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Abstract: The transition of natural landscapes to agricultural uses has resulted in severe loss of soil
organic carbon, significantly contributing to CO2 emissions and rising global temperatures. However,
soil has the largest store of terrestrial carbon (C), a considerable sink and effective strategy for climate
change mitigation if managed properly. Cover crops (CC) and no-till (NT) management are two
management strategies that are known to increase percent organic carbon (%OC); however, adoption
of these practices has been low in the mid-South due to lack of region-specific research and resistance
to unproven practices. Therefore, the purpose of this study was to evaluate the impacts of CC-NT
treatments in soybean cropping systems on soil percent organic carbon (%OC) and CO2 flux following
long-term implementation. Results showed significantly greater %OC in NT (1.27% ± 0.03) than
reduced till (RT; 1.10% ± 0.03; p < 0.001) and greater in both CC (rye: 1.23% ± 0.03, rye + clover:
1.22% ± 0.03) than no cover (1.11% ± 0.03; p < 0.001). Bacterial abundance (p = 0.005) and pH
(p = 0.006) were significant predictors of %OC. There was no overall significant difference in CO2 flux
between tillage or CC treatments; however, there were significant differences between NT and RT
in July of 2020 when %RH increased (p < 0.001). Bacterial abundance negatively impacted CO2 flux
(p < 0.05), which contradicts most studies. The rate of proportional change and pattern of variability
in C pools suggested loss of %OC in RT treatments that were not apparent when considering %OC
alone. The results of this study provide valuable insight into C turnover and the effectiveness of CC
use in the Mid-South to increase soil C stocks.

Keywords: carbon; no-till; cover crops; soil carbon sequestration; conservation agriculture;
carbon measurement

1. Introduction

Land use changes from natural landscapes to agriculture and pasture lands account
for 32% percent of carbon dioxide (CO2) emissions globally [1]. Conventional agricultural
practices can deplete historic soil carbon (C) stocks by as much as 60%, largely because
of poor soil practices that reduce C without an equivalent C input, which ultimately
lead to declines in soil health and productivity as well as increased C emissions into the
atmosphere [2]. However, soil has the largest store of terrestrial C and the potential to store
0.4–5 Gt C/year, a considerable C sink and effective strategy for climate change mitigation
if managed properly [3–5].

To that end, sequestering soil C has gained attention globally with the rise of C trading,
which provides producers and landowners a market-based financial incentive to minimize
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greenhouse gas emissions [6]. With an increased economic value placed on soil organic
carbon, the implementation of agricultural practices that sequester C are critical for climate
change mitigation and the financial well-being of the growers who invest in C sequestration
strategies. Soil greenhouse gas (GHG) mitigation is dependent upon storing C in stable
form, which is typically achieved by the adsorption of C compounds into mineral soil and
low rates of microbial respiration [7]. However, building labile fractions of soil organic
carbon are essential for effective nutrient cycling, soil biological activity and the creation of
soil aggregates, which are all characteristics that contribute to soil health, but often result in
increased soil respiration [8–10]. Thus, agriculture is dually challenged to promote C flow
through the soil system for agronomic vitality and prioritize soil C persistence for global
climate mitigation goals.

Cover crops (CC) and no-till (NT) are two conservation management practices that
increase %OC and provide soil health benefits by increasing microbial diversity and activ-
ity [11], suppressing weeds, preventing erosion, and increasing moisture retention [12,13].
Under certain circumstances, and when CC are used in combination with no-till (NT) man-
agement, C in agriculture fields can increase by as much as 70% [14]. However, differences
in CC species, management practice implementation, and regional climate create difficulties
in predicting the effect of conservation practices on soil C stocks. For example, Zablotow-
icz et al. [15], in a study of no-till combined with CC, found this combination of treatments
to have the greatest accumulation of total organic carbon but Chu et al. [16] found that
soil organic carbon did not significantly differ across treatments and was comparable to
baseline measurements. Additionally, Aldridge et al. [17] found that CC could only explain
5% of the variation in soil total carbon between treatments.

Most studies addressing changes in soil organic carbon following NT and CC manage-
ment aim to detect differences between treatment groups, with the intent to determine the
effectiveness of the management practice towards various agronomic goals and ecosystem
services. While this framework is informative when addressing soil health, it is less helpful
if the objective is to sequester C for use in a C trading system. For example, an increase
in percent organic carbon (%OC) following CC application is usually accompanied by
a simultaneous increase in CO2 emissions [18–20]. Therefore, the observed increases in
%OC do not directly translate into C stabilization, but are an indication increased soil
health. Alternatively, processed-based models, like those used in C trading markets, use
soil characteristics, climate, and management to predict C sequestration potential. This
approach requires complex algorithms and many time measurements to place a value on
tons of CO2 mitigated from the atmosphere. These modeling approaches are the subject
of much controversy, have considerable uncertainty, and do not illustrate incremental
shifts in soil organic carbon over short time frames [21–23] and thus are impractical for
producers designing an adaptive management plan which must be tailored and adjusted
to site-nuisances.

