

≤
√

3
4 ‖x− v‖2 +

√
3

8 ‖y− u‖2 +
(

1−
√

3
4 −

√
3

8

)√
2

=
√

3
4 ‖x− v‖2 +

√
3

8 ‖y− u‖2 +
(

1−
√

3
4 −

√
3

8

)
d,

where d = dist([0, 1] × [0, 1], [2, 3] × [2, 3]) =
√

2. Therefore the ordered pair (F, f ) satisfies
Assumption 3 with constants α =

√
3

4 , β =
√

3
8 . Thus there exists an equilibrium pair (x, y) =

((x1, x2), (y1, y2)) and for any initial start in the economy, the iterated sequence (xn, yn) =

((xn
1 , xn

2 ), (y
n
1 , yn

2 )) converges to the market equilibrium (x, y). We get in this case that the equilibrium
pair of the production of the two firms is x = (1, 1), y = (2, 2) (see Tables 18 and 19) and the total
production will be a = (3, 3).
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Table 18. Values of the iterated sequence (xn, yn) if started with ((0.01, 0.2), (2.9, 2.1)).

n 0 1 2

(xn
1 , xn

2 ) (0.01, 0.9) (0.44, 0.76) (0.66, 0.75)

(yn
1 , yn

2 ) (2.90, 2.1) (2.44, 2.33) (2.31, 2.27)

Table 19. Values of the iterated sequence (xn, yn) if started with ((0.01, 0.2), (2.9, 2.1)).

n 5 10 20

(xn
1 , xn

2 ) (0.87, 0.88) (0.97, 0.97) (1, 1)

(yn
1 , yn

2 ) (2.12, 2.12) (2.03, 2.03) (2, 2)

4.5. Equilibrium in the Case, When the Two Players Are Producing Just One Good and the Production Set Has
an Empty Intersection

Let us point out that the properties of the modulus of convexity δ‖·‖ are investigated if the Banach
space is at least two dimensional. As far as R, endowed with its canonical norm is a subspace of
R2

2 we get that δ(R,|·|)(ε) ≥ δ(R2
2,‖·‖2)

(ε) = ε2

8 . It is easy to observe that in R there holds the equality

δ(R,|·|)(ε) =
ε
2 . Indeed B(R,|·|) = [−1, 1]. Then δ(R,|·|)(ε) = inf

{∣∣∣1− x+y
2

∣∣∣ : x, y ∈ [−1, 1], |x− y| ≥ ε
}

.

The infimum is attained, when x = 1 and y = 1 − ε. Therefore δ(R,|·|)(ε) =
∣∣∣1− 1+(1−ε)

2

∣∣∣ = ε
2

Ilchev and Zlatanov (2016).
We will formulate Assumption 3 in the case when the underlying Banach space is (R, | · |).

Assumption 4. Let there is a duopoly market, satisfying the following assumptions:

1. The two firms are producing homogeneous perfect substitute products
2. The first firm can produce qualities from the set Ax and the second firm can produce qualities from the set

Ay, where Ax and Ay are nonempty closed intervals of (R, | · |)
3. Let there exist a close and convex subset D ⊆ Ax× Ay and maps F : D → Ax and f : D → Ay, such that

(F(x, y), f (x, y)) ⊆ D for every (x, y) ∈ D, be the response functions for firm one and two respectively
4. Let there exist α, β > 0, α + β < 1, such that

|F(x, y)− f (u, v)| ≤ α|x− v|+ β|y− u|+ (1− (α + β))d (15)

for all (x, y), (u, v) ∈ Ax × Ay, where d = dist(Ax, Ay) = inf{|x− y| : x ∈ Ax, y ∈ Ay}.

Then there exists a unique pair (ξ, η) in Ax × Ay, which is a coupled best point for the pair of
maps (F, f ), i.e., a market equilibrium pair. Moreover the iteration sequences {xn}∞

n=0 and {yn}∞
n=0,

defined in Definition A5 converge to ξ and η respectively.

1. A priori error estimates hold

|ξ − xm| ≤ 2 max{|x0 − y0|, |x0 − y1|}
max{W0,1(x, y), W0,0(x, y)}

d
· (α + β)m

1− (α + β)
; (16)

‖η − ym‖ ≤ 2 max{|x0 − y0|, |x1 − y0|}
max{W0,1(y, x), W0,0(y, x)}

d
· (α + β)m

1− (α + β)
; (17)

2. A posteriori error estimates hold

|ξ − xn| ≤ 2 max{|xn−1 − yn−1|, |xn−1 − yn|}
max{Wn−1,n(x, y), Wn−1,n−1(x, y)}

d(1− (α + β))
(α + β); (18)
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|η − yn| ≤ 2 max{|xn−1 − yn−1|, |xn − yn−1|}
max{Wn−1,n(y, x), Wn−1,n−1(y, x)}

d(1− (α + β))
(α + β), (19)

where Wn,m(x, y) = |xn − xm| − d.

The proof is a direct consequence of Theorem A2 and the remark that (R, | · |) is a uniformly
convex Banach space with modulus of convexity δ|·|(ε) =

ε
2 .

Example When the Two Players Are Producing Just One Good

Let us consider a market with two competing firms, producing two products, that are perfect
substitutes. Let us assume that the first firm can produce much smaller quantities than the second
one, i.e., x, y, so that x ∈ [0, 1] and y ∈ [2, 3]. Let us consider the response functions F(x, y) and f (x, y)
defined by

F(x, y) =
x
2
− y

4
+ 1, f (x, y) = −u

4
+

v
2
+

5
4

It is easy to see that F : [0, 1]× [2, 3]→ [0, 1] and f : [0, 1]× [2, 3]→ [2, 3]
Indeed the inequalities 0 ≤ x

2 −
y
4 + 1 ≤ 1 are equivalent to∣∣∣∣∣∣

y
4 ≤ x

2 + 1

x
2 ≤ y

4

for (x, y) ∈ [0, 1]× [2, 3].
The inequalities 2 ≤ − u

4 + v
2 + 5

4 ≤ 3 are equivalent to∣∣∣∣∣∣
3
4 + u

4 ≤ v
2

v
2 ≤ 7

4 + u
4

for (u, v) ∈ [0, 1]× [2, 3].
Then we obtain

|F(x, y)− f (u, v)| =

∣∣∣∣−u
4
+

v
2
+

5
4
−
( x

2
− y

4
+ 1
)∣∣∣∣ ≤ |v− x|

2
+
|y− u|

4
+

∣∣∣∣54 − 1
∣∣∣∣

=
|v− x|

2
+
|y− u|

4
+

1
4
=
|v− x|

2
+
|y− u|

4
+

(
1−

(
1
2
+

1
4

))
d.

