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Abstract: Phytoplankton community composition has been utilized for water quality assessments
of various freshwater sources, but studies are lacking on agricultural irrigation ponds. This work
evaluated the performance of the random forest algorithm in estimating phytoplankton commu-
nity structure from in situ water quality measurements at two agricultural ponds. Sampling was
performed between 2017 and 2019 and measurements of three phytoplankton groups (green algae,
diatoms, and cyanobacteria) and three sets of water quality parameters (physicochemical, organic
constituents, and nutrients) were obtained to train and test mathematical models. Models predicting
green algae populations had superior performance to the diatom and cyanobacteria models. Spatial
models revealed that water in the ponds’ interior sections had lower root mean square errors (RMSEs)
compared to nearshore waters. Furthermore, model performance did not change when input datasets
were compounded. Models based on physicochemical parameters, which can be obtained in real
time, outperformed models based on organic constituent and nutrient parameters. However, the
use of nutrient parameters improved model performance when examining cyanobacteria data at the
ordinal level. Overall, the random forest algorithm was useful for predicting major phytoplankton
taxonomic groups in agricultural irrigation ponds, and this may help resource managers mitigate the
use of cyanobacteria bloom-laden waters in agricultural applications.

Keywords: phytoplankton; machine learning; agricultural irrigation ponds; random forest; water quality

1. Introduction

Phytoplankton community composition and abundance is often used in assessments
of recreational, aquaculture, and drinking water quality. Long-term monitoring studies
conducted in marine and estuarine waters used for aquaculture activities [1,2] and in
freshwater lakes and reservoirs used to provide drinking water and recreational areas [3–5]
have demonstrated distinctive relationships between certain phytoplankton community
constituents and water temperature, salinity, and nutrient concentrations. However, long-
term phytoplankton community composition studies in small-bodied agricultural irrigation
waters to examine similar relationships are lacking.

The examination of water for phytoplankton community composition and abundance
is a time-consuming activity that relies on the expertise of well-trained phytoplankton tax-
onomists or automated technologies, such as flow cytometry, that may be cost-prohibitive
to many water quality management programs [6–8]. Satellite imagery has proven useful
for monitoring phytoplankton community structure in large lakes (>24,000 acres, [9]) but
does not yet have the spatial scale needed to remotely observe smaller bodies of water
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that are increasingly being used in agricultural irrigation applications [10]. Hence, alter-
native techniques are being explored to examine the relationships between more easily
measured water quality parameters (i.e., temperature, chlorophyll-a, and specific con-
ductance) and phytoplankton community composition and abundance. The presence of
such relationships makes the use of regression analysis feasible for predicting phytoplank-
ton community structure and concentrations using measured water quality parameters.
Regression analyses have been used to predict the occurrence of bloom-forming cyanobac-
teria in shallow lakes [11,12], green algae in reservoirs [13], and diatoms in estuaries,
rivers, and lakes [14,15], as well as to evaluate overall irrigation water quality [16,17], but
these two parameters have not been examined as distinct input variables within the same
mathematical model.

Regression analyses were used to successfully predict the composition of phytoplank-
ton communities in a drinking water reservoir near Beijing, China, that had an area of
greater than 44,000 acres [18]. However, as noted by Cheruvelil et al., [19], scale and re-
gionalization are important factors to consider when conducting water quality assessments
and applying water quality standards. Models such as those reported by Zeng et al. [18]
are only beginning to be constructed for the freshwater reaches of the Chesapeake Bay
watershed [20,21], yet even these efforts do not reflect water specifically designated for
agricultural uses. Recently, machine learning provided several versatile techniques to es-
tablish models suitable to create ‘phytoplankton–water quality’ relationships. The machine
learning algorithm of random forests was specifically chosen for its ability to elucidate
nonlinear relationships between input variables and because of its built-in mechanism to
limit potential overfitting of the model. The objective of this work was to evaluate the
performance of the random forest algorithm in estimating the phytoplankton community
structure from in situ water quality measurements of different complexities obtained during
three years of spatially intensive observations at two 1-acre agricultural irrigation ponds.

Phytoplankton community structure has long been used to assess trophic changes in
aquatic systems [22] with shifts from green algae-dominated communities to cyanobacteria-
dominated communities indicating eutrophic conditions [23,24]. Equally as important is
the influence various phytoplankton groups can have on water chemistry [25,26], especially
carbon cycling [27]. For this study three phytoplankton groups were considered critical
to assess in relationship to water quality parameters due to their abundance within local
freshwater phytoplankton populations. Previous studies by Parson and Parker [28] and
Marshall [29,30] demonstrated that between 70–80% of regional freshwater lake phyto-
plankton community structure was composed of green algae (Chlorophytes), diatoms
(Bacillariophytes), and cyanobacteria (Cyanophytes). Due to the harmful and potentially
toxic effects of cyanobacteria blooms on human and environmental health, the detection,
prediction, and modeling of these blooms has become a focus for resource managers [31–33].
Additionally, there is growing concern about the risk that cyanotoxins may pose to the
agriculture industry through the transfer of cyanotoxins from irrigation waters to crops and
livestock, particularly as climate change increases the occurrence and toxicity of cyanobacte-
ria blooms [34–36]. Other concerns include both toxic and non-toxic cyanobacteria blooms
altering carbon cycling, alkalizing waters, and increasing turbidity, thus further degrading
water quality [37,38]. Thus, additional analyses with the random forest algorithm were
conducted to determine if there were correlations between water quality parameters and
the cyanobacteria orders Chroococcales and Nostocales, as these orders contain many
pelagic, toxigenic species that are of particular concern in surface waters [39].

