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Abstract: The Operational Land Imager (OLI) onboard the Landsat 8 satellite has a panchromatic band
(503–676 nm) that has been used to compute a virtual spectral band known as “orange contra-band”
(590–635 nm). The major application of the orange contra-band is the monitoring of cyanobacteria
which is usually quantified by the measurement of the concentration of phycocyanin (PC) which has
an absorption peak around 620 nm. In this study, we evaluated the use of the orange contra-band
approach for estimating PC concentration from in situ proximal hyperspectral data from Eagle Creek
Reservoir (ECR), in Indiana, USA. We first validated the empirical relationship for the computation
of the orange contra-band by using the panchromatic, red, and green spectral bands from ECR. PC
concentration retrieval using the orange contra-band were not successful when using the entire
dataset (R2 < 0.1) or when using only PC concentrations higher than 50 mg/m3 (R2 < 0.24). Better
results were achieved when using samples in which PC was 1.5 times higher than the chlorophyll-a
concentration (R2 = 0.84). These results highlighted the need for the development of remote sensing
algorithms for the accurate estimation of PC concentration from non-PC dominant waters which
could be use to track and/or predict cyanobacteria blooms.

Keywords: limnology; contra-band; phycocyanin; algal blooms

1. Introduction

Phycocyanin (PC) is an accessory pigment of freshwater cyanobacteria (a.k.a.
cyanoprokaryotes, cyanophyta or blue-green algae) and commonly used to monitor blue-
cyanobacteria blooms (CHABs) [1–6]. Traditional monitoring uses multi-parametric water
quality probes to measure PC’s relative fluorescence units (RFU) around 650 nm from which
blue-green algae concentration is estimated [7,8]. Remote sensing uses PC’s specific absorp-
tion feature around 620 nm to estimate PC concentration [1,3,5,6,9]. However, there are
only a limited number of multi-spectral satellite sensors that carry a spectral band centered
around 620 nm. Currently, the Ocean and Land Color Instrument (OLCI) on board Sentinel
3A and Sentinel 3B satellites from the European Space Agency (ESA) has a band centered at
620 nm [10] and the collected data can be downloaded from the web. However, the 300 m
spatial resolution makes OLCI not suitable for monitoring small aquatic systems—such as
its precursor, the Medium Resolution Imaging Spectrometer (MERIS).

Recently, three hyperspectral sensors have been launched: the “PRecursore IperSpettrale
della Missione Applicativa” (PRISMA), the DLR Earth Sensing Imaging Spectrometer (DESIS),
and the Gaofen-5 (GF-5). While PRISMA and GF-5 are onboard satellites, the DESIS is
onboarding the International Space Station (ISS), similar to another hyperspectral sensor—
the Hyperspectral Imager for the Coastal Ocean (HICO)—that was onboard the ISS from
2009 to 2014. All these hyperspectral sensors have a spectral band centered (or close
to) 620 nm; however, their image acquisition is not regular, and the data are not easily

Environments 2022, 9, 40. https://doi.org/10.3390/environments9030040 https://www.mdpi.com/journal/environments

https://doi.org/10.3390/environments9030040
https://doi.org/10.3390/environments9030040
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/environments
https://www.mdpi.com
https://orcid.org/0000-0001-6328-0001
https://orcid.org/0000-0002-3422-7348
https://doi.org/10.3390/environments9030040
https://www.mdpi.com/journal/environments
https://www.mdpi.com/article/10.3390/environments9030040?type=check_update&version=1


Environments 2022, 9, 40 2 of 11

accessible for general users. Therefore, monitoring PC from space is limited to large aquatic
systems for which the coarse spatial resolution of OLCI and MERIS are not a major issue.

To surpass the issue of lacking a spectral band around 620 nm at a higher spatial
resolution, Castagna et al. [11,12] recently proposed using the Landsat 8 panchromatic
band for simulating a virtual spectral band centered at 613 nm, the orange contra-band. The
idea is to isolate the orange contra-band from the panchromatic spectral band (503–676 nm)
by removing the spectral information of the known bands green (533–590 nm) and red
(636–673 nm) and create two contra-bands: the turquoise (503–533 nm) and the orange
(590–635 nm). Additionally, the authors used the orange reflectance line height (OLH) to
estimate PC. However, the authors did not validate the estimated PC with the orange contra
band against the measured PC. In another recent study, Kumar et al. [13] compared the
performance of Landsat 8 Operational Land Imager’s (OLI’s) and Sentinel-3 OLCI’s orange
bands for estimating PC at 16 sampling points of Lake Erie, USA. Unfortunately, authors
only used a small number of samples (n = 16) and highlighted that in sediment-dominated
regions of the lake, higher errors were found on PC estimation, highlighting the need for
an assessment of the use of the orange contra-band for the estimation of PC.