Therefore the ordered pair (F, f ) satisfies Assumption 4 with constants α = 1
2 , β = 1

4 . Thus there
exists an equilibrium pair (x, y) and for any initial start in the economy the iterated sequences (xn, yn)

converge to the market equilibrium (x, y). We get in this case that the equilibrium pair of the production
of the two firms is x = 1, y = 2 (see Tables 20–22) and the total production will be a = 3.

Table 20. Values of the iterated sequence (xn, yn) if started with (0.2, 2.8).

n 0 1 2 5 10 20 30

xn 0.2 0.4 0.55 0.81 0.95 0.997 0.9998

yn 2.8 2.6 2.45 2.18 2.04 2.002 2.0001

Table 21. Number n of iterations needed by the a priori estimate if started with (0.2, 2.8).

ε 0.1 0.01 0.001 0.0001 0.00001

n 21 29 37 45 53
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Table 22. Number n of iterations needed by the a posteriori estimate if started with (100, 20).

ε 0.1 0.01 0.001 0.0001 0.00001

n 17 25 33 41 49

5. Conclusions

Markets dominated by a small group of players are not uncommon even in a fast moving global
economy. Therefore it is essential to analyze these cases, understand what leads to equilibrium and
how different companies respond to changes in the economic environment. In this paper we have built
a model on existence and uniqueness of market equilibrium in oligopoly markets that can be derived
from response functions of major players. We assume that goods produced by different market players
are perfect substitutes as this simplifies the mathematical description of the model. Due to the fact
that response functions can also account for differences in product qualities, the model can also be
applied to situations where price is not the only factor on which companies compete. With a carefully
constructed response function it is possible to fully comprehend all five basic factors influencing
competition—product features, number of sellers, information ability and barriers to entry.

Use of the suggested model can help understand better markets with limited number of players.
By solving the inverse problem—estimate response functions based on historical prices and output
series, it is also possible to understand how companies make decisions and react on regulations and
changes in the environment. Compared to other approaches that also allow to estimate how market
participants change their behavior, our suggestion is more flexible and can be extended to include
different limitations.

Response functions also support the concept of having protective capacity and the ability to
change output within certain limits, with minimal changes in total costs. While this matches the way
contemporary businesses are run, it also provides for building more realistic views of the market.
That is of particular importance for taking regulatory measures and estimating how changes in
economic conditions may affect certain industries. It should be noted that our approach is important
also for a wider audience when we consider that there are rare metals and raw materials markets
with oligopolistic structure. Such special cases have influence reaching beyond the trade with a
particular good.

Existence and uniqueness of equilibrium can be analyzed with both linear and non-linear
response functions which proves to be a very flexible approach when studying different markets,
which despite being dominated by a small number of companies may have quite different
characteristics. Applications of the suggested model when production sets of market participants have
empty intersection are particularly important when it is necessary to account for real world limitations
like huge economies of scale or unique resources available to some players. One specific application
and advantage of the suggested model is that calibration of response functions can be performed in a
way that matches observed past behavior (output and prices) or major market players. This way it
is possible to assess not only equilibrium stability but also the way that different companies react to
changes in the environment.
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Appendix A. Proofs of the Results

We will present the mathematical justifications of the used Theorems.

Appendix A.1. Definitions for Coupled Fixed and Best Proximity Points

We will recall the needed notions and results that we will use.
Let (X, ρ) be a metric space. A distance between two subsets A, B ⊂ X is defined by dist(A, B) =

inf{ρ(x, y) : x ∈ A, y ∈ B}. Following Eldred and Veeramani (2006) let A and B be nonempty subsets
of a metric space (X, ρ). The map T : A

⋃
B→ A

⋃
B is called a cyclic map if T(A) ⊆ B and T(B) ⊆ A.

A point ξ ∈ A is called a best proximity point of the cyclic map T in A if ρ(ξ, Tξ) = dist(A, B).

Definition A1 (Sintunavarat and Kumam 2012). Let A and B be nonempty subsets of a metric space
(X, ρ), F : A × A → B. An ordered pair (x, y) ∈ A × A is called a coupled best proximity point of F if
ρ(x, F(x, y)) = ρ(y, F(y, x)) = dist(A, B).

Let A be a nonempty subset of a metric space (X, ρ). The map T : A→ A is said to have a fixed
point x ∈ A if ρ(ξ, Tξ) = 0.

Definition A2 (Guo and Lakshmikantham 1987). Let A and B be nonempty subsets of a metric space (X, ρ),
F : A× A → A. An ordered pair (x, y) ∈ A× A is said to be a coupled fixed point of F in A if x = F(x, y)
and y = F(y, x).

In order to apply the technique of coupled best proximity points and coupled fixed points we
will generalize the mentioned above notions. When we investigate duopoly with players’ response
functions F and f , we have seen that each player using the information about his production and
the rival’s production choose a change in his production, i.e., we define F : A× B → A instead of
the cyclic type of maps F : A× B → B (Definition A1). Therefore we introduce generalizations of
Definitions A1 and A2.

Definition A3. Let Ax, Ay be nonempty subsets of a metric space (X, ρ), F : Ax× Ay → Ax, f : Ax× Ay →
Ay. An ordered pair (ξ, η) ∈ Ax × Ay is called a coupled fixed point of (F, f ) if ξ = F(ξ, η) and η = f (ξ, η).