2. Materials and Methods
2.1. Experimental Design and Sample Collection

Phytoplankton and water quality sampling was conducted every two weeks at
two 1-acre ponds on working farms in Maryland during the 2017 and 2018 growing seasons
(May–October). Pond 1 (Figure 1-P1) located in Germantown, Maryland is a man-made
embankment pond with in-flow from a co-located pond; 23 stations were routinely sampled
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in this pond. Pond 2 (Figure 1-P2) located in Wye Mills, Maryland (University of Mary-
land Wye Research Center) is an excavated pond with in-flow from an ephemeral creek;
34 stations were routinely sampled in this pond. Phytoplankton samples and water quality
measurements were made at all stations in Pond 1. Phytoplankton samples at Pond 2 were
collected at fewer locations, consisting of odd-numbered nearshore locations and all interior
sampling locations (22 stations), whereas water quality measurements were made at all
stations. Full site descriptions are provided in Smith et al. [40]. In situ measurements were
taken along with a water sample for laboratory processing at each sampling location. A YSI
Exo-2 sonde (Yellow Springs Instruments, Yellow Spring, OH, USA) was used to measure
temperature (TEMP), dissolved oxygen (DO), specific conductance (SPC), pH, fluorescent
dissolved organic matter (FDOM), and turbidity (NTU). As a proxy for phytoplankton
density, both chlorophyll-a (CHL) and phycocyanin (Phyco) were measured with the YSI
Exo-2 sonde as demonstrated by Brient et al., [41] and Song et al., [42]. Water samples were
measured for colored dissolved organic matter (CDOM) using a Turner Designs AquaFluor
fluorometer (Turner Designs, San Jose, CA, USA). Identification and enumeration of phyto-
plankton was performed using a modified Utermöhl method as described in Marshall and
Alden [43], with taxa identified according to Komárek [39], John et al. [44] and Bellinger and
Sigee [45]. For full details of sampling methodologies see Smith et al. [46]. Water quality
sampling methods and phytoplankton analyses for the 2019 sampling year were the same
as those performed in 2017 and 2018 but occurred on a less routine schedule. In Pond 1
there were six sampling dates in 2017, six sampling dates in 2018, and three sampling dates
in 2019. In Pond 2 there were five sampling dates in 2017, six sampling dates in 2018, and
two sampling dates in 2019. Sampling dates are presented in Supplementary Table S1.
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Figure 1. Sampling locations for both Pond 1 (P1) and Pond 2 (P2). Sampling location number is
shown inside the circle. Yellow circles indicate interior water sampling locations and orange circles
indicate nearshore sampling locations.

Field work conducted in 2017 and 2018 yielded 518 phytoplankton samples, in
situ measurements, and laboratory-based water quality measurements (Supplementary
Table S1). For the purpose of the random forest analysis, phytoplankton data was examined
at the taxonomic group level (diatoms, green algae, and cyanobacteria). While other taxa
(i.e., dinoflagellates) were observed with microscopy analyses, the low spatial and temporal
occurrence and abundance of these taxa over the course of the study precluded examination
with the random forest analysis. The data collected in 2019 were used as a blind dataset to
test the random forest model.
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2.2. Modelling with the Random Forest Algorithm

The machine learning random forest algorithm designed by Liaw and Wiener [47] was
used to predict phytoplankton functional group concentrations and the most influential
parameters for each group. The default number of trees run for each model was 500.
The input data was split into training and testing datasets with the default value of 70%
training and 30% testing. The result is more accurate outputs which are better suited for
prediction models. To alleviate the potential overfitting of the random forest models, the
‘mtry’ parameter was used, which limits the number of variables sampled at each split of a
tree. The default ‘mtry’ value was selected which is calculated as mtry = P/3 where P is
the total number of input variables.

Random forest models with various inputs and outputs were developed in this study.
Three input datasets (A, B, and C, Table 1) were used for each of the three output datasets
of phytoplankton groups (diatoms, green algae, and cyanobacteria). When considering
model performance on a finer taxonomic scale, the cyanobacteria orders Nostocales and
Chroococcales were used since cyanobacteria blooms during the study period comprised
organisms within these orders. The input set A included physicochemical parameters,
i.e., TEMP, pH, DO, NTU, and SPC. In 2018, photosynthetic active radiation (PAR) was
added to input set A. The input set B included parameters related to organic constituents,
i.e., CHL, Phyco, and FDOM. In 2018, CDOM was added to input set B. Input set C included
nutrients and macro elements, i.e., potassium, calcium, magnesium, ammonium, nitrate,
and phosphate, which were only measured in 2018. For 2017 and 2017 + 2018 data sets, the
random forest model was developed with input set A, input set B, and combined input sets
A and B (AB). For the 2018 dataset, random forest models were developed with input set
A, input set B, input set C, and combinations of these input sets (AB, AC, BC, and ABC).
Models were run individually for 2017 and 2018 to allow for the inclusion of additional
measurements added in 2018. These measurements were excluded when running multiyear
models to keep datasets balanced. All random forest computations were completed in
Rstudio (Rstudio Team, Boston, MA, USA) using the ‘randomForest’ package.

Table 1. Constituents of three input sets used for the random forest analysis.

Dataset 2017 2017 + 2018

A TEMP, pH, DO, NTU, SPC TEMP, pH, DO, NTU, SPC, PAR

B CHL, Phyco, FDOM CHL, Phyco, FDOM, CDOM

C n/a K, Ca2+, Mg2+, NH4
+, NO3, H2PO4

−

2.3. Performance Metrics

Pearson correlations were used to assess the strength of linear relationships between
measured water quality parameters. All Pearson correlations were computed in Rstudio.
Moderate correlations were defined as correlations with an r value between 0.5 and 0.7 and
strong correlations were defined as having an r value greater than 0.7.

To evaluate the model’s prediction capabilities, the root-mean-squared errors (RMSEs)
were computed with the predicted and measured values as:

RMSE =

√√√√ N

∑
i=1

⌊
logCi,meas − logCi,predict

⌋
2

N
(1)

where logCi,meas and logCi,predict are measured and predicted concentrations for the ith
dataset and N is the total number of datasets. The RMSE values were computed for training
and testing datasets for each of the individual regression trees of the random forest models
and then averaged. If the independent data was available (the 2019 validation dataset), the
RMSE vales were computed from that validation dataset with predictions of the trained
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random forest models. T-tests were used to determine significant differences in accuracy
metric results, and a p value of 0.05 was selected.

The Williams-Kloot test [48] was utilized to compare the performance of pairs of
random forest models obtained with different inputs for estimating phytoplankton con-
centrations. The test consists of computing the slope of the inward regression using the
following equation: [

Y − 1
2
(Y1 + Y2)

]
= λ(Y2 − Y1) (2)

where Y is the measured concentration, Y1 is the predicted concentration from model 1, and
Y2 is the predicted concentration from model 2. If λ was positive and significantly different
from zero, then the performance of model 2 was considered better than the performance
of model 1. If λ was negative and significantly different from zero, then the performance
of model 1 was considered the better of the two models. A p-value of 0.05 was selected to
determine significance in the Williams-Kloot test applications.

The ratio of coefficients of variance (CVs) were also calculated to compare the variation
of interior locations with the variation of nearshore sampling locations for phytoplankton
functional groups and water quality parameters. The equation for calculating the ratio of
CVs for each parameter is as follows:

Ratio o f CV =
σn/µn

σi/µi

where σ is the standard deviation and µ is the mean of the interior (i) parameters or
nearshore (n) parameters.

The input variable importance was quantified by the Mean Decrease Accuracy (%In-
cMSE) as implemented in the Rstudio randomForest package. The %IncMSE reflects the
loss of model accuracy when a variable is scrambled, i.e., its values are randomly rear-
ranged. The model decreases of accuracy were computed for each tree in the forest and the
percentage of decrease of accuracy was averaged over all trees to get the mean value. A
higher %IncMSE value indicated that a variable had a greater effect on the model accuracy
and was therefore a more influential variable.