The goal of this study is to evaluate the use of the orange contra-band approach [11,12]
for estimating PC concentration from in situ proximal hyperspectral data. If the simulated
OLI orange bands can be used to predict PC reliably, this approach can be extended to
Landsat 8/OLI images so that the PC retrieval can be feasible for small sized aquatic
systems and the data gap left by MERIS which stopped collecting data in 2014 and OLCI
which was only launched in 2016 can be filled for satellite-based PC retrieval.

2. Materials and Methods
2.1. Study Site and Sampling

The site of this study was Eagle Creek Reservoir (ECR, 86◦18′13.07′ ′ W, 39◦51′09.84′ ′ N)
with a surface area of 5.0 km2 and a mean water depth of 4.2 m (Figure 1). ECR is one
of the major drinking and recreational water systems in the Indianapolis metropolitan,
Indiana USA. In ECR, cyanobacteria blooms have been recurrent in the last years with the
predominance of Planktothrix rubescens, Planktothrix agardhii, and Pseudanabaena catenata [14].
ECR has a seasonal thermal stratification from June to September. Reservoir mixing usually
occurs in April/May and October each year. To capture this thermal stratification, 24 field
campaigns were conducted in ECR from April to October 2018. For each field campaign,
the same sampling locations (Figure 1) were visited for collection of radiometric and
limnological variables.
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2.2. Algal Pigments Concentration

Water samples were collected just below the water surface at each sampling station
(Figure 1). Water samples were stored on ice in coolers until the samples were shipped back
to the laboratory where water samples were filtered and frozen immediately to prevent
pigment denaturalization. Chlorophyll-a (chl-a) concentration was estimated based on
the EPA Method 446.0, in which chl-a was extracted from the frozen glass fiber filters
(GF/F, Whatman, GE Healthcare Life Sciences Whatman, Buckinghamshire, UK) with 90%
acetone [15]. The final concentration was calculated from spectrophotometrically readings
of the extracted solution following Jeffrey and Humphrey’s Trichromatic Equations [16].
Since there is no standard method for PC extraction, we used the current state-of-the-art
procedures where PC was extracted from the frozen GF/F using a 50 mM phosphate
buffer pH 6.8 and repeated freezing and thawing of cells [17]. The PC concentration was
determined by fluorometrically readings of the extracted solution in a TD700 fluorometer
(Turner Designs, Inc., Sunnyvale, CA, USA) equipped with a Cool White Mercury Vapor
Lamp and a PC Optical Kit (630-nm excitation and 660-nm emission filters). Fluorometric
measurements were calibrated using a set of dilutions of a C-phycocyanin standard (Sigma-
Aldrich 52468, St. Louis, MO, USA). A total of 332 samples were collected and analyzed.

2.3. Proximal Remote Sensing Reflectance below the Water Surface (rrs) Acquisition

Proximal hyperspectral reflectance below the water surface (rrs) spectra were measured
for the 14 sampling sites during the 24 field campaigns in the year of 2018 in the ECR. A total
of 336 samples were measured using a dual head Ocean Optics USB4000 system composed
of two spectroradiometers (351–1047 nm, 0.2-nm spectral resolution, and 3645 bands (Ocean
Insight, Inc., Orlando, FL, USA). One spectroradiometer was mounted on a 2-m-high pole
pointed upward to measure the downwelling irradiance (Ed), and simultaneously the other
spectroradiometer equipped with a 25◦ field-of-view optical fiber, was dipped ~5 cm below
the water surface via a 2-m-long pole to measure the below-surface upwelling radiance (Lu)
at nadir. rrs was finally calculated following the procedure described by Gitelson et al. [18].