Definition A4. Let Ax, Ay be nonempty subsets of a metric space (X, ρ), F : Ax× Ay → Ax, f : Ax× Ay →
Ay. An ordered pair (ξ, η) ∈ Ax × Ay is called a coupled best proximity point of (F, f ) if ρ(η, F(ξ, η) =

ρ(ξ, f (ξ, η) = dist(Ax, Ay).

Definition A5. Let Ax, Ay be nonempty subsets of X. Let F : Ax × Ay → Ax, f : Ax × Ay → Ay.
For any pair (x, y) ∈ Ax × Ay we define the sequences {xn}∞

n=0 and {yn}∞
n=0 by x0 = x, y0 = y and

xn+1 = F(xn, yn), yn+1 = f (xn, yn) for all n ≥ 0.

Everywhere, when considering the sequences {xn}∞
n=0 and {yn}∞

n=0 we will assume that they are
the sequences defined in Definition A5.

We will generalize the contraction condition from Eldred and Veeramani (2006) for the maps,
defined in Definitions A3 and A4.

Definition A6. Let Ax, Ay be nonempty subsets of a metric space (X, ρ). Let there exist a subset D ⊆ Ax× Ay

and maps F : D → Ax and f : D → Ay, such that (F(x, y), f (x, y)) ⊆ D for every (x, y) ∈ D. The ordered
pair of ordered pairs (F, f ) is said to be a cyclic contraction of type one ordered pair if there exist non-negative
numbers α, β, such that max{α + γ, β + δ} < 1 and there holds the inequality

ρ(F(x, y), F(u, v)) + ρ( f (z, w), f (t, s) ≤ αρ(x, u) + βρ(y, v) + γρ(z, t) + δρ(w, s) (A1)
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for all (x, y), (u, v), (z, w), (t, s) ∈ D.

Definition A7. Let Ax, Ay be nonempty subsets of a metric space (X, ρ). Let there exist a subset D ⊆ Ax× Ay

and maps F : D → Ax and f : D → Ay, such that (F(x, y), f (x, y)) ⊆ D for every (x, y) ∈ D. The ordered
pair of ordered pairs (F, f ) is said to be a cyclic contraction of type two ordered pair if there exist non-negative
numbers α, β, such that α + β < 1 and there holds the inequality

ρ(F(x, y), f (u, v)) ≤ αρ(x, v) + βρ(y, u) + (1− (α + β))dist(Ax, Ay) (A2)

for all (x, y), (u, v) ∈ D.

The norm-structure of the underlying space plays a crucial role in the proofs
Eldred and Veeramani (2006).

Whenever we deal with a distance in (X, ‖ · ‖), we will always assume that it is generated by the
norm ‖ · ‖, i.e., ρ(x, y) = ‖x− y‖.

The uniform convexity plays a vital part within the proofs of best proximity points.

Definition A8. Let (X, ‖ · ‖) be a Banach space. For every ε ∈ (0, 2] we define the modulus of convexity of
‖ · ‖ by

δ‖·‖(ε) = inf
{

1−
∥∥∥∥ x + y

2

∥∥∥∥ : ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε

}
.

The norm is called uniformly convex if δX(ε) > 0 for all ε ∈ (0, 2]. The space (X, ‖ · ‖) is then called a uniformly
convex space.

Lemma A1 (Eldred and Veeramani 2006). Let A be a nonempty closed, convex subset, and B be a nonempty
closed subset of a uniformly convex Banach space. Let {xn}∞

n=1 and {zn}∞
n=1 be sequences in A and {yn}∞

n=1
be a sequence in B satisfying:
(1) limn→∞ ‖xn − yn‖ = dist(A, B);
(2) limn→∞ ‖zn − yn‖ = dist(A, B);
then limn→∞ ‖xn − zn‖ = 0.

Lemma A2 (Eldred and Veeramani 2006). Let A be a nonempty closed, convex subset, and B be a nonempty
closed subset of a uniformly convex Banach space. Let {xn}∞

n=1 and {zn}∞
n=1 be sequences in A and {yn}∞

n=1
be a sequence in B satisfying:
(1) limn→∞ ‖zn − yn‖ = dist(A, B);
(2) for every ε > 0 there exists N0 ∈ N, such that for all m > n ≥ N0, ‖xn − yn‖ ≤ dist(A, B) + ε,
then for every ε > 0, there exists N1 ∈ N, such that for all m > n > N1, holds ‖xm − zn‖ ≤ ε.

The inequality ∥∥∥∥ x + y
2
− z
∥∥∥∥ ≤ (1− δX

( r
R

))
R (A3)

holds for any x, y, z ∈ X, R > 0, r ∈ [0, 2R], ‖x− z‖ ≤ R, ‖y− z‖ ≤ R and ‖x− y‖ ≥ r, provided that
X is a uniformly convex Eldred and Veeramani (2006).

The modulus of convexity δX(ε) is a strictly increasing function, provided that the underlying
space is uniformly convex, and its inverse function δ−1 exists. If the inequality δ‖·‖(ε) ≥ Cεq holds for
some constants C, q > 0 and for any ε ∈ (0, 2], the modulus of convexity is said to be of power type q.
The moduli of convexity with respect to the p–norm in `p or Lp are of power type and the inequalities

δ‖·‖p(ε) ≥
εp

p2p for p ≥ 2 and δ‖·‖p(ε) ≥
(p−1)ε2

8 for p ∈ (1, 2) hold Meir (1984).
A comprehensive presenting of the results from this section can be found in Beauzamy (1979);

Deville et al. (1993); Fabian et al. (2011).
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Appendix A.2. Coupled Fixed Points

Theorem A1. Let Ax, Ay be nonempty and closed subsets of a complete metric space (X, ρ). Let there exist a
closed subset D ⊆ Ax × Ay and maps F : D → Ax and f : D → Ay, such that (F(x, y), f (x, y)) ⊆ D for
every (x, y) ∈ D. Let the ordered pair (F, f ) be a cyclic contraction of type one. Then