3. Results
3.1. Data Summary

The most dominant and commonly occurring phytoplankton taxa were all represen-
tatives of eutrophic, shallow, small water bodies per the functional group classifications
of Reynolds et al. [22]. Diatom concentrations for both years ranged from 4.19 to 7.59 log
cells·L−1 and from 4.19 to 7.77 log cells·L−1 in Pond 1 (Aulacoseira spp.) and Pond 2 (Aula-
coseira spp. and Cyclotella spp.), respectively. In Pond 1, cyanobacteria (Microcystis spp.)
ranged from 4.19 to 7.95 log cells·L−1, and green algae (Coelastrum spp. and Scenedesmus
spp.) ranged from 5.49 to 8.08 log cells·L−1 for both years. In Pond 2, cyanobacteria (Aph-
anizomenon spp., Dolichospermum spp., and Microcystis spp.) and green algae (Closterium
spp. and Scenedesmus spp.) ranged from 4.67 to 8.69 log cells·L−1 and from 4.89 to 8.18 log
cells·L−1, respectively. In 2017 and 2018, green algae had the highest average cell concentra-
tions, followed by cyanobacteria and then diatoms in Pond 1. At Pond 2, cyanobacteria had
the lowest average concentrations of the phytoplankton groups in 2017, whereas in 2018,
diatoms had the lowest average concentrations. Water quality, weather, and phytoplankton
data are presented in Supplemental Table S2 and Supplemental Figure S1.

In 2017, a total of eight physicochemical parameters and organic constituents com-
monly used to assess water quality were measured in the field and used in sets A and B
for training and testing the random forest algorithm. An additional 11 physicochemical,
organic constituents, and nutrient/macro element parameters were added in 2018 and
applied across input sets A, B, and C training and testing datasets. Average TEMP, DO,
SPC, pH, NTU, and Phyco did not differ from 2017 to 2018 in both Pond 1 and Pond 2.
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CHL averages doubled from 2017 to 2018 at Pond 2. While CHL concentrations were low
at Pond 1 for both 2017 and 2018, there was a decrease in 2018. This may be the result of
routine algicide application to Pond 1 during the study period.

The strength of the linear relationship between the water quality parameters measured
for this study was assessed with Pearson correlation statistics (Supplemental Table S3).
Only DO-pH and NTU-Phyco exhibited moderate or strong correlations in both ponds
in both years. SPC-FDOM and TEMP-SPC had moderate or strong correlations in both
ponds in 2017, but not in 2018. Phyco-CHL was correlated in both ponds in 2017, but
this correlation was only found in Pond 2 in 2018. Moderate correlations between pH-
FDOM, DO-FDOM, and NTU-CHL were found only in one pond over both years. A strong
correlation between TEMP-FDOM was observed only in Pond 2 in 2017.

3.2. Performance of Models
3.2.1. Model Accuracy

The RMSEs that characterized the random forest model performance are shown in
Figure 2 for each phytoplankton group. The differences in RMSE between ponds were
relatively small. However, in almost all instances, RMSE values for Pond 2 were larger than
those for Pond 1 for all three phytoplankton groups (green algae, diatoms, and cyanobacte-
ria) and all three time periods (2017, 2018, and 2017 + 2018). It is also worth noting that the
ranges of log phytoplankton concentrations, computed from minimum and maximum val-
ues in Supplemental Table S2, were also slightly greater in Pond 2 than in Pond 1 for all three
phytoplankton groups and all three time periods. The smallest and the largest RMSEs for
the combined year data were found for green algae and cyanobacteria, respectively. RMSE
values for diatoms were in most cases an intermediate value. An exception to this was in
2018, in Pond 2; here diatom RMSEs were larger than the cyanobacteria values. RMSEs of
the 2018 model were lower than RMSE of 2017 model. Mean values of measured parameters
in the 2018 dataset were also lower than those from 2017 (Supplemental Table S2). RMSE
values of the combined dataset 2017 + 2018 were smaller than the RMSE values of 2018.
Creating the combined year dataset improved the robustness of the random forest models.

The small differences in RMSE between random forest models using input set A
and input set AB implied that there may be not a significant difference between model
performance. All Williams-Kloot tests yielded positive λ values indicating that modeling
with set AB as the input may be superior to the model created with set A as the input.
The Williams-Kloot test showed that there was a significant difference between models for
green algae in Pond 1 (p < 0.001) and cyanobacteria in Pond 2 (p = 0.010), but not for green
algae in Pond 2, cyanobacteria in Pond 1, or diatoms in either pond.

The RMSEs for the random forest model performance of cyanobacteria orders, Nosto-
cales and Chroococcales, are shown in Table 2. Values of RMSE for the Nostocales order
were larger in Pond 1 compared to Pond 2 for all years. Overall, RMSEs for Chroococcales
were larger for Pond 2 compared to Pond 1 for 2018, while Pond 1 had larger RMSE values
for Chroococcales 2017 and 2017 + 2018. The RMSEs for both Nostocales and Chroococcales
were the lowest in 2018 when compared to 2017 and combined years 2017 + 2018. In all
instances, the model error for Chroococcales decreased with the addition of additional
input datasets, whereas the model error for Nostocales only decreased with increased
datasets for 2018 in Pond 1 and 2018 as well as combined years (2017 + 2018) for Pond 2.

3.2.2. Model Validation

Models developed with the 2017 and 2018 datasets were tested using data collected in
2019. The results are shown in Figure 3. When using the random forest model on blind
2019 data, the RMSE results did not mirror what was predicted during model development
using the 2017 and 2018 data. The RMSE values for green algae 2019 predictions were
larger than the values for the 2017 and 2018 datasets using any combination of input sets
A and B. For 2019, cyanobacteria continued to produce the higher RMSE values, whereas
diatoms presented the lowest RMSE values. Pond 2 continued to have higher RMSEs for
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diatoms than Pond 1. Cyanobacteria in Pond 1 displayed higher RMSE values in 2019,
whereas for years 2017 and 2018, Pond 2 typically had higher cyanobacteria RMSE values.
Overall, green algae RMSEs were much higher for the 2019 data compared to the 2017 and
2018 dataset. In all instances, RMSE values were lower when the model was run with set
AB parameters. The Williams-Kloot test determined that the AB model was superior to the
A model. The AB model performance was significantly different (p < 0.05) for all groups
and both ponds, except for Pond 2 diatoms (p = 0.84).

Environments 2022, 9, 142 7 of 21 
 

 

 

Figure 2. Root-mean-squared errors (RMSEs) of the random forest models for green algae, diatoms, 

and cyanobacteria for Ponds 1 and 2, with data from 2017, 2018, and 2017 + 2018. 

The small differences in RMSE between random forest models using input set A and 

input set AB implied that there may be not a significant difference between model perfor-

mance. All Williams-Kloot tests yielded positive λ values indicating that modeling with 

set AB as the input may be superior to the model created with set A as the input. The 

Williams-Kloot test showed that there was a significant difference between models for 

green algae in Pond 1 (p < 0.001) and cyanobacteria in Pond 2 (p = 0.010), but not for green 

algae in Pond 2, cyanobacteria in Pond 1, or diatoms in either pond. 