2.4. OLI’ Spectral Band Simulation

The simulation of OLI spectral bands was carried out using in situ rrs measurements
and the spectral response function of OLI (f), using Equation (1) [19]. The spectral response
function for the OLI spectral bands (including the PAN spectral band) were acquired from
the Landsat 8 webpage (http://landsat.gsfc.nasa.gov/?p=5779 Accessed on 15 January
2022) whereas the spectral response function for the orange contra-band was acquired from
Castagna et al. [11,12] which is available at the library within the ACOLITE—an atmo-
spheric correction for aquatic systems using the “dark spectrum fitting” approach [20,21].

Rrs,k =

∫ λ2k
λ1k

Rrs(λ, t)Sk(λ)dλ∫ λ2k
λ1k

Sk(λ)dλ
(1)

where Sk(λ) is the radiometric sensitivity of band k, whose band width is from wavelength
λ1k to λ2k.

Since the spectral response function of the orange contra-band can only be calculated
from hyperspectral measurements, Castagna et al. [12] proposed a semi-empirical relation-
ship (Equation (2)) to estimate the orange contra-band using the PAN, green (centered at
561 nm) and red (centered at 655 nm) spectral bands. This relationship is important because
it allows the computation of the orange contra-band from the OLI image without the need
for a hyperspectral image.

To validate the proposed relationship (Equation (2)), we compared the simulated
orange contra-band based on the spectral response function to the modeled orange contra-
band based on the empirical relationship among the OLI spectral bands.
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Additionally, we also established a relationship between the simulated orange contra-
band based on the spectral response function and the modeled orange contra-band based
on the empirical relationship among the OLI spectral bands. Our proposed relationship
was computed using a multiple linear regression and the results were compared to the one
proposed by Castagna et al. [20] (Equation (2)) using a Mann–Whitney Rank Sum Test to
validate their proposed slopes.

2.5. PC Retrieval Assessment

For the retrieval of PC using Landsat 8/OLI simulated bands the following remote
sensing algorithms were evaluated: (1) green:orange ratio, (2) OLH [20] and (3) orange:red
ratio [13]. These remote sensing algorithms were calculated for the entire dataset; therefore,
the assessment was based on the scatterplots, correlation coefficient (r), determination
coefficient (R2) and root mean square error (RMSE).

3. Results
3.1. Orange Contra-Band

The multiple linear regression analysis using the PAN, the green and the red simu-
lated spectral bands (Equation (3)) for all sampling points (n = 336) was used to estimate
simulated orange contra-band based on the spectral response function.

Rrs(orange) =
[
6.98·10−6

]
+ [2.464·Rrs(PAN)]− [0.957·Rrs(green)]− [0.281·Rrs(red)] (3)

In comparison to the relationship proposed by Castagna et al. [12] (Equation (2)), the
coefficient of each independent parameter in the multiple regression is larger even if a
plus-one standard deviation was considered. However, the median value of the simulated
orange contra-band for the empirical relationship proposed by Castagna et al. [12] was
0.00562 while our relationship (Equation (3)) showed a median value of the simulated
orange contra-band as 0.00567. Additionally, a strong correlation was observed between
the simulated orange contra-band based on the spectral response function and the modeled
orange contra-band based on the empirical relationship (Equations (2) and (3)), with a
r of 0.997 and a R2 of 0.994 (Figure 2A) for Castagna et al. [12] and a r of 0.998 and a
R2 of 0.996 for the one proposed in this study (Figure 2B). Both relationships showed an
RMSE lower than 0.001 showing very similar performances from both relationships. A
Mann–Whitney Rank Sum Test showed that the difference in the median values between
the two modeled Rrs orange is not statistically significant (p = 0.991). Therefore, these
insignificantly small variations in empirical relationships (Equations (2) and (3)) validate
the relationship proposed by Castagna et al. [20].
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Figure 2. (A) Relationship between modeled Rrs (orange) and True Rrs (orange) based on the Castagna
et al. [12] relationship (Equation (2)); and (B) Relationship between modeled Rrs (orange) and True
Rrs (orange) based on multiple linear regression (Equation (3)).

3.2. PC Retrieval from Simulated OLI Data

PC and chl-a concentrations measured for 332 samples collected in the ECR (Figure 1)
during the year of 2018 were used to test different remote sensing models. The central
tendency statistical estimators of both pigments showed that the range of PC during the
year was larger than the range of chl-a and correspondingly, the standard deviation, the
variance and the coefficient of variation were also higher for the PC (Table 1). Chl-a had a
higher mean, median and 25 and 75 percentile values indicating that for most of the samples,
chl-a was higher than PC concentration, despite the dramatically different maximum values
for the two pigments. The PC concentration (in log scale) showed a weak relationship with
remote sensing models using the entire dataset (n = 332, Figure 3), and low R2 values were
found for the three remote sensing models tested: 0.02, <0.01 and 0.08 for the green:orange
ratio, OLH, and orange:red ratio, respectively (Table 2).