1. There exists a unique pair (ξ, η) in D, which is a unique coupled fixed point for the ordered pair (F, f ).
Moreover the iteration sequences {xn}∞

n=0 and {yn}∞
n=0, defined in Definition A5 converge to ξ and η

respectively, for any arbitrary chosen initial guess (x, y) ∈ Ax × Ay;
2. A priori error estimates hold max {ρ(xn, ξ), ρ(yn, η)} ≤ kn

1−k (ρ(x1, x0) + ρ(y1, y0));

3. A posteriori error estimates hold max {ρ(xn, ξ), ρ(yn, η)} ≤ k
1−k (ρ(xn−1, xn) + ρ(yn−1, yn));

4. Rate of convergence for the sequences of successive iterations ρ(xn, ξ) + ρ(yn, η) ≤
k (ρ(xn−1, ξ) + (yn−1, η)), where k = max{α + γ, β + δ}.

If in addition f (x.y) = F(y, x) then the coupled fixed point (x, y) satisfies x = y.

Proof. Let us choose an arbitrary point (x, y) ∈ D and {xn}∞
n=0, {yn}∞

n=0 be the sequences defined in
Definition A5. Then for any n ∈ N there holds the chain of inequalities

ρ(xn+1, xn) + ρ(yn+1, yn) = ρ(F(xn, yn), F(xn−1, yn−1) + ρ( f (xn, yn), f (xn−1, yn−1)

≤ αρ(xn, xn−1) + βρ(yn, yn−1) + γρ(xn, xn−1) + δρ(yn, yn−1)

= (α + γ)ρ(xn, xn−1) + (β + δ)ρ(yn, yn−1)

≤ max{α + γ, β + δ}(ρ(xn, xn−1) + ρ(yn, yn−l)).

Simply to fit a few of the equations within the content field we will denote k = max{α + γ, β +

δ}. Consequently

ρ(xn+1, xn) + ρ(yn+1, yn) ≤ kl(ρ(xn+1−l , xn−l) + ρ(yn+1−l , yn−l)). (A4)

(1) From (A4), applied for l = n we get

max {ρ(xn+1, xn), ρ(yn+1, yn)} ≤ kn(ρ(x1, x0) + ρ(y1, y0)).

Thus

ρ(xn, xn+m) ≤
n+m−1

∑
j=n

ρ(xj, xj+1) ≤
n+m−1

∑
j=n

kj(ρ(x1, x0) + ρ(y1, y0))

≤ kn 1− km

1− k
(ρ(x1, x0) + ρ(y1, y0)).

(A5)

Since k ∈ (0, 1) it follows that {xn}∞
n=0 is a Cauchy sequence in Ax. Thus {xn} converges to some ξ.

The verification that {yn}∞
n=0 converges to some η ∈ Ay can be completed in a similar mold.

From the assumption that D is closed it follows that (ξ, η) ∈ D.
We will prove that the pair (ξ, η) is a coupled fixed point of (F, f ). By the triangle inequality and

(A1) we get the inequalities

S7 = ρ(ξ, F(ξ, η)) + ρ(η, f (ξ, η)) ≤ ρ(ξ, xn) + ρ(xn, F(ξ, η)) + ρ(η, yn) + ρ(yn, f (ξ, η))

≤ ρ(ξ, xn) + ρ(F(xn−1, yn−1), F(ξ, η)) + ρ(η, yn) + ρ( f (xn−1, yn−1), f (ξ, η))

≤ ρ(ξ, xn) + αρ(xn−1, ξ) + βρ(yn−1, η) + ρ(η, xn) + γρ(xn−1, ξ) + δρ(yn−1, η).

Taking a limit when n → ∞, we get ρ(ξ, F(ξ, η)) + ρ(η, F(η, ξ)) = 0, i.e., ρ(ξ, F(ξ, η)) = 0 and
ρ(η, F(η, ξ)) = 0. Consequently (ξ, η) is a coupled fixed point of (F, f ).
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We will prove that (ξ, η) is unique. Let us assume the contrary, i.e., there is (ξ∗, η∗) ∈ D ⊆ Ax× Ay

so that (ξ∗, η∗) 6= (ξ, η) and ξ∗ = F(ξ∗, η∗), η∗ = f (ξ∗, η∗). The inequalities

ρ(ξ∗, ξ) + ρ(η∗, η) = ρ(F(ξ∗, η∗), F(ξ, η) + ρ( f (η∗, ξ∗), f (η, ξ)

≤ αρ(ξ∗, ξ) + βρ(η∗, η) + γρ(ξ∗, ξ) + δρ(η∗, η)

= (α + γ)ρ(ξ∗, ξ) + (β + δ)ρ(η∗, η) < ρ(ξ∗, ξ) + ρ(η∗, η)

result to ρ(ξ∗, ξ) = ρ(η∗, η) = 0, a contradiction and consequently the coupled fixed point (ξ, η) of
(F, f ) is unique.

(II) Letting m → ∞ in (A5) we get the a priori estimate ρ(xn, ξ) ≤ kn

1−k (ρ(x1, x0) + ρ(y1, y0)).
The proof that ρ(yn, η) ≤ kn

1−k (ρ(x1, x0) + ρ(y1, y0)) is completed by similar arguments. Therefore

max{ρ(xn, ξ), ρ(yn, η)} ≤ kn

1− k
(ρ(x1, x0) + ρ(y1, y0)).

(3) By (A4) applied for l = j + 1 we get

ρ(xn, xn+m) ≤
m−1

∑
j=0

ρ(xn+j, xn+j+1) ≤
m−1

∑
j=0

kj+1(ρ(xn−1, xn) + ρ(yn−1, yn))

≤ k
1− k

(1− km+1)(ρ(xn−1, xn) + ρ(yn−1, yn)).

