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Abstract: Food waste is a common global threat to the environment, agriculture, and society. In the
present study, we used 30% food waste, mixed with 70% bio-fertilizers, and evaluated their ability
to affect the growth of Chinese cabbage. The experiment was conducted using different concentra-
tions of food waste to investigate their effect on Chinese cabbage growth, chlorophyll content, and
mineral content. Leaf length, root length, and fresh and dry weight were significantly increased
in plants treated with control fertilizer (CF) and fertilizer mixed with food waste (MF). However,
high concentrations of food waste decreased the growth and biomass of Chinese cabbage due to salt
content. Furthermore, higher chlorophyll content, transpiration efficiency, and photosynthetic rate
were observed in CF- and MF-treated plants, while higher chlorophyll fluorescence was observed
in the MF × 2 and MF × 6 treatments. Inductively coupled plasm mass spectrometry (ICP-MS)
results showed an increase in potassium (K), calcium (Ca), phosphorous (P), and magnesium (Mg)
contents in the MF and MF × 2 treatments, while higher sodium (Na) content was observed in the
MF × 4 and MF × 6 treatments due to the high salt content found in food waste. The analysis of
abscisic acid (ABA) showed that increasing amounts of food waste increase the endogenous ABA
content, compromising the survival of plants. In conclusion, optimal amounts of food waste—up to
MF and MF × 2—increase plant growth and provide an ecofriendly approach to be employed in the
agriculture production system.
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1. Introduction

It is estimated that about one-third to one-quarter of food is wasted. Food waste is
also defined as food loss or unconsumed food [1], and it represents the portion of food that
is not eaten by anyone [1]. There are various causes of food waste, which may occur at any
point of the food chain system, for example during production, processing, distribution,
consumption, or at the retail stage. It is estimated that 30–40% of food is wasted within the
food chain [2,3]. Kumar et al. [4] reported that 42% of waste derives from households, 39%
from food industries, and 5% occurs during distribution. In order to achieve development
goals for a sustainable environment, it is necessary to minimize these quantities. Food
waste has a worse effect on the environment and agriculture industry because compositing
is not carried out properly [5]. Globally, 1.3 billion tons of food is wasted every year [6], an
amount that is equivalent to more than half of the world’s annual cereal crop production
(2.3 billion tons). Approximately 19 million tons of food waste is reported annually in
Japan [7], 16.5 million tons in Taiwan, [8] and 4.3 million tons in Korea [9]. According to
the World Economic Forum, in South Korea 95% of the food waste is recycled in the effort
to become a zero waste society [10,11].
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Various strategies can be adopted to minimize wastage [12,13]. Nowadays, the biggest
challenges in food waste recovery are animal feeding, reducing the volume of surplus
food generation, combating world hunger, providing food waste to rendering industries,
and using it for soil amendments or incineration. In recent years, anaerobic digestion
(AD) technology for FW resource treatment has attracted considerable attention due to its
advantages, as it allows for the obtaining of clean energy and low carbon emissions, and
can be used in fertilization programs [14,15]. After the AD processes, the biogas obtained
can be upgraded to bio-methane, which is considered an attractive renewable energy, as it
is generally used as fuel in the transport sector, or is injected into gas grids, saving tons
of CO2-equivalent emissions [14,15]. On the other hand, AD technology allows for the
recycling of nutrients when digestates are applied on agricultural lands, either used as
food waste powder directly or mixed with other fertilizers [14,16]. For instance, anaerobic
digestion for biogas production results in large amounts of liquid digestate, which contains
high amounts of nutrients, such as nitrogen, potassium, and phosphorus, as well as
micronutrients in plant-available forms [17]. The long-term application of food waste
organic fertilizer was shown to improve soil quality, stimulate crop yields, and even have a
positive influence on the growth of soil bacteria [17]. Furthermore, food waste can be used
as organic fertilizer by compositing natural biological degradation processes [2,18,19]. In
accordance with the establishment of standards for fertilization processes and amendments
to the designation notice, dry waste powder can be used as raw material for organic
fertilizers [20,21]. In this case, it must include the standard values of less than 2% salt, less
than 15% moisture, and less than 30% of all raw materials [20,22]. Soil salinity is a major
abiotic stress that limits plant growth and development by affecting various physiological
and biochemical processes. Previous reports have shown that there are many effective
ways of improving salt-affected lands, such as water leaching, phytoremediation, and
chemical remediation [23]. In particular, the remediation of salt affected soils through
chemical agents includes the use of gypsum, organic matter (such as farmyard manure),
green manure, or organic food waste [24]. It was also reported that the application of food
waste improves the physical, chemical, and biological properties of soil and enhances plant
growth and development in various crops such as rice [23], tomato [25], pakchoi [26], and
common bean [27].