The RMSEs for the random forest model performance of cyanobacteria orders, Nos-

tocales and Chroococcales, are shown in Table 2. Values of RMSE for the Nostocales order 

were larger in Pond 1 compared to Pond 2 for all years. Overall, RMSEs for Chroococcales 

were larger for Pond 2 compared to Pond 1 for 2018, while Pond 1 had larger RMSE values 

for Chroococcales 2017 and 2017 + 2018. The RMSEs for both Nostocales and Chroococ-

cales were the lowest in 2018 when compared to 2017 and combined years 2017 + 2018. In 

all instances, the model error for Chroococcales decreased with the addition of additional 

input datasets, whereas the model error for Nostocales only decreased with increased da-

tasets for 2018 in Pond 1 and 2018 as well as combined years (2017 + 2018) for Pond 2. 

  

Figure 2. Root-mean-squared errors (RMSEs) of the random forest models for green algae, diatoms,
and cyanobacteria for Ponds 1 and 2, with data from 2017, 2018, and 2017 + 2018.

Table 2. Random forest accuracy RMSE for cyanobacteria orders.

Pond 1 Pond 2
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B 0.863 0.716 0.824 0.673
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Table 2. Cont.

Pond 1 Pond 2

Input Group Nostocales Chroococcales Nostocales Chroococcales

2018

A 0.521 0.381 0.387 0.444

B 0.520 0.337 0.437 0.462

C 0.505 0.377 0.387 0.438

AB 0.492 0.355 0.386 0.448

AC 0.496 0.385 0.385 0.427

BC 0.506 0.348 0.388 0.418

ABC 0.506 0.355 0.378 0.426

2017 + 2018

A 0.596 0.655 0.548 0.541

B 0.669 0.685 0.613 0.597

AB 0.614 0.627 0.535 0.509
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Figure 3. Root-mean-squared errors (RMSEs) of the random forest models for green algae, diatoms,
and cyanobacteria for Ponds 1 and 2, with blind data from 2019.

3.3. Spatial Patterns of Random Forest Model Performances

Spatial distribution of the individual location errors with data from 2017 + 2018 and
set A parameters is shown in Supplemental Table S4. There was a pattern of lower RMSE
values for interior locations compared with nearshore locations in each pond. For all
three groups of phytoplankton within both ponds, the lowest RMSE values were found
in the interior of the ponds, except the outflow area of Pond 2 (location 23). The average
RMSE values were larger, and the performance of the models was reduced at nearshore
locations compared to interior locations for all phytoplankton groups at Pond 2. Separation
of nearshore locations from interior locations revealed that in Pond 2, the probability (t-test)
of the average RMSE being the same over nearshore and interior locations was very low
(p < 0.01) for green algae and cyanobacteria. The probability of RMSE values being the
same for nearshore and interior locations for diatoms in Pond 2 was greater but still small
(p < 0.1). In Pond 1, no substantial differences in average RMSE for nearshore and interior
locations were found for green algae (p > 0.5), and only moderate differences were found for
diatoms and cyanobacteria (p < 0.1). The percentage of sampling dates in which the CV was
larger for nearshore locations compared to interior locations can be found in Supplemental
Table S5. For diatoms and cyanobacteria, more than 54.6% of the sampling dates had higher
CVs for nearshore samples compared to interior samples for both ponds. For green algae,
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Pond 2 (63.6%) had a higher percentage of dates with nearshore variability being higher
than Pond 1 (41.7%). Most of water quality measurements had high CVs at nearshore
locations with most being greater than 75% of the sampling dates. The exception to this is
both SPC (63.6% of dates) and Phyco (72.7% of dates) in Pond 2.

Spatial distribution of the individual location errors with data from 2017 + 2018 and
set AB parameters is shown in Supplemental Table S4. Similar to the spatial distributions
of errors of the model using set A parameters, set AB parameters show a similar pattern of
interior locations mostly containing the lowest RMSE values. This was true for cyanobacte-
ria and diatoms at Pond 1 and green algae and cyanobacteria at Pond 2. A t-test of set AB
showed that no differences were found in the average RMSEs for interior and nearshore
locations for green algae (p > 0.05) at Pond 1. Diatom RMSEs at both ponds exhibited mod-
erate (p < 0.1) differences between interior and nearshore locations. Significant (p < 0.05)
differences between nearshore and interior RMSEs were found for cyanobacteria at both
ponds and green algae at Pond 2.

3.4. Importance of Variables-Predictors

The top three most important predictors for each dataset and model for are shown in
Tables 2 and 3. The larger the value of %IncMSE indicates that the variable has the most
effect on the model accuracy. The three variables with the highest %IncMSE were the most
important predictors for each model. SPC and TEMP were the most influential predictors;
found in 63% of all cases when using input set A and in 46% of all cases when using input
set AB. NTU was seen in 7% and FDOM was seen in 11% of all cases where input set A
and input set AB were used, respectively. Predictors from set A continued to have high
importance (total of 61%) when the input set AB was used.

There was no significant difference between the ponds when considering the top three
most influential predictors when input set A was used. Using input set A, SPC was the
most influential predictor, with nine occurrences for each pond. TEMP was in the top
three most influential predictors nine times for Pond 1 and seven times in Pond 2. There
was a greater difference between the ponds when input set AB was used. SPC was the
most influential predictor three times for Pond 1 and nine times for Pond 2. TEMP was
among the most influential predictors eight times for Pond 1 and five times for Pond 2.
The influence of CHL was more prominent for Pond 1 (four times) than for Pond 2 (once).
Similarly, the FDOM was more prominent for Pond 1 (five times) than for the Pond 2 (once).
Overall, with the AB input set, predictors of the input set A were less influential in Pond 1
(52% of all occurrences) than in Pond 2 (78% of all occurrences).

There were clear differences among the phytoplankton groups. NTU was the most
influential predictor when assessing cyanobacteria, yet CHL was not. For green algae,
TEMP and SPC were the most frequent influential predictor with the input set A. When
the organic constituent-related inputs were included as part of set AB, TEMP and FDOM
became the most frequent influential predictors. CDOM was found as an influential
predictor only for diatoms. Diatoms in Pond 2 had the same most influential predictors
with inputs sets A and AB. The same was true for diatoms with combined 2017 + 2018 data
in Pond 1.

The top three most influential predictors were different in 2017 and 2018 in most cases,
with green algae in Pond 1 being an exception. The 2017 + 2018 dataset, in some cases,
led to the influential predictors being the same as individual years modeled separately
(e.g., green algae in Pond 2 with the input set A; diatoms in Pond 1 with the input set A;
green algae with the input set AB in Pond 1; and cyanobacteria in Pond 2 with input sets
A and AB). The nutrient-related variables available in 2018 are grouped in input set C.
These proved to be most important when all available input variables (input set ABC) were
used as input for green algae and diatoms (Tables 3 and 4), but not cyanobacteria. Because
nutrient data was only collected in 2018, it was excluded from the 2017 + 2018 dataset to
avoid unequal weighting across all parameters.
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Table 3. Most influential predictors and the increase in accuracy (%)for that variable for Pond 1 as
determined using the random forest algorithm.