Letting m→ ∞ we get the a posteriori estimate ρ(xn, ξ) ≤ k
1−k (ρ(xn−1, xn) + ρ(yn−1, yn)). The proof

that ρ(yn, η) ≤ k
1−k (ρ(xn−1, xn) + ρ(yn−1, yn)) is done in a similar fashion and thus

max{ρ(xn, ξ), ρ(yn, η)} ≤ k
1− k

(ρ(xn−1, xn) + ρ(yn−1, yn)).

(4) Considering that the pair (ξ, η) is a coupled fixed point for (F, f ) and (A1) we have
the inequalities

ρ(xn, ξ) + ρ(yn, η) = ρ(F(xn−1, yn−1), F(ξ, η)) + ρ( f (xn−1, yn−1), f (ξ, η))

≤ αρ(xn−1, ξ) + βρ(yn−1, η) + γρ(xn−1, ξ) + δρ(yn−1, η)

= (α + γ)ρ(xn−1, ξ) + (β + δ)ρ(yn−1, η) ≤ k(ρ(xn−1, ξ) + ρ(yn−1, η)).

Consequently ρ(xn, ξ) + ρ(yn, η) ≤ k(ρ(xn−1, ξ) + ρ(yn−1, η)).
Let us put f (x, y) = F(y, x) and u = y and v = x in (A1) and let us assume that (x, y) is a coupled

fixed point, i.e., x = F(x, y) and y = f (x, y) = F(x, y). We get

2ρ(x, y) = 2ρ(F(x, y), f (x, y)) = ρ(F(x, y), F(y, x)) + ρ( f (x, y), f (y, x))
≤ αρ(x, y) + βρ(y, x) + γρ(x, y) + δρ(y, x)
≤ 2 max{α + γ, β + δ}ρ(x, y) < 2ρ(x, y)

(A6)

and thus x = y.

Appendix A.3. Coupled Best Proximity Points

Simply to fit a few of the equations within the content field let us denote d = dist(Ax, Ay),
Pn,m(x, y) = ‖xn − ym‖ and Wn,m(x, y) = Pn,m(x, y)− d = ‖xn − ym‖ − d, where x = {xn}∞

n=0 and
y = {yn}∞

n=0.

Lemma A3. Let Ax, Ay be nonempty subsets of a metric space (X, ρ). Let there exist a subset D ⊆ Ax × Ay

and maps F : D → Ax and f : D → Ay, such that (F(x, y), f (x, y)) ⊆ D for every (x, y) ∈ D. Let the



Adm. Sci. 2020, 10, 70 26 of 32

ordered pair (F, f ) be a cyclic contraction of type two. Then there holds limn→∞ ρ(xn, yn+k) = d and
limn→∞ ρ(xn+k, yn) = d for an arbitrary chosen (x, y) ∈ D and arbitrary k = 0, 1, 2, . . . .

Proof. Let us choose an arbitrary (x, y) ∈ D and define {xn}∞
n=0, {yn}∞

n=0
Using the cyclic contraction condition (A2) we get that for all n, k ∈ N holds

ρ(xn+1, yn+1+k) = ρ (F(xn, yn+k), f (xn+k, yn+k)) ≤ αρ(xn, yn+k) + βρ(yn+k, xn) + (1− (α + β))d
= (α + β)ρ(xn, yn+k) + (1− (α + β))d

Thus we get

ρ(xn+1, yn+1+k)− d ≤ (α + β)(ρ(xn, yn+k)− d) ≤ (α + β)2(ρ(xn−1, yn−1+k)− d)
≤ (α + β)3(ρ(xn−2, yn−1+k))− d)
≤ · · ·
≤ (α + β)n+1(ρ(x0, yk)− d)).

(A7)

For any arbitrary and fixed k ∈ N, after taking limit in (A7), when n→ ∞, by using the assumption that
α + β ∈ (0, 1), we get limn→∞(ρ(xn+1, yn+1+k)− d) = 0 and thus we obtain limn→∞ ρ(xn+1, yn+1+k) = d.

The proof of limn→∞ ρ(xn+k, yn) = d can be done in a similar fashion.

It can be seen easily that (A7) holds for indexes m > n, too.

ρ(xn, ym)− d ≤ (α + β)n(ρ(x0, ym−n)− d). (A8)

Lemma A4. Let Ax, Ay be nonempty subsets of a metric space (X, ρ). Let there exist a subset D ⊆ Ax × Ay

and maps F : D → Ax and f : D → Ay, so that (F(x, y), f (x, y)) ⊆ D for every (x, y) ∈ D. Let the ordered
pair (F, f ) be a cyclic contraction of type two. The iterative sequences {xn}∞

n=0 and {yn}∞
n=0, for any initial

guess (x, y) ∈ D are bounded.

Proof. Let (x, y) ∈ D be arbitrarily chosen and fixed. From Lemma A3 we have that
limn→∞ ρ(xn, yn) = d and thus it will be sufficient to demonstrate that only {xn}∞

n=0 is a
bounded sequence.

Let as choose

M >
(1− (α + β)2)d + (α + β)2(ρ(y0, x2) + ρ(x2, y2))

1− (α + β)2 .

Suppose the contrary, i.e., {xn}∞
n=0 is not bounded. Then there exists n0 ∈ N, such that there holds

ρ(y2, xn) ≤ M for all n < n0 and
ρ(y2, xn0) > M. (A9)

From inequality (A9) after a substitution in (A8) with n = 2 and m = n0 we get

M− d
(α + β)2 <

ρ(y2, xn0)− d
(α + β)2 ≤ ρ(y0, xn0−2)− d ≤ ρ(y0, x2) + ρ(x2, y2) + ρ(y2, xn0−2)− d

≤ ρ(y0, x2) + ρ(x2, y2) + M− d,

in which the inequality can hold true only if the inequality M ≤
(1− (α + β)2)d + (α + β)2(ρ(y0, x2) + ρ(x2, y2))

1− (α + β)2 holds, which contradicts with the choice of M.