As it contains salt (and salinity is the biggest obstacle to food waste fertilization), food
waste cannot be used directly as fertilizer, and therefore a method that includes mixed
fertilization is being proposed as an alternative [22,28]. It is urgent to prepare a plan to
effectively utilize food waste as raw material for fertilizers. This research contributes to
the development of technology aimed at improving the stability and homogenization of
dry powder to be used as a substitute for mixed organic fertilizers [29,30]. When food
waste is used as raw material for fertilization, various problems—such as excessive salt
content, mixing of impurities, and odors—arise [31–33]. Therefore, there is an urgent
need to ensure stability and verify the procedures that are essential for safe fertilization
processes. In present study, food waste was mixed with organic fertilizer in dry powder
form, and its effects on Chinese cabbage seedlings and on the soil environment were
analyzed [34,35]. Furthermore, the combined effect of food waste and organic fertilizer
on the growth (shoot/root), biomass (fresh/dry weight), and chlorophyll content were
also investigated, together with the effect on phytohormonal regulation and content of
minerals, such as N, P, and K.

2. Materials and Methods
2.1. Physicochemical Properties of Soil

For the analysis of physicochemical properties, we collected soil samples and sieved
them to remove impurities. The soil was air dried under normal temperature and sieved
through a 2 mm mesh for further analysis. A quantity of 10 g of dry soil was mixed with
50 mL of water (1:5) by vortexing every 10 min for 1 min. After 1 h, the pH and electrical
conductivity were measured through a pH meter and EC meter, respectively. Subsequently,
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organic matter was quantified using the Mebius method. A quantity of 0.1–0.5 air-dried
soil (0.5 mm) was mixed in 10 mL of 0.4 N dichromate solution, and 20 mL of concentrated
sulfuric acid was added to a 250 mL Erlenmeyer flask and heated on an electric plate at
100 ◦C for 5 min. After cooling, 200 mL of distilled water, 10 mL of concentrated phosphoric
acid, and 1 mL of diphenylamine (16%) were added [36].

2.2. Measurement of Available Phosphorous, Nitrate, and Cation Exchange Capacity

For the analysis of phosphorous content, we used the molybdenum blue method
with 1-amino-2-naphtol-4-sulfanic acid, on the basis of the leaching method described in
detail by Lancaster [37,38]. In this method, the modified molybdenum is used to determine
the quantity of enzymatically hydrolyzable phosphorus in the soil. 1-Amino-2-naphtol-
4-sulfanic acid by Lancaster leaching method was followed for available phosphorus
estimation. For the analysis of nitrogen content, the method of Calazans et al. [39] was
adopted. The NH4

+ adsorbed on soil particles was replaced with potassium chloride
solution, alkalized with magnesium oxide and titrated to measure ammonia nitrogen.
Then, Devarda’s alloy was added to convert NO3

− to NH4
+ for distillation titration, and

nitrate nitrogen was measured. A quantity of 10 g of air-dried soil (2 mm) was mixed
with 0.1 g of a mixture containing sulfate—copper sulfate and selenium (10:10:1)—and
3 mL of concentrated sulfuric acid in a 100 mL polyethylene Erlenmeyer flask; then, the
contents were shaken for 30 min. The mixture inside the glass tube was digested in a
sealed vial and was heated until it turned white. Toward the end of the digestion process,
10 mL of distilled water was added, and the extract was distilled in the presence of sodium
hydroxide (13 mol/L) in a Kjeldahl distiller. The extract was placed into a boric acid
solution until a total of 50 mL of condensate in the flasks was obtained. The distillate
samples were titrated with 0.01 N H2SO4, and the total nitrogen content in soil samples
was calculated.