These limitations become of particular concern in the mid-South, USA where a lack
of research specific to regional nuisances has resulted low adoption rates of conservation
management, despite National Resources Conservation Service (NRCS) financial assis-
tance programs [24]. The Mississippi Alluvial Valley (MAV) region of the mid-South is
characterized by intensive agriculture land use, historically alluvial soils, high rainfall
(1375 mm/year) and above freezing winter temperatures (average high 16.1 ◦C, low 2.2 ◦C),
all factors that promote rapid decomposition of plant material and CO2 emissions via
microbial respiration.

If CC and NT management are to be integrated into the mid-South, studies must
directly address both differences in soil organic carbon between treatments and provide
readily transferable information on changes to C pathways following management imple-
mentation. To address these limitations of site-specific C assessment, this study proposes
a conceptual method whereby, measures of C pool turnover, via rate and proportional
variability in C pools was assessed using multivariate measures [25], indicating whether
shifts in C pool composition are directional (i.e., towards %OC accumulation or loss).
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We describe site-specific changes in C pools relative to each other which can be rapidly
interpreted and translated into action, either by management that continues to support C
accumulation or by shifting strategies towards those that minimize C emissions.

Thus, this study had three purposes towards producer adoption of conservation man-
agement: (1) to assess the impacts of CC-NT treatments in soybean cropping systems on
soil %OC and CO2 Flux after several years of implementation, (2) assess the relationship of
bacterial abundance, fungal abundance, soil moisture, soil temperature, cation exchange ca-
pacity (CEC), percent relative humidity (%RH) and pH on %OC and CO2 Flux, respectively,
and (3) model the directional change of site-specific C pools under different management.
The results of this research provide valuable insight into soil C cycling and the effectiveness
of CC use in the Mid-South to increase soil C stocks.

2. Materials and Methods
2.1. The Study Site and Design

The study was conducted in 2019 and 2020 at the USDA-ARS Crop Productions Sys-
tems Research Unit farm near Stoneville, Mississippi (MS), USA. In fall 2000, experimental
plots were established under cotton (Gossypium hirsutum L.) production in a split-block
design as described in Locke et al. [26]. Within each of four blocks, six treatment plots
(n = 24) were constructed as 8 m wide and 32 m long (0.026 ha) with 8 1 m wide raised-bed
rows in each plot. No-tillage or reduced tillage (NT or RT) was the main effect, with CC
(abruzzi rye (Secale cereale), balansa clover (Trifolium michelianum) or none) as the split effect.
Cotton was planted as the cash crop until 2007. Since spring of 2008 to present, Asgrow
AG4632 variety soybean (Glycine max) was planted as the cash crop. The experimental area
with continuous soybeans did not include a CC from 2008 to 2014, but tillage treatments
from the previous experiment (RT or NT) were maintained. Cover crop treatments were
added again in 2014 with elbon rye (Secale cereale), crimson clover (Trifolium incarnatum), or
no cover [27,28]. In 2017 until present, the following cover crop treatments were established:
elbon rye (RY), elbon rye+crimson clover mix (RC) and no cover (NC). Tillage treatments
have remained the same since plot establishment in 2000. The combinations of treatments
in the present study were as follows: NTxRY, NTxRC, NTxNC, RTxRY, RTxRC, and RTxNC.
In late April of 2019 and 2020 when rye CC reached peak growth, the CC was terminated
with two applications of Gramoxone SL2.0 (Syngenta, Greensboro, NC, USA) 2 weeks apart
at a rate 0.77 kg ha−1 and rolled for cash crop planting. Potash was applied to all treatment
plots in January 2020.

2.2. Cover Crop Biomass and Decomposition Rate

Biomass was sampled by selecting 2 random locations within each plot and cutting
all plant residue all vegetation within a 1 m2 area. Volunteer vegetation was used for NC
plots. The most common volunteer vegetation in NC plots was crimson clover (Trifolium
incarnatum) and common purslane (Portulaca oleracea). Plant biomass from each location
was dried at 105 ◦C and the dry mass weight was measured. Twenty-four hours after CC
termination, 150 g of CC biomass was cut and placed in litterbags measuring 20.23 cm
× 20.23 cm made from fiberglass mesh screen (0.508 mm mesh size) [29]. Two litter bags
containing CC biomass (or volunteer vegetation) from their prospective plots were stapled
closed and then secured on the soil surface (approximately mid-May). There was a total of
48 litter bags, two litter bags per plot. Litter bags were collected in September, dried and
weighed. The weight of the litterbags from each plot was averaged (We) and then divided
by the starting weight (Wi; 150 g) to obtain a decomposition rate. The rate was multiplied
by the initial CC biomass (CCi) to estimate remaining plant residue at the end of the season
(CCe) within each plot (Equation 1). The midpoint between the starting and final biomass
was used as a proxy for mid-season CC biomass in the directional change model.