Lemma A5. Let Ax, Ay be nonempty convex subsets of a uniformly convex Banach space (X, ‖ · ‖). Let there
exist a subset D ⊆ Ax × Ay and maps F : D → Ax and f : D → Ay, such that (F(x, y), f (x, y)) ⊆ D for
every (x, y) ∈ D. Let the ordered pair (F, f ) be a cyclic contraction of type two. For any arbitrary chosen
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(x, y) ∈ D and for every ε > 0 there is n0 ∈ N so that the inequality ‖xm − yn‖ < d + ε holds for any
m ≥ n > n0.

Proof. From Lemma A3 we get limn→∞ ‖xn − yn‖ = d and limn→∞ ‖xn+1 − yn‖ = d.
By Lemma A1 after using the uniform convexity of (X, ‖ · ‖) it follows that

lim
n→∞

‖xn − xn+1‖ = 0. (A10)

By similar argument we get that limn→∞ ‖yn − yn+1‖ = 0.
Let us suppose that there exists ε > 0 with the property: for any j ∈ N there are mj ≥ nj ≥ j

so that
‖xmj − ynj‖ ≥ d + ε.

Let us choose mj to be the smallest integer so that the last inequality is satisfied, i.e., there holds

‖xmj − ynj‖ ≥ d + ε and ‖xmj−1 − ynj‖ < d + ε.

Thus we get

d + ε ≤ ‖xmj − ynj‖ ≤ ‖xmj − xmj−1‖+ ‖xmj−1 − ynj‖ < ‖xmj − xmj−1‖+ d + ε. (A11)

Letting j→ ∞ in (A11) by using (A10) we get limj→∞ ‖xmj − ynj+1‖ = d + ε. Using the boundedness
of {xn}∞

n=0 and {yn}∞
n=0 we get the existence of M ≥ d, so that the inequality M ≥ ‖x0− ymj−nj‖ holds

for every j ∈ N. The inequality

‖xmj − ynj‖ − d ≤ (α + β)nj(‖x0 − ymj−nj‖ − d) ≤ (α + β)nj(M− d)

holds. For any ε > 0 we can find j0 ∈ N to hold (α + β)j(M− d) < ε for every j ≥ j0. Therefore for
any mj ≥ nj ≥ j0 there holds ‖xmj − xnj‖ < d + ε, which is a contradiction.

Lemma A6. Let Ax, Ay be nonempty convex subsets of a uniformly convex Banach space (X, ‖ · ‖). Let there
exist a subset D ⊆ Ax × Ay and maps F : D → Ax and f : D → Ay, such that (F(x, y), f (x, y)) ⊆ D
for every (x, y) ∈ D. Let the ordered pair (F, f ) be a cyclic contraction of type two. For an arbitrary chosen
(x, y) ∈ D the sequences {xn}∞

n=0 and {yn}∞
n=0 are Cauchy.

Proof. We will prove that {xn}∞
n=0 is a Cauchy sequence. The proof for {yn}∞

n=0 is similar.
By Lemma A5 we have that for every ε > 0 there is n0 ∈ N, so that for all m ≥ n ≥ n0 holds
the inequality ‖xm − yn‖ < d + ε.

By Lemma A3 we get limn→∞ ‖xn − yn‖ = d. According to Lemma A2 it follows that for every
ε > 0 there is N0 ∈ N, so that for all m > n ≥ N0 holds the inequality ‖xm − xn‖ < ε and consequently
{xn}∞

n=0 is a Cauchy sequence.

Lemma A7. Let Ax, Ay be nonempty subsets of a uniformly convex Banach space (X, ‖ · ‖). Let there exist
a subset D ⊆ Ax × Ay and maps F : D → Ax and f : D → Ay, so that (F(x, y), f (x, y)) ⊆ D for every
(x, y) ∈ D and the ordered pair (F, f ) be a cyclic contraction of type two. Then for an arbitrary chosen
(x, y) ∈ D and for any 1 ≤ l ≤ n there hold the inequalities ‖xn − yn‖ ≤ (α + β)lWn−l,n−l(x, y) + d.

Proof. Using Lemma A3 we get Wn,n(x, y) ≤ (α + β)Wn−1,n−1(x, y) and thus ‖xn − yn‖ ≤ (α +

β)lWn−l,n−l(x, y) + d.

Lemma A8. Let Ax, Ay be nonempty closed and convex subsets of a uniformly convex Banach space (X, ‖ · ‖).
Let there exist a subset D ⊆ Ax× Ay and maps F : D → Ax and f : D → Ay, such that (F(x, y), f (x, y) ⊆ D
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and the ordered pair (F, f ) be a cyclic contraction of type two. Then for an arbitrary chosen (x, y) ∈ D there
holds the inequalities

δ‖·‖

(
‖xn+1 − xn‖

d + (α + β)lUn−l(x, y)

)
≤ (α + β)lUn−l(x, y)

d + (α + β)lUn−l(x, y)

and

δ‖·‖

(
‖yn+1 − yn‖

d + (α + β)lUn−l(y, x)

)
≤ (α + β)lUn−l(y, x)

d + (α + β)lUn−l(y, x)
,

where Un(x, y) = max{Wn,n+1(x, y), Wn,n(x, y)} = max{‖xn − yn+1‖ − d, ‖xn − yn‖ − d}.

Proof. Using Lemma A7 we obtain

‖xn − yn+1‖ ≤ d + (α + β)lWn−l,n+1−l(x, y) ≤ d + (α + β)l max{Wn−l,n+1−l(x, y), Wn−l,n−l(x, y)}

‖yn+1 − xn+1‖ ≤ d + (α + β)l+1Wn−l,n−l(x, y) ≤ d + (α + β)l max{Wn−l,n+1−l(x, y), Wn−l,n−l(x, y)}.

Then
‖xn+1 − xn‖ ≤ ‖xn+1 − yn‖+ ‖yn − xn‖

≤ 2
(

d + (α + β)l max{Wn−l,n+1−l(x, y), Wn−l,n−l(x, y)}
)

= 2
(

d + (α + β)lUn−l,n−l(x, y)
)

.