For the analysis of cation exchange capacity, 10 g of soil dried at 40 ◦C was weighted
and put in centrifuged tubes, and 50 mL of 1 N NH4OAc (pH 7) solution was added.
The tubes were then kept in a shaking incubator for 3 h at 140 rpm and centrifuged at
600 rpm for 10 min. A 5.5 cm Buchner funnel with retentive filter paper was fit, the paper
was moistened, and the soil extract was transferred. The decanted liquid was collected
in a 100 mL volumetric flask and was added with 1 N NH4OAc solution until reaching
a volume of 100 mL. The exchangeable bases (K, Na, Mg2, and Ca2) were determined
through the ICP measurement method.

3. Experimental Set Up

The Chinese cabbage needed for the experiment was purchased from Seoul-baechu,
(Danong, Gyeonggi province, South Korea), and seedlings were grown for 3 weeks in
a 72 Cells Seedling Trays (11 × 21.25 × 1.8 inches) containing horticultural soil (peat
moss (10–15%), coco peat (45–50%), zeolite (6–8%), and perlite (35–40%), along with NH+

(≈0.09 mg/g), NO3 (≈0.205 mg/g), PO (≈0.35 mg/g), and KO (≈0.1 mg/g)) purchased
from (Shinsung Mineral Co., Ltd., Goesan, Korea) [40,41]. The organic fertilizer mixed
with food (MF) waste was incorporated into the upper 10 cm soil layer, and supple-
mented with various amounts of food waste, on the basis of the experimental design. The
pots (17.0 × 12.0 × 13 cm) were labeled properly and divided into six groups (A) NT: not
treated control; (B) CF: controlled fertilizers (3.78 g per pot), which were added only with
high quality uniform compound fertilizer from a registered company (poweralchandeul,
Farmhannong Co., Ltd.,Yeongdeungpo-gu, Seoul, Korea, N-P2O5-K2O: 12-6-6); (C) MF:
mixed fertilizer (10.61 g per pot) composed of castor oil cake/rapeseed oil/food waste
powder (49:21:30), wherein a sub-group (MF × 2) was set up where the quantity of mixed
fertilizer was double; (D) the amount of mixed fertilizer was increased four times; and
(E) the amount of mixed fertilizer was increased six times.
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4. Morphological Analysis

After 4 weeks of growth using organic fertilizers mixed with different concentrations
of food waste, growth parameters, namely, root length, shoot length, fresh and dry weight,
were measured. Furthermore, a LCpro T portable photosynthetic assay system (ADC
Bioscientific Ltd., Herts, England) was used for the quantification of transpiration rate,
stomatal conductance, and photosynthetic rate.

5. Endogenous Abscisic Acid (ABA) Quantification

For the quantification of endogenous ABA, we used the detailed method by Khan
et al. [42,43]. A quantity of 0.3 g of freeze-dried sample was treated with 30 mL of extract
solution (isopropanol, 95%, and glacial acetic acid, 10%), and 100 ng of ABA standard
[(±)−3,5,5,7,7,7-d6] was added. The suspension was filtered, and the filtrate was con-
centrated using a rotary evaporator. The residue was suspended in 4 mL of 1 N NaOH
solution and rinsed three times with methylene chloride (3 mL) in order to eliminate traces
of lipophilic material. After decreasing the pH of the aqueous phase to 3.5 by adding 6 N
HCl, we extracted it through solvent extraction with ethyl acetate three times. The ethyl
acetate extract was then evaporated and the dry residue was re-suspended in phosphate
buffer solution (pH 8), which was passed through a polyvinylpolypyrrolidone column.
The eluted phosphate buffer solution was once again partitioned three times with EtOAc,
after adjusting to pH 3.5 with 6 N HCl. All three aliquots extracted were pooled and
evaporated using the rotary evaporator. Subsequently, the fractions were methylated with
diazomethane to detect and quantify ABA using GC-MS/SIM equipment (6890N network
gas chromatograph, Agilent Technologies) (Scheme 1). ThermoQuest Crop. (Manchester,
UK) software was used to monitor signal ions (m/z 1162 and 190 for Me-ABA, and m/z 166
and 194 for Me-[2H6]-ABA).
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6. ICP Analysis of the Uptake of Different Elements