Wi
We

× CCi = CCe (1)
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2.3. Soil Sampling

Two soil samples per plot were taken, one from beneath each duplicate litter bag loca-
tion with soil cores (3.8–4 cm diameter × 10 cm depth) collected at the date of litterbag imple-
mentation (approximately mid-May 2019 and 2020) and once a month through September
of each year. Cores from the same plot were consolidated into one composite sample per
plot. There were 24 samples per sampling event (5 sampling events, May–September),
120 samples per year, for a total of 240 samples over two years (2019 and 2020). The initial
sampling event (in May after CC termination) occurred before litter bags were secured to
the soil surface; all subsequently collected samples were taken from the soil directly under
the litterbag by lifting the bag. Samples from each plot were placed in a sterile plastic bag
and stored on ice (~4 ◦C) for transport back to USDA Genetics and Sustainable Agriculture
Unit in Starkville, MS. A portion of each soil sample was separated for soil moisture content
analysis. Soil moisture was assessed using the gravimetric method: 10 g of field-moist soil
was weighed, followed by drying at 104 ◦C for 24 h and reweighing. Approximately 5 g
of field-moist soil was separated and sent to Mississippi State University Soil Testing Lab
to be analyzed for %OC using an automated dry combustion Vario Max Cube Elementar
C/N analyzer (Elementar Americas Inc, Mt. Laurel, NJ). The remaining soil sample was
transferred to a 473 mL (1 pint) container and sent to Pennsylvania State University Soil
Fertility Lab Soil for analysis of pH and cation exchange capacity (CEC) by the Mehlich
3 (ICP) test.

2.4. CO2 Flux

Carbon dioxide flux was determined for each plot using a LI-COR LI-8100A soil flux
system. One PVC collar (20 cm diameter) was installed in the middle of each plot by
inserting the collar into the soil leaving approximately 5 cm of the collar above the surface.
Collars were leveled at insertion. The collars were established in the center of the plot
within the planting bed. Four-point collar height measurements were taken from the soil
surface to the top of the collar before each CO2 flux reading to determine the chamber
volume. Final CO2 flux was adjusted for moisture, temperature and chamber volume
using program SoilFluxPro (Version 4.0.1) [30–32]. Measurements were taken once a month
between 9:00 AM–11:00 AM, beginning five days after planting and continuing throughout
growing season (approximately May, June, July, August and September 2019 and 2020).

2.5. Bacterial and Fungal Abundance

Quantitative qPCR can be used as an indicator of soil biological properties [33]. Total
microbial DNA was extracted from soil samples (0.25 g soil) using MP Biomedical FastDNA
Spin Kits on a FastPrep-24 homogenizer. DNA was quantified and subjected to serial
dilution(s) (10- to 100-fold) prior to polymerase chain reaction (PCR) assays to avoid
inhibitory co-contaminants. Quantitative PCR (qPCR) assays for 16 S rRNA (16 S) [34–36]
and 18 S rRNA [37] were conducted using previously identified cycling and reaction
conditions. An Applied Biosystems StepOnePlus Real-Time PCR system was used in all
qPCR assays. All qPCR assays were conducted in duplicate using ABI PowerSybr PCR Mix
(Applied Biosystems), amplification signals were quantified with a PCR-based standard
curve and confirmed using melt-curve analysis; controls included negative-template and
inhibition controls. Samples were only recorded as positive when both duplicates exhibited
amplification and melt-curve signal. Quantitative PCR results were corrected for soil
moisture and reported as genomic units per g (GU g−1).

2.6. Environmental Conditions

Hobo sensors were installed within 4 treatments plots (NT-cover, NT-NC, RT-cover and
RT-NC). To account for soil type differences, hobo sensors were strategically placed in the
second and the last block (Figure S1) where a plot with cover was next to NC under the same
tillage treatment (Figure S1; plot 7–8 and 23–24). Because both treatments contained a rye
CC, temperature differences between RY and RC were unlikely [38], therefore temperature
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treatments are referred to as cover or no cover. Soil temperature and %RH was measured
at 15 s intervals beginning in May through September in 2019 and 2020, when they were
removed at the last sampling event of the year, prior to harvest. Sensors for %RH were
installed in June of 2019, thus data for May 2019 were unavailable. Soil moisture was
determined from each sample using the gravimetric method.