To improve these relationships, we used only the samples with a PC concentration
higher than 50 µg/L—which was described by Ruiz–Verdu et al. [22] as the optimal
concentration for PC retrieval (Figure 4). The resultant R2 values were improved for the
green:orange ratio (R2 = 0.16) and the OLH (R2 = 0.24) with a geometric fit, but decreased for
the orange:red ratio with a logarithmic fit (R2 = <0.01). Overall, the use of PC concentration
higher than 50 µg/L did not significantly improve the retrieval of PC. Nevertheless, it was
observed that green/orange ratio performed slightly better than the other two models.

The retrieval of PC for samples with the PC:chl-a ratio higher than 1.5 (n = 35) was
also performed considering that a high PC:chl-a ratio means the spectral dominance of
PC over chl-a. In this way, an improvement on the retrieval of PC concentration (Figure 5)
was observed. The green:orange ratio got a strong geometric relationship with a R2 of 0.84,
while the OLH and orange:red models got R2 values of 0.33 and 0.45 respectively with a
geometric fit. These values indicate that the retrieval of PC is possible, however, current
remote sensing models can only do it when PC is the dominant pigment.
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Table 1. Statistical summary for the PC and chl-a concentrations in ECR during the year of 2018.

PC (µg/L) Chl-a (µg/L)

Minimum 8.36 6.26
Maximum 290.33 123.23

Mean 40.61 48.76
Variance 1956.69 535.77

Standard Deviation 44.23 23.14
Median 21.23 45.82

25 percentile 15.32 32.65
75 percentile 43.86 63.75

Coefficient of Variation 108.92 47.46
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4. Discussion
4.1. Remote Sensing Models Evaluation

The performance of the three remote sensing models for estimating PC concentration
in waters with mixed phytoplankton groups (Figures 3 and 4) showed weaker correlation
as described in previous research. Ogashawara [23] evaluated the use of Sentinel 3/OLCI
for the estimation of PC concentration in Lake Erie and showed that the ratio between the
Rrs at 681 and 620 got a R2 of 0.41 and the ratio green:orange was the best for the estimation
of chl-a concentration on samples with concentrations higher than 50 µg/L (R2 = 0.88).
In addition, in Lake Erie, USA, Kumar et al. [13] showed that for Landsat 8/OLI, the
orange:red ratio got a R2 of 0.55 for a PC concentration range from 0.23 to 170.39 µg/L
(n = 16). Additionally, in this same study the authors also evaluated the use of different
remote sensing models for Sentinel 3/OLCI and obtained a R2 of 0.74 using the orange
and red-edge spectral bands. OLH was also evaluated using an image over Lake Erie [12]
based on the correlation between PC relative fluorescence unit and the OLH values. The
stronger performance shown by these mentioned studies [12,13,23] could be attributed to
the fact that these studies used Lake Erie as the study site. Lake Erie is the most productive
lake among the Laurentian Great Lakes and has experienced intensifying cyanobacterial
blooms in the past decade [24]. Additionally, the lake during summer months has been
dominated by cyanobacteria species such as Microcystis, Planktothrix and Anabaena since
1995 [25,26]. The improved performance was also observed for the model tested in the
current study when applied to of the samples with PC:chl-a ratio higher than 1.5 (Figure 5,
Table 2), implying the interference of other optically active constituents on the tested remote
sensing models.

Considering that Landsat 8/OLI bands have a low spectral resolution, a weak perfor-
mance of the tested remote sensing models for PC retrieval is expected for non-cyanobacteria
dominated waters because of the influence of other optically active constituents. For ex-
ample, the influence of chl-a at 620 nm has been investigated by different studies [3,27,28].
Simis et al. [3] used an empirical factor (ε) to relate the in vivo absorption of chl-a at 665 nm
to its absorption at 620 nm and corrected for the chl-a effect. Mishra et al. [27] proposed to
determine the absorption coefficient of PC at 620 nm by use of two factors (ψ1 and ψ2) and
the difference of the absorption coefficient of phytoplankton at 620 nm and the absorption
coefficient of chl-a at 665 nm. Ogashawara and Li [28] proposed a new method to accom-
modate the contribution of chl-a absorption at 620 and PC at 665 nm. All three studies
emphasized a significant contribution of chl-a absorption to the absorption coefficient at
620 nm. However, these studies used hyperspectral data with a 1-nm spectral resolution.
Therefore, considering that Landsat 8/OLI bands are much wider—green (533–590 nm) and
red (636–673 nm)—more interference from other optically active constituents are expected.