For the quantification of different elements absorbed, such as sodium (Na), potassium
(K), calcium (Ca), phosphorous (P), and magnesium (Mg), we followed the methods
described in Khan et al. [44] and Sahile et al. [45], using 200 mg of freeze-dried powder.
All the samples were digested with 5 mL of HNO3 and 3 mL of H2O2 in a microwave
oven. Subsequently, 3% of HNO3 was added to digest the samples and was injected in an
inductively coupled plasm mass spectrometry analyzer (Optima 7900DV, Perkin-Elmer,
Waltham, MA, USA).

7. Statistical Analysis

The results of the current study were performed in a completely randomized design
and were subjected to statistical analysis. The experiments were conducted as three
parallels, and every replicate included 20 plants. Graphs were generated using Graph Pad
Prism software (Version 6.01, San Diego, CA, USA), whereas means with standard error
were compared using Duncan’s multiple range test (DMRT) in SAS (V9.1, Cary, NC, USA).
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8. Results and Discussion
8.1. Physicochemical Properties of Soil

It is very important to monitor the physicochemical characteristics of soil because
soil is a complex material that consists of various components, such as minerals, mois-
ture, and organic matter [46]. These components greatly influence soil structure, texture,
and porosity. Before the experiment, the electrical conductivity; organic matter content;
and available phosphorus, nitrogen, calcium, potassium, magnesium, and sodium were
analyzed (Table 1). Soil pH and electrical conductivity were 6.6 and 2.8 dS, respectively.
Soil pH, whose optimal range is 5–7 for agricultural crops [47], plays a vital role in the
regulation of nutrient availability [48], and is an indicator of the overall chemical status
of soil [49]. Electrical conductivity is also an important indicator of soil health that af-
fects plant nutrient availability and crop yield [50]. Moreover, soil is a major source of
nutrients, and soil nutrient availability is essential in sustaining soil quality and plant
productivity [51,52]. The nutrient contents obtained from soil analysis are the following:
organic carbon, 20 g/kg; nitrate nitrogen, 141.8 mg/kg; available phosphorus, 330 mg/kg;
K, 1.11 mg/kg; Mg, 3.65 mg/kg; and Na 0.6 mg/kg, as shown in Table 1. Crops plants
need 16 essential elements that are vital for their normal growth [53]. The over-application
of fertilizers, using water irrigation, can cause a micronutrient imbalance in soil and nutri-
ents available to plants. Among the nutrients, organic matter increases the chemical and
physical properties of soil that contribute to plant growth and development [54].

Table 1. Physicochemical properties of the soil used in the experiment.

pH [1:5]
EC OM NO3-N AP Ex. Cation (cmol/kg)

[1:5] (dS/m) (g/kg) (mg/kg) (mg/kg) K Ca Mg Na

6.6 2.8 20 141.8 330 1.11 11.61 3.65 0.6

EC: electrical conductivity, AP: available phosphorus, OM: organic matter.