3. Statistical Analysis

All statistical analysis were conducted in Program R [39]. Prior to analysis, soil
parameters were checked for general multivariate frequentist test assumptions including
homogeneity of variance, multivariate normality and outlier detection. Generalized linear
mixed models (GLMMs) were used to assess the relationship between management (CC
and tillage regime), month and year on %OC, CO2 flux, CC biomass, soil moisture and
soil temperature, respectively. The interaction of tillage (NT or RT), CC (RY, RC, or NC),
month and year were fixed effects and block was used as a random effect to account for the
gradient of soil types observed in the study plots. Each model was checked for goodness
of fit (homogeneity of variance, normality of residuals, residual distribution, normality of
random effect and collinearity). Tukey’s HSD post hoc test was used to identify pairwise
differences between treatments. Alpha level was defined at 0.05. Marginal differences were
considered at p-values 0.05–0.10.

In order to assess the relationship of soil and environmental conditions on %OC and
CO2 flux, respectively, a GLMM was fit to the data. We considered bacterial abundance
(16 S), fungal abundance (18 S), soil moisture, soil temperature, cation exchange capacity
(CEC), and pH as potential explanatory effects because they are often included in processed-
based models of carbon sequestration [7,21,40,41]. In checking for multicollinearity, 16 S
was found to be significantly positively correlated with 18 S (r = 0.55, p < 0.05) and moisture
(r = 0.63, p < 0.05). Parameters pH and CEC also were found to have significant positive
correlations (r = 0.17, p < 0.01). Therefore, 16 S, pH and temperature were the only variables
used as fixed effects, and block was used as a random effect. Parameter estimates with 95%
confidence intervals (CI) were calculated to assess the effect size. Covariates were centered
and scaled prior to analysis.

Multivariate metrics were used to model C turnover in treatment groups along a
temporal gradient. Prior to analysis, the data were scaled to be within range bounds
using the “preProcess” command in package ‘caret’ [42]. Analysis was conducted in
program R using package ‘codyn’ [43] and ‘vegan’ [44]. Change in the proportion of CC
biomass, %OC and CO2 flux between treatments was described in a time-lag analysis using
Euclidian distances, calculated on pairwise C pools across 6 time points (May 2019, July
2019, September 2019, May 2020, July 2020 and September 2020). Because measurements of
CC biomass were only available for 3 months (May, July and September), June and August
were additionally omitted from the %OC and CO2 flux dataset. Distance values were used
in a regression against time intervals. The slope of the relationship describes the directional
rate of change in C pools within each treatment. The number of points in the regression is
the number of sample pairs and are therefore pseudo-replicated. Thus, the interpretation
was on the shape and slope of the pattern, rather than the significance of the regression
line. To visually explore the change in pools of C over time, relative abundance of %OC,
CO2 flux and CC biomass was calculated within each time point and treatment.

Using the relative abundances calculated above, the ratio of %OC to CO2 flux (%OC:
CO2) was determined and then a GLMM was fit using cover and tillage as fixed effects
and block as a random effect. Tukey’s post hoc pairwise comparisons was used to identify
pairwise differences in %OC: CO2 between treatments. The full data set (all sampling time
points) were used in the analysis to balance comparisons between %OC: CO2 and %OC.
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4. Results
4.1. Environmental Conditions

Mean soil temperatures for 2019 and 2020 showed significant differences in treatments,
months and years (F39,143130 = 1203, R2 = 0.24, p < 0.05; Figure 1A). Tukey’s post hoc
comparisons showed the overall temperature in cover to be significantly lower than no cover
(p < 0.01) and NT to be significantly greater than RT (p < 0.01), although these differences
varied across time (Figure 1A). The slope of the trend of soil moisture was positive in NT,
May, September, 2020, RCxJuly, RCxJune, Septx2020 and Julyx2020. The slope of the trend
of soil moisture was negative with Mayx2020 [45]. Tukey’s post hoc comparisons showed
significantly higher moisture in 2019 than 2020 and higher in NT than RT (p < 0.001; Figure 1B)
but was not different between covers treatments. Percent relative humidity was significantly
different between months and years (F8,66650 = 619, R2 = 0.06, p < 0.01; Figure 1C).
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Figure 1. Soil Temperature, Soil Moisture and Relative Humidity, soil temperature (A), soil mois-
ture (B), and relative humidity (C).

Changes in soil temperature (A), soil moisture (B), and relative humidity (C) in each
treatment (NC = no cover, RC = rye + clover cover crop, RY = rye cover crop; NT = no till,
RT = reduced till) over the growing season (May, June, July, August (Aug), September (Sept)
during the study years (2019 and 2020). Treatment plots located were located in Stoneville,
MS, USA.