Green Algae Diatoms Cyanobacteria

Input
Group Imp Var 1 Imp Var 2 Imp Var 3 Imp Var 1 Imp Var 2 Imp Var 3 Imp Var 1 Imp Var 2 Imp Var 3

2017

A
TEMP SPC DO NTU SPC TEMP TEMP pH SPC

4.3 2.7 2.6 14.3 12.6 12.4 21.0 15.5 14.9

B
FDOM Phyco CHL Phyco FDOM CHL CHL Phyco FDOM

6.7 3.8 3.2 22.0 15.4 10.9 37.3 22.2 17.3

AB
FDOM TEMP Phyco Phyco TEMP NTU CHL TEMP pH

2.8 2.8 1.9 9.7 8.0 7.7 14.2 12.2 11.0

2018

A
TEMP SPC DO TEMP SPC DO TEMP SPC NTU

9.5 6.1 6.1 10.0 8.0 7.0 32.3 25.9 16.1

B
CHL FDOM CDOM FDOM CDOM CHL FDOM CHL CDOM
20.6 8.9 4.2 17.5 16.0 9.1 44.9 30.1 23.3

C
K NO3 Ca2+ NO3 H2PO4

− Ca2+ NO3 K H2PO4
−

13.1 4.8 4.8 12.9 9.7 8.6 29.1 28.7 18.9

AB
CHL FDOM TEMP CDOM FDOM TEMP TEMP SPC FDOM
10.3 5.3 4.5 6.6 6.0 5.5 18.5 17.7 15.6

AC
K Ca2+ NO3 TEMP NO3 H2PO4

− TEMP SPC K
6.8 3.9 3.7 6.6 5.9 5.1 18.0 15.8 15.2

BC
K CHL Ca2+ FDOM NO3 CDOM FDOM K NO3

8.1 8.0 3.7 7.6 7.4 6.8 21.7 17.5 14.3

ABC
CHL K Mg2+ FDOM H2PO4

− NO3 TEMP SPC K
5.3 5.1 2.9 4.7 4.4 4.1 12.0 11.8 11.5

2017 + 2018

A
TEMP pH SPC TEMP SPC DO SPC TEMP NTU

14.8 13.3 11.3 33.4 31.8 23.5 69.8 43.5 41.3

B
CHL FDOM Phyco FDOM Phyco CHL CHL FDOM Phyco
33.5 14.0 6.6 42.4 40.6 38.9 81.3 79.8 58.4

AB
CHL FDOM TEMP TEMP SPC DO SPC CHL DO
16.9 8.1 6.8 23.1 21.0 16.5 47.7 34.5 28.1

Table 4. Most influential predictors and increase in mean square error for that variable for Pond 2 as
determined using the random forest algorithm.

Green Algae Diatoms Cyanobacteria

Input
Group Imp Var 1 Imp Var 2 Imp Var 3 Imp Var 1 Imp Var 2 Imp Var 3 Imp Var 1 Imp Var 2 Imp Var 3

2017

A
pH SPC TEMP pH SPC DO SPC NTU pH
22.5 19.9 6.4 24.1 13.3 11.6 88.6 49.9 16.0

B
FDOM Phyco CHL FDOM Phyco CHL Phyco CHL FDOM

26.3 20.4 8.3 29.9 19.1 12.3 118.2 32.4 24.3

AB
SPC pH TEMP pH SPC DO SPC NTU Phyco
16.7 16.5 6.8 15.7 11.2 9.8 60.6 36.6 33.4
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Table 4. Cont.

Green Algae Diatoms Cyanobacteria

2018

A
TEMP SPC NTU SPC TEMP PAR SPC TEMP NTU

21.9 19.2 13.6 10.6 10.2 10.1 16.7 10.9 7.9

B
CHL CDOM FDOM CDOM FDOM CHL FDOM CDOM CHL
31.6 22.5 16.3 23.5 18.1 16.7 29.0 16.0 15.1

C
K Mg2+ NH4

+ Mg2+ Ca2+ H2PO4
− Mg2+ K H2PO4

−

26.0 18.3 12.3 15.9 13.5 13.0 15.3 13.9 12.7

AB
TEMP SPC CHL SPC TEMP CDOM SPC FDOM TEMP

15.4 12.7 10.3 8.1 7.5 7.3 11.3 10.0 7.8

AC
K TEMP Mg2+ Mg2+ H2PO4

− Ca2+ SPC Mg2+ TEMP
13.5 10.2 9.9 7.8 6.2 5.9 10.3 7.3 6.6

BC
K Mg2+ NH4

+ Mg2+ H2PO4
− Ca2+ FDOM Mg2+ CHL

19.8 13.9 11.4 11.5 8.8 8.6 11.7 11.5 7.8

ABC
K NH4

+ NO3 Mg2+ Ca2+ H2PO4
− SPC FDOM Mg2+

10.2 9.2 8.8 7.1 5.3 4.8 8.1 6.9 6.2

2017 + 2018

A
pH SPC TEMP SPC DO TEMP SPC NTU TEMP
30.7 25.7 25.6 52.6 38.8 26.6 104.5 59.3 45.3

B
Phyco CHL FDOM FDOM Phyco CHL Phyco CHL FDOM
41.9 38.9 26.8 63.0 60.1 40.0 142.7 78.3 63.0

AB
pH TEMP SPC SPC DO TEMP SPC Phyco NTU
22.9 19.9 19.1 39.5 26.6 21.4 65.9 59.6 35.6

The top three most important predictors for each data set of the cyanobacteria orders
(Nostocales and Chroococcales) are presented in Tables 5 and 6. Temperature and SPC were
among the most frequent influential predictors. When comparing the overlap between
Nostocales and Chroococcales for each input dataset, the top three most influential predic-
tors were similar 67% and 51% of the time for Pond 1 and Pond 2, respectively. Comparing
the top three important variables between ponds for each order reveals that variables are
similar across both ponds in 54% of instances for Nostocales and 44% for Chroococcales. In
2018, when all input datasets were included, nutrients were some of the most important
predictors for both orders at Pond 2 and for Chroococcales at Pond 1.

Table 5. Most influential predictors for cyanobacteria orders Nostocales and Chroococcales, in Pond 1
as determined using the random forest algorithm.