In the current state-of-the art, remote sensing algorithms for PC estimation with OLI
imagery should be improved by removing the effect of other optically active constituents.
There is a need for the development or tuning of new remote sensing models for Landsat
8/OLI bands, especially for the retrieval of PC from non-cyanobacteria dominated waters.

4.2. Importance of the Orange Contra-Band for Aquatic Systems

This study showed that the semi-empirical method proposed by Castagna et al. [12]
for estimating the orange contra-band is very promising for high-resolution imaging in
aquatic environments as indicated by statistically insignificant difference between the
empirical orange contra-band and the semi-empirical method (Figure 2). Requiring the
very specific absorption feature around 620 nm [1,3,5,28], the estimation of PC has been
limited to the imagery acquired by MERIS or OLCI sensors. However, these sensors have a
low spatial resolution (300 m), and are not suitable for monitoring small to medium aquatic
systems. Verpoorter et al. [29] reported that waterbodies with an area smaller or equals
to 1 km2 comprise 60% of the total surface area of global inland waters. Although these
small aquatic systems are large enough to occupy more than one single pixel at a spatial
resolution of 300 m, the interference from the adjacent pixels on the signal of the pixel
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under consideration would be very strong [12]. The adjacency effect in aquatic systems is
usually observed around the near-infrared spectral region which is caused by the effect of
the reflected skylight or surrounding land in the water surface [30]. Ogashawara et al. [31]
showed that only a few atmospheric correction routines were able to remove the adjacency
effect for small to medium lakes in Germany for Landsat 8/OLI images. Considering the
spatial resolution, it would be improbable to have a reliable estimation of PC from most
inland aquatic systems using a 300 m spatial resolution image

The orange contra-band generation with Landsat satellite multispectral data can
complement the existing satellite-based monitoring of water quality which are usually
sparse in space and time, and site-specific [32], especially for tracking cyanobacterial blooms
to address public concern about the drinking water safety [33,34]. While traditional water
quality monitoring uses data from few points within an aquatic system the use of the
orange contra-band could allow the monitoring of the entire water surface. This would
improve the monitoring of the areas which are not sampled, for example, the areas close to
the shoreline which are usually used for leisure activities. However, as demonstrated in this
study, the use of the orange contra-band is only accurate when PC is the dominant pigment.
Therefore, more research is needed on the accurate retrieval of PC from Landsat satellite
imagery for aquatic systems where PC is not the dominant pigment which is important for
the tracking the development of a CHABs and consequently forecasting it.

5. Conclusions

This study validated the proposed approach for the computation of the OLI’s orange
contra-band [11,12] and its potential for PC estimation using three different remote sensing
models. The simulated and calculated orange contra-band showed a significant correlation,
and the proposed semi-empirical method by [12] performed well for the samples from
ECR. Additionally, this study evaluated the performance of three remote sensing models
for the retrieval of PC concentrations. While all three remote sensing algorithms failed to
estimate PC concentration from water different optical water types, their performance was
improved when only PC dominant waters were evaluated. These results highlighted the
need for the development or tuning of remote sensing models for the accurate estimation
of PC concentration from non-cyanobacteria dominant waters to serve as a monitoring tool
for water quality managers. Considering that ECR as well as several other small to medium
sized aquatic systems are used for water supply purposes, the development of such tools
are important. The need for these tools is pressing as CHABs are known to produce
neurotoxins and hepatotoxins which are related to diseases such as Dementia, Alzheimer’s
and other neurological impairments, and liver and kidney failure [34]. Thus, the orange
contra-band generation of Landsat 8/OLI opens a new era for the use of Landsat 8/OLI to
estimate PC. Thus, the environmental need for the monitoring of CHABs are promising for
the development of an environmental health monitoring program which could be used by
policy makers to assess water quality for water supply and recreational uses.
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