4.2. Soil Organic Carbon

No-till had a positive effect on %OC as well as both covers (RC and RY) in the month
of September (R2:0.51; Table S1). Tukey’s pairwise comparisons revealed that %OC was
significantly higher in NT (1.27% ± 0.03) than RT (1.10% ± 0.03; p < 0.01) and greater in
both CC (RY: 1.23% ± 0.03, RC:1.22% ± 0.03) than NC (1.11% ± 0.03; p < 0.01; Table 1,
Figure 2). There were marginal differences between 2019 and 2020 (p < 0.07; 2019: 1.2%,
2020: 1.15% ± 0.02). When assessing %OC relationships with soil characteristics, bacteria
abundance had a significant positive effect on %OC, while pH had a significant negative
effect (R2:0.97; Table S2; Figure 3).

Table 1. Predicted %OC within treatments.

Tillage Cover Mean 2.5% CI 97.5% CI Sig Difference

NT NC 1.21 1.11 1.31 A
RC 1.31 1.21 1.41 A
RY 1.28 1.18 1.38 A

RT NC 1.01 0.91 1.11 B
RC 1.12 1.02 1.22 A
RY 1.17 1.07 1.27 A

Model predicted values of percent organic carbon (%OC) with 95% confidence intervals (CI) within study
treatments (NT = no-till, RT = reduced till, NC = no cover, RC = rye + clover cover crop, RY = rye cover crop) in
study plots located in Stoneville, MS, USA. Significant differences (Sig difference) in Tukey’s post hoc pairwise
comparisons are denoted by lack of a shared letter.
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Figure 3. Percent Organic Carbon Parameter Effect Size. Double asterisk (**) denotes a
significant effect.

Model predicted values of percent organic carbon (%OC) measured over growing season of
study years (May-September 2019 and 2020) within each combination of treatments (NT = no-till,
RT = reduced till, NC = no cover, RC = rye + clover cover crop, RY = rye cover crop). Error bars
denote standard error. Treatment plots were located in Stoneville, MS, USA.

Parameter (bacterial abundance, soil temperature and pH) effect size on percent or-
ganic carbon (%OC) in study plots located in Stoneville, MS, USA. Solid lines denote 95%
confidence intervals. p-values are reported above confidence intervals in each correspond-
ing parameter. Double asterisk (**) denotes a significant effect.
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4.3. CO2 Flux

No-till and the interaction of May, July and Septx2020 had a positive effect on CO2 flux,
while May, June, July, September and 2020 had a negative effect (R2:0.49, Table S3). Tukey’s
pairwise comparisons revealed no significant differences between tillage or CC treatments,
however CO2 flux was significantly higher in 2020 (p < 0.001; 481 mg CO2 m/h ± 11.1)
than 2019 (387 mg CO2 m/h ± 11.1). Carbon dioxide flux was also significantly dif-
ferent between months (p < 0.03; Figure 4) with highest emissions occurring in July
(492 mg CO2 m/h ± 13.1) and lowest emissions in September (377 mg CO2 m/h ± 13.1).
There were marginal differences between NTxRY and RTxRY in August of 2019 and be-
tween NT and RT in all cover treatments in July of 2020 (p = 0.11; Figure 4). When
assessing CO2 flux relationships with soil characteristics, bacterial abundance and pH had
a significant negative effect on CO2 flux (R2:0.96; Table S2; Figure 5). Bacterial and fungal
abundances are depicted in Figure 6.

Figure 4. CO2 flux within treatments.
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Figure 6. Bacterial and Fungal Abundance. Model predicted values of Bacterial (A) and Fungal
(B) abundances in each treatment combination within each combination of treatments (NT = no-till,
RT = reduced till, NC = no cover, RC = rye + clover cover crop, RY = rye cover crop) over time
(May–September 2019 and 2020) reported in [45]. Error bars depict standard error of predicted values.
Treatment plots were located in Stoneville, MS, USA.

Model predicted values of carbon dioxide (CO2) flux measured over growing sea-
son of study years (May-September 2019 and 2020) within each combination of treat-
ments (NT = no-till, RT = reduced till, NC = no cover, RC = rye + clover cover crop,
RY = rye cover crop). Error bars denote standard error of predicted values. Treatment plots
were located in Stoneville, MS, USA.

4.4. CC Biomass

Rye and RC had a positive effect on CC biomass. There was a marginal positive effect of
RCxMay and negative effect of RCxSept and RCxSeptxYear. The YearxCC interaction also had
a negative effect (R2:0.84, Table S4). Tukey’s pairwise comparisons revealed significantly more
CC biomass in 2019 (309 g/mg2 ± 6.01) than in 2020 (197 g/mg2 ± 6.01). Rye + clover CC
had the greatest CC biomass (366 g/mg2 ± 12.4) followed by RY (285 g/mg2 ± 6.01) and NC
(110 g/mg2 ± 12.4). In 2020, there was substantial volunteer CC biomass in the NC plots, but
still significantly less cover than the intended CC plots. There was no significant difference in
CC biomass when comparing biomass in NT and RT.