Nostocales Chroococcales

Input
Group Imp Var 1 Imp Var 2 Imp Var 3 Imp Var 1 Imp Var 2 Imp Var 3

2017

A TEMP SPC PH SPC TEMP PH

B CHL Phyco FDOM CHL Phyco FDOM

AB TEMP SPC CHL Phyco CHL PH

2018

A TEMP SPC NTU TEMP PH DO

B FDOM CDOM CHL CHL CDOM FDOM

C NO3
− K H2PO4

− H2PO4
− Mg2+ K
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Table 5. Cont.

Nostocales Chroococcales

Input
Group Imp Var 1 Imp Var 2 Imp Var 3 Imp Var 1 Imp Var 2 Imp Var 3

AB FDOM CDOM TEMP CDOM CHL FDOM

AC TEMP SPC NO3
− H2PO4

− TEMP PH

BC FDOM CDOM NO3
− FDOM CDOM CHL

ABC FDOM TEMP CDOM CHL H2PO4
− FDOM

2017 + 2018

A TEMP SPC PH SPC DO TEMP

B CHL FDOM Phyco Phyco CHL FDOM

AB SPC TEMP CHL SPC Phyco CHL

Table 6. Most influential predictors for cyanobacteria orders, Nostocales and Chroococcales, in
Pond 2 as determined using the random forest algorithm.

Nostocales Chroococcales

Input
Group Imp Var 1 Imp Var 2 Imp Var 3 Imp Var 1 Imp Var 2 Imp Var 3

2017

A NTU SPC TEMP NTU TEMP SPC

B Phyco CHL FDOM FDOM CHL Phyco

AB NTU SPC Phyco TEMP NTU CHL

2018

A SPC TEMP DO NTU Light 15 cm DO

B FDOM CDOM Phyco CDOM Phyco CHL

C Mg2+ NH4
+ Ca2+ NH4

+ NO3
− K

AB SPC TEMP FDOM NTU CDOM CHL

AC Mg2+ SPC TEMP NH4
+ NO3

− NTU

BC Mg2+ FDOM NH4
+ NH4

+ NO3
− K

ABC Mg2+ SPC FDOM NTU K NO3
−

2017 + 2018

A SPC NTU PH NTU TEMP PH

B Phyco FDOM CHL Phyco CHL FDOM

AB SPC Phyco NTU Phyco NTU TEMP

3.5. Sensitivity to Inputs

The mean decrease of accuracy (%IncMSE) is shown below each variable in Tables 3 and 4.
For Pond 1 in 2017 and 2018, %IncMSE values were low for green algae and diatoms
(<15), and slightly higher for cyanobacteria (>15). The combination of years (2017 + 2018)
produced higher increases of mean square error, indicating that multiyear data allowed
for predictors to be more influential. For Pond 2, the sensitivity to the important variables
tended to be higher than in Pond 1. The values of %IncMSE in Pond 2 were less than 30 for
green algae and diatoms for both years. Cyanobacteria had a larger (>30) increase in mean
square error values, with the highest value being 143, indicating cyanobacteria predictions
were more sensitive to the influential predictors than the predictions for green algae and
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diatoms. Multiyear data tended to increase the %IncMSE values, causing greater sensitivity
to influential predictors.

4. Discussion

Earlier work by Smith et al. [40,46] demonstrated the correlation between several basic
water quality parameters and cyanobacteria populations, as well as the temporal stability
of phytoplankton populations within these ponds. Here, the relationship between more
complex water quality parameters and phytoplankton groups were examined with machine
learning. Phytoplankton group concentrations in the two agricultural irrigation ponds in
this study did not vary greatly, nor were the community compositions significantly different,
both representing communities of eutrophic, shallow, small-bodied waters. Average diatom
and green algae concentrations were similar between years and the two ponds. Despite
the routine application of the algicide copper sulfate during the study, phytoplankton
concentrations in Pond 1 were comparable to those reported in regional [29,30] and global
lakes [49,50]. Pond 2 had recurrent cyanobacteria blooms during the study, making the
phytoplankton concentrations more comparable to those reported in small lakes by Lee
et al. [51] and in local waters by Tango and Butler [52]. Pond 2 phytoplankton concentrations
were slightly higher than Pond 1 concentrations and can potentially be explained by routine
algicide use in Pond 1. All three phytoplankton populations in Pond 1 were greater in 2017
than 2018, whereas the opposite was true for Pond 2, except for diatom concentrations,
which were slightly higher in 2017 than 2018.

Root-mean-square errors (RMSEs), a metric used to evaluate model performance, for
the 2017, 2018, and 2017 + 2018 models (sets A and AB) varied depending on phytoplankton
group. Green algae models tended to have the best performance, followed by diatoms,
and then cyanobacteria. In a review by Shimoda and Arhonditsis [53], green algae were
found to have the least error of the three phytoplankton groups similar to the results in
this study. Cyanobacteria models had higher RMSEs than green algae models in both our
findings and those reviewed by Shimoda and Arhonditsis [53]. This could be explained
by the natural spatial and temporal variability of cyanobacteria blooms making accurate
population predictions more challenging [46,54]. While various types of models were used
in the review by Shimoda and Arhonditsis [53], the RMSEs from this work indicate that
the random forest model is a superior model for predicting green algae when compared to
the diatom and cyanobacteria models. In the work of Di Maggio et al. [55] where the same
three functional groups were studied, cyanobacteria were found to have the least accurate
model performance during peak biomass periods. However, Thomas et al. [56] noted that
cyanobacteria were more predictable than diatoms and green algae across many time scales
in an alpine lake. Both ecosystem type and available input variables appear to affect the
comparative performance of the random forest algorithm in predictions of phytoplankton
functional groups. The robustness of the model during the growing season is characterized
by the RMSE values presented in this paper since these RMSEs are averages over the
datasets used for training and testing by the random forest algorithm. Since this study only
focused on assessing the accuracy of the prediction model in agricultural irrigation ponds
during the growing season (May–October) (when waters were used for irrigation purposes
and when cyanobacteria biomass, and subsequently risks from cyanotoxins, was expected
to be greatest in this region [52,57]), to better assess this model’s performance in comparison
to similar models, additional training and validation needs to be done using data collected
outside of the growing season and in varying waterbody types. In this study, sampling was
conducted during periods of time between rainfall events, when irrigation is more likely
to take place due to crop production demands, elevated temperatures, and reduced soil
moisture [58]. To better equip this model for prediction during all weather conditions and
all seasons, additional sampling and training of the model would be necessary.

Model performance did not differ drastically between years. The exception to this
is for cyanobacteria predictions wherein RMSE values decreased substantially from 2017
to 2018, indicating better performance of the 2018 models. In Pond 1, models predicting
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diatoms and cyanobacteria performed better in 2018 compared to 2017. Similarly, in Pond 2,
better model performance in 2018 were seen for cyanobacteria predictions and, to a lesser
extent, for diatom predictions. The combined 2017 + 2018 datasets had higher RMSE values
than when using just the 2018 dataset, but lower than when only the 2017 dataset was
used. For all three groups and both sets of parameters (A and AB), 2018 had the best model
performance as indicated by the lowest RMSEs. Thomas et al. [56] found that multiyear
datasets were able to produce reasonable performance and attributed it to the model having
more data points to train the machine learning algorithm with. Our individual years had
fewer data points than the combined year models. While 2018 had the lowest RMSE values
of the three data sets, the use of 2017 + 2018 caused a decrease in RMSE values for 2017.
Furthermore, it was determined that the prediction of the 2019 data was not as accurate as
the prediction of the 2017 and 2018 years. Additional monitoring would help to determine
if the model performance of future years is comparable to the accuracy represented in the
2017 and 2018 evaluations.