After a substitution in (A3) with x = xn, y = yn, z = xn+1, R = d + (α +

β)l max{Wn−l,n+1−l(x, y), Wn−l,n−l(x, y)} and r = ‖xn+1 − xn‖ and from the convexity of Ax we
obtain the inequalities

d ≤
∥∥∥ xn+xn+1

2 − yn

∥∥∥
≤

(
1− δ‖·‖

(
‖xn−xn+1‖

d+(α+β)lUn−l,n−l(x,y)

)) (
d + (α + β)lUn−l,n−l(x, y)

)
.

(A12)

Thereafter the inequality δ‖·‖

(
‖xn+1−xn‖

d+(α+β)lUn−l,n−l(x,y)

)
≤ (α+β)lUn−l,n−l(x,y)

d+(α+β)lUn−l,n−l(x,y) holds.

Theorem A2. Let Ax, Ay be nonempty, closed and convex subsets of a uniformly convex Banach space
(X, ‖ · ‖). Let there exist a closed and convex subset D ⊆ Ax × Ay and maps F : D → Ax and f : D → Ay,
such that (F(x, y), f (x, y) ⊆ D for every (x, y) ∈ D. Let the ordered pair (F, f ) be a cyclic contraction of
type two. Then (F, f ) has a unique coupled best proximity point (ξ, η) ∈ Ax × Ay, (i.e., ‖η − F(ξ, η)‖ =
‖ξ − f (ξ, η)‖ = d). For any initial guess (x, y) ∈ Ax × Ay there holds limn→∞ xn = ξ, limn→∞ yn = η,
‖ξ − η‖ = d, ξ = F(ξ, η) and η = f (ξ, η).

If in addition (X, ‖ · ‖) has a modulus of convexity of power type with constants C > 0 and q > 1, then

1. A priori error estimates hold

‖ξ − xm‖ ≤ M0
q

√
max{W0,1(x, y), W0,0(x, y)}

Cd
·

q
√
(α + β)m

1− q
√

α + β
;

‖η − ym‖ ≤ N0
q

√
max{W0,1(y, x), W0,0(y, x)}

Cd
·

q
√
(α + β)m

1− q
√

α + β
;

2. A posteriori error estimates hold

‖ξ − xn‖ ≤ Mn−1
q

√
max{Wn−1,n(x, y), Wn−1,n−1(x, y)}

Cd
c;
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‖η − yn‖ ≤ Nn−1
q

√
max{Wn−1,n(y, x), Wn−1,n−1(y, x)}

Cd
c,

where Mn = max{‖xn− yn‖, ‖xn− yn+1‖}, Nn = max{‖xn− yn‖, ‖yn− xn+1‖} and c =
q
√

α+β

1− q
√

α+β
.

Proof. For any initial guess (x, y) ∈ D it follows from Lemma A6 that {xn}∞
n=0 and {yn}∞

n=0 are
Cauchy sequences. From the assumptions that (X, ‖ · ‖) is a Banach space and D is closed it follows
that there are (ξ, η) ∈ D, so that limn→∞ xn = ξ and limn→∞ yn = η.

From the inequalities, by using the continuity of the norm function ‖ · − · ‖ and Lemma A3,
we have

‖ξ − η‖ − d = lim
n→∞

‖xn − yn‖ − d = lim
n→∞

‖F(xn−1, yn−1)− f (xn−1, yn−1)‖ − d

≤ lim
n→∞

(α‖xn−1 − yn−1‖+ β‖yn−1 − xn−1‖)− (α + β)d

= lim
n→∞

(α + β) (‖xn−1 − yn−1‖ − d) = 0.

Thus ‖ξ − η‖ = d.
From the inequalities by using the continuity of the norm function ‖ ·− · ‖ and Lemma A3 we have

‖ξ − f (ξ, η)‖ − d = lim
n→∞

‖xn+1 − f (ξ, η)‖ − d = lim
n→∞

‖F(xn, yn)− f (ξ, η)‖ − d

≤ lim
n→∞

(α‖xn − η‖+ β‖yn − ξ‖)− (α + β)d = (α + β) (‖ξ − η‖ − d) = 0.

Thus ‖ξ − f (ξ, η)‖ = d. From ‖ξ − η‖ = d, according to Lemma A1 it follows that η = f (ξ, η).
From the inequalities by using the continuity of the norm function ‖ · − · ‖ and Lemma A3 have

‖η − F(ξ, η)‖ − d = lim
n→∞

‖yn+1 − F(ξ, η)‖ − d = lim
n→∞

‖ f (xn, yn)− F(ξ, η)‖ − d

≤ lim
n→∞

(α‖xn − η‖+ β‖yn − ξ‖)− (α + β)d = (α + β) (‖ξ − η‖ − d) = 0.

Thus ‖η − F(ξ, η)‖ = d. From ‖ξ − η‖ = d, according to Lemma A1 it follows that ξ = F(ξ, η).
We will prove that the coupled best proximity points are unique.
Let us suppose that there exists (ξ∗, η∗), such that ‖η∗ − F(ξ∗, η∗)‖ = ‖ξ∗ − f (ξ∗, η∗)‖ = d and

‖ξ − ξ∗‖+ ‖η − η∗‖ > 0. From (A2) we get the inequality

‖F(F(ξ∗, η∗), f (ξ∗, η∗))− f (ξ∗, η∗)‖ ≤ α‖η∗ − F(ξ∗, η∗)‖+ β‖ξ∗ − f (ξ∗, η∗)‖+ (1− (α + β))d
= αd + βd + (1− (α + β))d = d

From ‖ξ∗ − f (ξ∗, η∗)‖ = d, according to Lemma A1 it follows that ξ∗ = F(F(ξ∗, η∗), f (ξ∗, η∗)).
By analogous arguments we get that η∗ = f (F(ξ∗, η∗), f (ξ∗, η∗)). Let us suppose that ‖ξ∗ − η∗‖ > d, then