4.5. Directional Change of C Turnover

Carbon pools and temporal variability showed variability among treatment groups
(Figure 7). Plots that included a cover crop (RY and RC) showed a more positive directional
change than those without (Table 2, Figure 7), that is, the rate of change (b = slope) increased
with the addition of a CC (Table 2), indicating a reordering pattern of C pool abundance.
Directional change was reflected in the relative abundance of each C pool over time
(Figure 8). NTxRT and NTxRY displayed temporal changes favoring a dominate %OC pool,
meaning that the relative abundance of %OC was greater than the relative abundance of
CO2 flux. All RT treatment combinations suggested a dominating CO2 flux pool (Figure 8).
NTxNC showed no change in C pools (Figure 8) which is consistent with a neutral slope (b).
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Figure 7. Directional Change of Carbon Pools. Time lag regressional analysis of composition change
in carbon (C) pools on different treatment combinations treatments (NT = no-till, RT = reduced till,
NC = no cover, RC = rye + clover cover crop, RY = rye cover crop). Differences in C composition are
characterized by Euclidean distances, which are calculated on pair-wise C pools across the entire
time series intervals (May, July, September 2019 and 2020). Plots that included a cover crop (RY and
RC) showed stronger directional change than those without (NC). Positive slopes indicate that early
time points of C pool composition are more dissimilar to time points further away than those closer
together, a negative slope indicates that early time points are more similar to points far away than
close, and a neutral slope indicates a no pattern/change in dissimilarity. Treatment plots were located
in Stoneville, MS, USA.

Table 2. Rate of Directional Change in C Pools.

Tillage Cover b

NT NC 0.0229
RC 0.23
RY 0.169

RT NC −0.16
RC 0.213
RY 0.165

Rate of directional change in C pools in study treatments (NT = no-till, RT = reduced till, NC = no cover,
RC = rye + clover cover crop, RY = rye cover crop). Slopes (b) of regression time-lag analysis indicate C pools
reordering over time. Treatment plots were located in Stoneville, MS, USA.

Tillage and RC had a significant positive effect on %OC:CO2 (R2c = 0.78; Table S5).
Tukey’s pairwise comparisons showed RT to be significantly lower than NT (p < 0.01),
which suggests %OC loss. Both CC treatments showed significantly higher ratios than NC
(p < 0.01), suggesting %OC accumulation in plots with cover, which is consistent with the
directional change of C pools. When comparing the interaction of tillage and CC, %OC:CO2
showed NTxRY and NTxRC to be significantly greater than RTxRC (p < 0.01). The
same relationship was not observed when examining differences in %OC alone. Likewise,
there was no significant difference between %OC:CO2 RTxRC and RTxNC (p = 0.25),
but a significant difference was observed when comparing the treatments %OC (Table 1).
Predicted %OC:CO2 ratios can be found in Table 3.
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Figure 8. Changes in Carbon Pool Abundances. Figure 8 depicts changes in relative abundances
(percentages shown) of each carbon (C) pool (percent organic carbon (%OC), carbon dioxide (CO2)
Flux and cover crop (CC) biomass) within each treatment combination (NT = no-till, RT = reduced till,
NC = no cover, RC = rye + clover cover crop, RY = rye cover crop) at each month (M = May, J = July,
S = September) in the study years (19 = 2019, 20 = 2020). Treatment plots were located in Stoneville,
MS, USA.

Table 3. Predicted %OC:CO2 within Treatments.

Tillage Cover Mean 2.5% CI 97.5% CI Sig Difference

NT NC 0.98 0.64 1.32 ABab
RC 1.29 0.95 1.63 Bb
RY 1.14 0.80 1.48 ABb

RT NC 0.48 0.14 0.82 aC
RC 0.78 0.44 1.12 AaC
RY 0.87 0.53 1.21 AB

Model predicted values of the ratio of percent organic carbon to carbon dioxide flux (%OC:CO2) with
95% confidence intervals (CI) within study treatments (NT = no-till, RT = reduced till, NC = no cover,
RC = rye + clover cover crop, RY = rye cover crop) in study plots located in Stoneville, MS, USA. Ratios were
determined from estimated relative abundances. Significant differences (Sig difference) in Tukey’s post hoc
pairwise comparisons are denoted by lack of a shared letter and letter case.

5. Discussion
5.1. Management Practice Effects on %OC and CO2 Flux

A %OC increase in plots managed with NT and CC is consistent with other studies
from the region [26,46], where %OC increased in all plots that included CC. Cover crops
provide an additional carbon source to the cropping system, increasing %OC as CC biomass
degrades, echoed in the 3.5–27.3% difference in OC g kg−1 in study plots that included
a CC compared to plots without. In a regionally comparable study of CCs conducted in
Louisiana, USA, Sanchez et al. [46] looked at the effects of CC and a variable N fertilizer
rate on %OC. They found a 35% increase in %OC g kg−1 after only two years, suggesting
the degree of %OC increase will be influenced by other factors, not just time (i.e., additional
management, climate and edaphic properties). In a recent article by Daryanto et al. [19],
ecosystem services of CC were quantitatively synthesized. It was found that CC consis-
tently increase %OC concentration in soil by at least 9%, regardless of climatic region and
management, indicating that CC are a positive practice for %OC accumulation under most
agronomic conditions.