The addition of organic constituent-related input parameters did not improve model
performance overall. While some aspects of the model saw a small increase in performance,
others saw a small decrease, and no general pattern could be defined. This follows many
other studies that showed the use of inputs, similar to this study’s set A parameters (DO,
pH, NTU, and TEMP), tended to be most important and produced the best prediction
results [59–61]. According to Rigosi et al. [62], a model based on water quality physical
parameters often has superior performance, and this was attributed to the high level of
complexity found in biological processes. Likewise, while the nutrient and macro element
parameters in input set C were highly influential when evaluating the 2018 data, the
difference in model performance across phytoplankton groups may be due to the complex
and interrelated way each phytoplankton group utilizes different nutrients and macro
elements [63,64], and subsequently interacts with other organisms [65], which was not
captured with just one year of data. The presence of short blooms of both nitrogen-fixing
and non-nitrogen-fixing cyanobacteria in the study area [46], which can utilize different
forms of nitrogen and impact the overall nitrogen budget [66,67], also may not have been
equitably represented in this dataset. When just the potentially toxigenic cyanobacteria,
represented in the dataset as Chroococcales and Nostocales, were examined alone, inclusion
of nutrient parameters in the training and testing dataset did improve model performance
and warrants further consideration. However, the ability to use the random forest algorithm
to predict phytoplankton groups using only set A inputs is beneficial for a wide range of
resource monitoring applications, including the differentiation of discolored water caused
by cyanobacteria, including subsurface bloom species like Raphidiopsis raciborskii [68], from
discolored water caused by chlorophytes and euglenophytes, both of which are known to
occur in the study area [29,30,52,69]. Set A input parameters are often the least expensive
and easiest parameters to collect, thus predictions can be quickly and easily performed and
provide a guideline to expanding resource monitoring efforts should cyanobacteria blooms
be predicted.

Overall, spatial distributions of RMSE values differed based on phytoplankton group.
Green algae had the lowest spatial average RMSEs (P1 = 0.278, P2 = 0.356); cyanobacteria
had the highest spatial average RMSEs (P1 = 0.567, P2 = 0.679); and average RMSEs for
diatoms were in between (P1 = 0.446, P2 = 0.578) for both ponds and models. This indicates
that the set A and AB models were the most accurate in predicting the spatial green algae
concentrations for the 2017 + 2018 dataset. In general, interior waters tended to exhibit
the lowest RMSE values in both ponds and for models, with both input sets A and AB
showing that the random forest algorithm predicted interior concentrations of green algae
best, followed by diatoms and cyanobacteria. In a prior study on the temporal and spatial
variability of phytoplankton functional groups within these two agricultural irrigation
ponds, it was established that interior waters tended to be less variable than nearshore
waters [46]. This stability allows the model to better predict the phytoplankton community
structure in those locations. Variations in phytoplankton concentrations tended to be



Environments 2022, 9, 142 15 of 21

greater in nearshore samples when compared to interior waters using an assessment of CV.
In over 50% of the sampling dates, CVs were higher for nearshore samples except for green
algae in Pond 1. Similarly, water quality CVs in both ponds were almost always higher for
nearshore locations, with most nearshore variability being higher in 75% or more of the
sampling dates. This pattern was also observed in the study by Awada et al. [70] for marine
waters; the model developed by these authors performed best in open water locations of the
Gulf of Sirte and had poorer agreement between measured and simulated concentrations of
chlorophyll-a along the shoreline. In Lake Taihu, locations closer to the shoreline tended to
have higher simulation errors than central lake locations [60]. However, in a study on Lake
Okeechobee, the random forest algorithm had better model results at nearshore locations
as opposed to pelagic locations, and Zhang et al. [71] attributed this to poor phytoplankton
growth in the pelagic zones caused by wind-driven sediment resuspension.

For all three phytoplankton groups, there was almost no change in RMSE values from
models run using set A parameters to models run using set AB parameters, indicating
that the additional parameters did not impact the predictive abilities of the random forests.
The ability of the random forest model to predict phytoplankton community structure or
chlorophyll-a concentrations accurately on set A parameters (TEMP, pH, NTU, and SPC)
alone has been noted in several other studies [18,61,72]. Whereas other studies [73,74]
found that biological parameters (biological oxygen demand; chlorophyll-a concentrations)
were more important for phytoplankton prediction models, biological oxygen demand
was not measured in this study. It should, however, be considered for future modeling
efforts as it is known to be spatially and temporally variable in lake waters [75,76] and can
be positively correlated with potentially toxigenic cyanobacteria species [77] and overall
phytoplankton biomass [76], both of which are of concern to agricultural resource managers
looking to meet water quality standards.

Overall, this study found that the most important variables tended to be set A param-
eters (TEMP, pH, NTU, and SPC) for both ponds. TEMP was determined to be the most
recurrent parameter in the top three most influential parameters for all groups and both
ponds. This is comparable to numerous other random forest models used for phytoplank-
ton prediction [33,61,72,74,78]. Other set A parameters which were also reported in the
top three most influential parameters, but to a lesser degree than TEMP, in this study were
SPC, NTU, pH, and DO. SPC appeared to be the most influential predictor in input set A.
A possible reason for this could be the correlation between SPC and nutrient ion concentra-
tions in agricultural waters [79] and the intercoupled relationship between specific nutrient
forms and concentrations and phytoplankton groups [80]. Correlations between water
quality parameters reflected both commonalities of the water quality-forming processes
in the studied ponds and the specifics of ponds. The strength of correlations between
inputs depended on the ponds and years. This indicates the importance of processes
not well-characterized by the available input variables. However, one cannot exclude
the presence of confounding factors, i.e., factors affecting both input and target variables.
Alleviating the effect of confounding variables is efficient if the relationships between the
target variable and independent variables are found from designed experiments when the
confounding variable is known and can be measured. This is not the case in the present
work. More needs to be learned about the functioning of phytoplankton communities
in small agricultural irrigation ponds now and how future community structure may be
shaped by climate change and increased anthropogenic forces to adequately discover and
monitor compounding variables.