‖ξ∗ − η∗‖ = ‖F(F(ξ∗, η∗), f (ξ∗, η∗))− f (F(ξ∗, η∗), f (ξ∗, η∗))‖
≤ (α + β)‖F(ξ∗, η∗)− f (ξ∗, η∗)‖+ (1− (α + β))d
≤ (α + β)2‖ξ∗ − η∗‖+ (1− (α + β))(1 + (α + β))d
< (α + β)2‖ξ∗ − η∗‖+ (1− (α + β))(1 + (α + β))‖ξ∗ − η∗‖ < ‖ξ∗ − η∗‖,

(A13)

a contradiction and thus ‖ξ∗ − η∗‖ = d. Using that ‖η∗ − F(ξ∗, η∗)‖ = ‖ξ∗ − f (ξ∗, η∗)‖ = d and
Lemma A1 we get that η∗ = f (ξ∗, η∗) and ξ∗ = F(ξ∗, η∗). Let us suppose that d < max{‖η− ξ∗‖, ‖ξ−
η∗‖}. Then

‖ξ∗ − η‖ = ‖F(ξ∗, η∗)− f (ξ, η)‖ ≤ α‖η − ξ∗‖+ β‖ξ − η∗‖+ (1− (α + β))d

< α‖η − ξ∗‖+ β‖ξ − η∗‖+ (1− (α + β))
β‖ξ − η∗‖+ α‖η − ξ∗‖

α + β

=
β‖ξ − η∗‖+ α‖η − ξ∗‖

α + β
.

(A14)
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By similar arguments we get

‖ξ − η∗‖ = ‖F(ξ, η)− f (ξ∗, η∗)‖ ≤ α‖ξ − η∗‖+ β‖η − ξ∗‖+ (1− (α + β))d

< α‖ξ − η∗‖+ β‖η − ξ∗‖+ (1− (α + β))
α‖ξ − η∗‖+ β‖η − ξ∗‖

α + β

=
α‖ξ − η∗‖+ β‖η − ξ∗‖

α + β
.

(A15)

After summing (A14) and (A15) we get

‖ξ∗ − η‖+ ‖ξ − η∗‖ < ‖ξ − η∗‖+ ‖η − ξ∗‖, (A16)

a contradiction, i.e., d = ‖η − ξ∗‖ = ‖ξ − η∗‖. From Lemma A2, ‖η − ξ‖ = d we obtain that ξ∗ = ξ

and η∗ = η.
(1) The uniform convexity of X ensures that δ‖·‖ is strictly increasing and therefore its inverse

function δ−1
‖·‖ exists and is strictly increasing. By Lemma A8 we have

‖xn − xn+1‖ ≤
(

d + (α + β)lUn−l(x, y)
)

δ−1
‖·‖

(
(α + β)lUn−l(x, y)

d + (α + β)lUn−l(x, y)

)
. (A17)

By the inequality δ‖·‖(t) ≥ Ctq it follows that δ−1
‖·‖(t) ≤

( t
C
)1/q. From (A17) and the inequalities

d ≤ d + (α + β)lUn−l(x, y) ≤ max{Pn−l,n−l(x, y), Pn−l,n−l+1(x, y)}

we obtain

‖xn − xn+1‖ ≤
(

d + (α + β)lUn−l(x, y)
)

q

√
(α + β)lUn−l(x, y)

C
(
d + (α + β)lUn−l(x, y)

)
≤ max{Pn−l,n−l(x, y), Pn−l,n−l+1(x, y)} q

√
Un−l(x, y)

Cd
q
√
(α + β)l .

(A18)

We have proven the existance of a unique pair (ξ, η) ∈ Ax × Ay, so that ‖ξ − F(ξ, η)‖ = d, where
ξ is a limit of {xn}∞

n=1 for any (x, y) ∈ Ax × Ay.
After a substitution with l = n in (A18) we get the inequality

∞

∑
n=1
‖xn − xn+1‖ ≤ max{‖x0 − y0‖, ‖x0 − y1‖}

q

√
U0(x, y)

Cd

∞

∑
n=1

q
√
(α + β)n

= max{‖x0 − y0‖, ‖x0 − y1‖}
q

√
U0(x, y)

Cd
·

q
√

α + β

1− q
√

α + β

and consequently the series ∑∞
n=1(xn − xn+1) is absolutely convergent. Consequently for any m ∈ N

there holds ξ = xm −∑∞
n=m (xn − xn+1) and therefore we get the inequality

‖ξ − xm‖ ≤
∞

∑
n=m
‖xn − xn+1‖ ≤ max{‖x0 − y0‖, ‖x0 − y1‖}

q

√
U0(x, y)

Cd
·

q
√
(α + β)m

1− q
√

α + β
.

The proof for ‖η − ym‖ can be done in a comparative mold.
(2) Simply to fit some formulas in the text field we put Mn = max{‖xn − yn‖, ‖xn − yn+1‖}. After

substituting in (A18) with l = 1 + i we get

‖xn+i − xn+i+1‖ ≤ Mn−1
q

√
Un−1(x, y)

Cd

(
q
√

α + β
)1+i

. (A19)
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From (A19) we get the inequality

‖xn − xn+m‖ ≤
m−1

∑
i=0
‖xn+i − xn+i+1‖ ≤

m−1

∑
i=0

Mn−1
q

√
Un−1(x, y)

Cd
q
√
(α + β)1+i

= Mn−1
q

√
Un−1(x, y)

Cd

m−1

∑
i=0

q
√
(α + β)1+i

= Mn−1
q

√
Un−1(x, y)

Cd
· 1− q

√
(α + β)m

1− q
√

α + β

q
√
(α + β),

(A20)

and after letting m→ ∞ in (A20) we obtain

‖xn − ξ‖ ≤ max{‖xn−1 − yn−1‖, ‖xn−1 − yn‖}
q

√
Un−1(x, y)

Cd

q
√

α + β

1− q
√

α + β
.

By a similar technique we can prove ‖yn − η‖.
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