Soil organic carbon is highly dynamic and its residence time in soil will depend on
soil biological and physical properties as well as climate conditions [47]. In this study,
%OC was negatively affected by soil pH and positively affected by bacterial abundance.
Generally, %OC and pH have a negative relationship, which has been documented at
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various landscape scales [23,48]. When organic matter decomposes (e.g., CC residue),
organic acids are released which lowers pH. Additionally, slight increases in pH can
activate bacterial populations that are dormant at a lower pH, resulting in decomposition
of organic matter and a %OC loss. Soil bacteria (and other microorganisms) contribute to
the degradation and mineralization of organic matter as well as the to the generation of
new organic metabolites. The produced metabolites form strong chemical bonds with the
mineral soil matrix, increasing stable soil C [41,49,50]. Counter to most statistical models
that use soil temperature to predict %OC [7,51], temperature was not a significant predictor
of %OC in the study plots. This may be because soil temperatures were mean values
over a month period, which limits predictive power. Future studies should incorporate
continuous temperature and measurements over time to fully capture their influence over
%OC in the study system.

Studies of CC influence on CO2 flux generally predict increased GHG emissions
because of increased decomposition of organic matter by soil microbes. However, no overall
difference in CO2 flux was found between CC treatments. Romdhane et al. [52] found that
management of CC had a larger influence on soil microbial dynamics than the addition of
CC alone. The degree that CC residue comes into contact with soil through rolling, tilling,
or standing, will shift rates of decomposition and mineralization. We hypothesize that
significant differences in CO2 flux were not observed because there was minimal CC contact
with soil after termination and there was substantial volunteer vegetation growth in NC
plots. Changes in CO2 flux between treatments may be observed post-harvest, when RT
treatments incorporate residue, therefore future studies should include CO2 flux measures
for a full year.

While overall there was no difference in CO2 flux between treatments, CO2 flux was
lower in NT in July of 2020 when compared to RT. Percent relative humidity was also high
that month, which has been linked to faster decomposition rates and an increase in CO2
flux [53]. Interestingly, bacterial abundance had a negative effect on CO2 flux, which was
reflected in greater abundances of bacteria and fungi in NT plots in July of 2020. This inverse
relationship is counter to most studies where an increase in microbial activity is generally
associated with higher CO2 emissions [18,19,54]. We postulate two reasons for this: (1) In
July 2020, soil temperature spiked and soil moisture declined, potentially triggering a
stress response in soil microorganisms, thereby increasing the proportion of metabolically
dormant bacteria. Dormant bacteria do not respire. Since bacterial and fungal abundance
was measured as rRNA detection, abundances reflect presence of microorganisms, not
microbial activity. (2) No-till promotes microbial communities that employ anaerobic
respiration. In Firth [45] it was found that NT plots had different bacteria community
composition and lower diversity than RT which was attributed to low O2 conditions in
heavy clay soils. Because only CO2 flux was measured, we cannot determine if a microbial
community shift towards facultative anaerobes that favor different processes of alternative
terminal electron acceptors occurred. This would potentially result in increased methane or
nitrous oxide emissions. It’s likely that both postulates are contributing to the observed
relationship of CO2 flux and microbial abundance. We conclude that NT management on
MAV clay soils may help mitigate CO2 flux when %RH is high, but there is considerable
uncertainty in the mechanism and alternative outcomes.

5.2. Directional Change of C Turnover

Measures of C turnover are more sensitive to temporal shifts in C pool composition
than when assessing each pool individually. When examining directional change of C
(or turnover), a positive slope, as seen in treatment combinations that included CCs (RY
or RC), indicates that there are proportional shifts in C pools that are directional, that is,
measured pools are reordering themselves through time towards compositions that are
increasingly dissimilar. Logically, the decomposition of an additional C resource will be
differentially affected by climate conditions and resident soil microbial communities and
thus rearrange C pools. While this is a somewhat obvious conclusion, the positive slopes
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confirm that directional change is heading towards a dominate pool. Visualizations of
relative abundances show RT-CC combinations favoring CO2 flux and NT-CC combinations
favoriting %OC and CC biomass (Figure 8). The negative slope in RTxNC also confirms a
pattern in variable change, but one of stability, meaning that the relative abundances of C
pools cycle back to their original state towards a dominate CO2 flux pool. Interestingly, the
neutral slope in NTxNC suggests no pattern in C turnover, or rather relative abundances
do not change.