The presence of correlations between independent variables in this work illustrates
the common multicollinearity problem. Whereas the accuracy of the random forest models
typically is not affected by multicollinearity [81], the causality conclusions, including the
ranks of correlated variables in the lists of important inputs, can be affected [82]. We realize
that the possible effect of multicollinearity was not fully addressed in this work. Multiple
methods of variable elimination are suggested to reduce the input variable list and to
characterize the effects of the input reduction on variable importance determinations [83,84].
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Applying these methods to low-dimensional data can improve the model’s reliability as
more data are available per model coefficient [85]. However, this may uncontrollably
change conclusions on the relative importance of input variables [86]. Comparing the
efficiency of the input reduction methods presents an interesting research avenue. In the
present study, we made the first step in this type of investigation by analyzing correlations
between inputs. For example, the expected strong correlations in both ponds in 2017
and 2018 were found between DO and pH (Supplemental Table S3). The probable cause
for this is high phytoplankton biomass undergoing photosynthesis, which causes pH to
increase due to CO2 consumption and O2 release. Thus, we cannot exclude the effect of
this correlation on the occurrence and position of DO and pH in lists of important inputs
(Tables 3 and 4).

The only instance when set A parameters were not the most influential parameters
was in 2018 when nutrients (input set C) were measured and used as inputs. Nutrients
being the most influential or important parameters is in line with numerous assessments of
phytoplankton community structure using random forest algorithms. Total nitrogen (TN),
total phosphate (TP), nitrate, and nitrite were identified as the most important predictors in
the phytoplankton models used in Lake Okeechobee [71] and Lake Taihu [76]. However,
these studies took place in lakes considerably larger than the ponds studied here. Small
waterbodies (<12 acres), which are increasingly being used in agricultural practices in the
Mid-Atlantic region, often have a greater biodiversity than larger bodies of water and can
experience more anthropogenic and climatic stress [87–89], highlighting the need to refine
models to local conditions. Since nutrients were only measured in 2018, these parameters
were not included in the 2017 or combined-year models. The modeling robustness of nutri-
ent parameters, when compared to set A parameters, has yet to be determined for ponded
agricultural waters. When we examined the use of nutrient parameters to predict poten-
tially toxic cyanobacteria species in the orders Chroococcales and Nostocales, inclusion of
nutrient parameters did improve model performance. Due to the small number of water
samples tested for cyanotoxins during this study (data not shown), we cannot correlate
this model’s performance with cyanotoxin production. However, this preliminary assess-
ment showed improved performance when nutrient parameters were incorporated into
this model tuned for small, ponded water systems with recurrent cyanobacteria blooms,
and can be used as a baseline for our future monitoring and modeling efforts as there
currently are no prediction models available that can differentiate between toxigenic and
non-toxigenic cyanobacteria blooms [33,90], even though it is known through field and
laboratory studies that TN and TP enrichment can stimulate the production of cyanotoxins
in numerous species [37,91].

In a review of predictive and forecasting models for cyanobacteria by Rousso et al. [33],
it was found that parameters similar to this study’s input set A (TEMP, DO, and pH) were
reported as the most influential predictors in 38.5% of publications surveyed. Nutrients
were reported as the most influential parameters in 30.5% of the total publications surveyed.
One of the least influential predictors reported (6% of publications) was similar to the
parameters included input set B (FDOM, CHL, and Phyco), which is comparable to the
findings in this study. As noted in a cyanobacteria research forecast by Burford et al. [91],
future modeling efforts should incorporate CO2 dynamics that will reflect future climate
scenarios, temporally relevant weather patterns, and the intricate relationship cyanobacteria
have with the food web, all factors which ultimately will influence agricultural irrigation
water quality. This study only focused on between-rain events when irrigation water from
these agriculture ponds was used most frequently. However, rain events, specifically those
which cause surface run-off, will ultimately influence nutrient concentrations within surface
waters used for irrigation. Defining the relationship between water quality parameters
and cyanobacteria blooms under numerous weather conditions with an easy-to-use model
would aid local resource managers charged with safeguarding irrigation water quality and
mitigating the risks posed to the agriculture industry from cyanotoxins.
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Physicochemical parameters being the most important predictors for the three ma-
jor phytoplankton groups is beneficial for water quality management. Enumeration of
phytoplankton is time intensive, requires highly-trained staff, and/or expensive infrastruc-
ture [8,18,32], whereas parameters such as temperature, dissolved oxygen, pH, conductivity,
and turbidity can be easily and affordably measured in real time with an in situ sensor. The
quick acquisition and input of these parameters into a modeling application allows for the
prediction of major phytoplankton groups by machine learning algorithms to be performed
by a broader group of individuals that could lead to more timely alerts of potentially
harmful phytoplankton species.

5. Conclusions

The prediction of phytoplankton groups in two agricultural irrigation ponds was
feasible with machine learning methodology via the random forest algorithm. Random
forest predictions for green algae were more accurate compared with predictions for
diatoms and cyanobacteria. The RMSE values of the model obtained with two years of
data were in between the RMSE values obtained with data from individual years. Interior
sampling locations had a lower model error than nearshore sampling locations. Minimal
differences in model performance were seen when organic constituent concentrations
were added as predictors. Models using physicochemical parameters (input set A) were
the models with the best performance. Modeling of potentially toxic cyanobacteria was
improved with the inclusion of nitrogen and phosphorus data. However, commonly
measured water quality variables such as temperature, pH, dissolved oxygen, specific
conductance, and turbidity were the most frequent influential predictors. The use of these
easy-to-measure parameters evaluated with regionally tuned models could allow water
quality managers to potentially bypass time intensive and expensive monitoring procedures
for those which can be obtained easily, affordably, and in real time, offering improved
resource management and health safeguards.
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1. Marić, D.; Kraus, R.; Godrijan, J.; Supić, N.; Djakovac, T.; Precali, R. Phytoplankton Response to Climatic and Anthropogenic

Influences in the North-Eastern Adriatic during the Last Four Decades. Estuar. Coast. Shelf Sci. 2012, 115, 98–112. [CrossRef]
2. Marshall, H.G.; Lane, M.F.; Nesius, K.K.; Burchardt, L. Assessment and Significance of Phytoplankton Species Composition

within Chesapeake Bay and Virginia Tributaries through a Long-Term Monitoring Program. Environ. Monit. Assess. 2009, 150,
143–155. [CrossRef] [PubMed]

3. Chen, Y.; Qin, B.; Teubner, K.; Dokulil, M.T. Long-Term Dynamics of Phytoplankton Assemblages: Microcystis-Domination in
Lake Taihu, a Large Shallow Lake in China. J. Plankton Res. 2003, 25, 445–453. [CrossRef]

4. Wynne, T.T.; Stumpf, R.P. Spatial and Temporal Patterns in the Seasonal Distribution of Toxic Cyanobacteria in Western Lake Erie
from 2002–2014. Toxins 2015, 7, 1649–1663. [CrossRef]

5. Znachor, P.; Nedoma, J.; Hejzlar, J.; Sed’a, J.; Komárková, J.; Kolář, V.; Mrkvička, T.; Boukal, D.S. Changing Environmental
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