It is important to note that directional change towards %OC accumulation does not
mean C stabilization. Changes in environmental conditions, for example increased temper-
atures, rainfall, or nitrogen addition, can quickly change the rate and mechanisms of %OC
decomposition [40,55]. Therefore, if accumulated %OC is in a labile form, it is still vulnera-
ble to system loss if environmental conditions were to shift. Nevertheless, physiochemical
traits of soil (clay fraction, CEC, and pH) are an equally important controlling factor to-
wards C sequestration and stabilization [7,21,56]. Likewise, recalcitrant organic chemicals,
such as soybean-derived phytotoxins, are also bound by soil particles and contribute to soil
organic carbon [57]. Cation exchange capacity is associated with available surface area of
soil which reflects the sorption potential of %OC into soil aggregates, thereby protecting
%OC from decomposition [58]. After controlling for the clay soil fraction, CEC was found
to be significantly higher in NT plots than those without [45], which is encouraging that at
least a fraction of accumulated %OC in NT-CC plots may be retained in a stable form.

The advantage of this approach is that trends towards C loss or C accumulation can
be identified over short time periods with fewer parameters. The utility of C turnover lies
in its ability to be swiftly translated into a metric evaluating conservation practice perfor-
mance towards climate mitigation objectives. However, we recognize that only accounting
for %OC, CO2 flux and CC biomass neglects several important C pools, namely above-
and-below ground plant biomass and methane. The inclusion of methane is particularly
important for interpretation of this study because of the postulate that NT treatments are
shifting microbial communities towards facultative anaerobes. Including all C pools may
result in a shift towards net C loss in those treatments that currently favor a dominating
%OC pool (or %OC accumulation). Additionally, our results only account for growing
season. The proportional changes will likely fluctuate if fallow season measurements are
included. However, we reason that while the relative abundances of %OC, CO2 flux and
CC biomass will change with the incorporation of more C pools and time measurements,
the relative ratios will remain the same and therefore still convey important information
about C relationships, albeit incomplete.

To illustrate this point, we compare measures of %OC to %OC:CO2. Soil organic carbon
was greater in RTxRC than RTxNC, but there was no difference between these groups when
looking at %OC:CO2 (Tables 1 and 3). If the management objective was to accumulate %OC
in a RT system, RC would increase input costs but may not result in a detectable change
in %OC over time. Likewise, NTxRY and NTxRC %OC was not significantly different
than RTxRC. However, RTxRC %OC:CO2 is significantly lower than NTxRY and NTxRC
(Tables 1 and 3), meaning that despite having a similar %OC average, RTxRC is losing
more %OC from the system than NTxRY and NTxRC. This is an important observation for
a producer that could result in a significant economic return which would otherwise not
been apparent if looking %OC independently. We encourage future studies to incorporate
a more comprehensive assessment of major C pools to increase confidence in identified
trends of C turnover and facilitate the translation of findings to management action.

6. Conclusions

Landscape-scale management directives for C storage are receiving global attention
and at the center of national policy discussion. Producers are challenged to adopt con-
servation practices where successful implementation is often dependent on local weather
patterns, land history and site-specific features that drive crop production and success.
In this study we addressed changes in C following long-term application of CC and NT
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management in a soybean cropping system in the mid-South. Conservation management
increased %OC, showed no overall difference in CO2 flux between treatments, and CC
biomass increased with the number of species in the CC mix. Soil organic carbon was
positively affected by increases in microbial abundance, while CO2 flux was negatively
associated with microbial abundance. We hypothesize that the combination of environ-
mental conditions and lower O2 soils contributed to a decrease in microbial activity and a
shift towards facultative microbial communities that favor alternative terminal electron
acceptors, in turn lowering CO2 respiration. Carbon dioxide flux was also associated with
increases in %RH, supporting Thapa et. al.’s [53] notion that processed-based models of
decomposition should be updated to include %RH.

Finally, conceptualizing C as proportional pools that fluctuate over time is a more
holistic assessment of C dynamics that is easily transferred to public understanding. Using
a measure of C turnover to evaluate compositional changes in C pools shows trends
towards incremental shifts in C loss or accumulation. In this study, measures of C turnover
suggested that NT combined with CC resulted in C accumulation, while RT combined with
a CC suggested C system loss which was not apparent when assessing %OC alone. Future
research should assess how other GHGs (i.e., methane, nitrous oxide) are affected by heavy
clay soils in the mid-South, USA, as well include above and below-ground plant biomass
as C pools in a directional model. Trends in C turnover can then be more confidently
identified and translated into swift management action.
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Flux, Table S4: Cover Crop Biomass Mixed Model Results, Table S5: %OC to CO2 Flux Mixed
Model Results.
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