8.2. Effect of Food Waste on the Growth, Biomass, and Chlorophyll Content of Chinese Cabbage

Currently, food waste is one of the most urgent challenges facing the environment,
society, and the economy because of the devastating effects it produces [55]. Different
strategies are employed to manage/recycle wasted food, such as the use as fertilizer, and
feeding [30]. However, using food waste as fertilizer presents a problem, namely, salinity
stress. The excess sodium concentration of food waste may cause ionic imbalance, as it
produces several morphological and physiological changes that inhibit crop growth and
development [56–58]. However, optimal doses of food waste have been demonstrated to
play a significant role in fertilization, as shown in Tables 2 and 3. In the current experiment,
the growth characteristics of Chinese cabbage were investigated. After four weeks, the
CF- and MF-treated plants showed an increase in leaf length (12.6–12.9 cm), root length
(11.8–15.3 cm), fresh weight (14.7–16.5 g), and dry weight (3.4–3.9 g) compared to the
control NT plants, where the same parameters were lower: leaf length (11.8 cm), root length
(9.3 cm), fresh weight (13.4 g), and dry weight (2.5 g). However, leaf length decreased
in the MF × 2-, MF × 4-, and MF × 6-treated plants (Table 2). In Table 3, results show
that chlorophyll fluorescence, which measures the photosynthetic rate, was higher in
the MF × 2- and MF × 6-treated groups than in the other treated groups (CF, MF, and
MF × 4), and ranged between 0.76 and 0.79, which satisfactorily meets the needs of plants.
In contrast, the transpiration rate decreased in the MF × 2- and MF × 6-treated plants
(Table 3). The level of stomatal conductance, which measures the water relationships within
a plant, decreased to 0.03 ± 0.0 mol/m2 in the treated groups (except for CF), showing
that the treated plants are not able to withstand drought or salinity stress. Similar results
were also observed for the photosynthetic rates between treated and non-treated Chinese
cabbage plants (Table 3).
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Table 2. Growth characteristics of Chinese cabbage.

Fertilizations NT CF MF MF × 2 MF × 4 MF × 6

Leaf Length (cm) 11.8 ± 0.87 ab 12.9 ± 2.19 a 12.6 ± 0.95 a 11.7 ± 0.76 ab 10.9 ± 0.32 ab 8.2 ± 0.46 b

Root Length (cm) 9.3 ± 0.77 a 11.8 ± 2.20 a 15.3 ± 7.98 a 11.1 ± 0.13 a 11.7 ± 2.39 a 9.8 ± 1.07 a

Fresh Weight (g) 13.4 ± 4.33 ab 14.7 ± 4.62 a 16.5 ± 3.69 a 9.5 ± 1.39 ab 7.9 ± 1.81 ab 3.3 ± 0.29 b

Dry Weight (g) 2.5 ± 0.48 bc 3.9 ± 0.61 a 3.4 ± 0.13 ab 2.6 ± 0.39 bc 2.0 ± 0.35 cd 1.2 ± 0.29 d

NT: not treated; CF: controlled fertilizer; MF: castor oilcakes 49, rapeseed oil cake 21, food waste powder 30; MF × 2 (mixed expeller cake
and food waste powder); MF × 4 (mixed expeller cake and food waste powder); MF × 6 (mixed expeller cake and food waste powder).
Each value represents mean + SD of three replicates. Values with different letters in rows are significantly different from each other, as
evaluated by DMRT.

Table 3. Photosynthetic characteristics of Chinese cabbage.

Fertilizations NT CF MF MF × 2 MF × 4 MF × 6

Chlorophyll Contents
mg/m2 487.7 ± 27.28 b 521.7 ± 13.13 a 477.3 ± 34.89 b 464.3 ± 38.52 b 439.3 ± 40.91 c 427.7 ± 37.53 c

Chlorophyll Fluorescence
(Fv/Fm) 0.80 ± 0.011 a 0.79 ± 0.023 a 0.79 ± 0.010 a 0.81 ± 0.039 a 0.76 ± 0.038 a 0.82 ± 0.023 a

Transpiration Efficiencies
(mmol/m2)

2.0 ± 0.35 ab 2.3 ± 0.31 a 2.0 ± 0.37 ab 1.6 ± 0.27 ab 1.5 ± 0.24 ab 1.3 ± 0.00 b

Stomatal Conductance
(mol/m2 s) 0.08 ± 0.020 a 0.09 ± 0.015 a 0.07 ± 0.013 ab 0.05 ± 0.007 ab 0.04 ± 0.007 b 0.03 ± 0.000 b

Photosynthetic Rate
(µmol/m2s)

2.8 ± 0.04 a 2.9 ± 1.14 a 2.3 ± 0.81 ab 2.0 ± 0.98 ab 1.2 ± 0.33 ab 0.2 ± 0.16 b

Each value represents mean + SD of three replicates. Values with different letters in rows are significantly different from each other, as
evaluated by DMRT.

8.3. Effect of Food Waste on ABA and Mineral Uptake in Chinese Cabbage

Phyto-hormones, especially ABA, play a crucial role in plant responses to various
environmental conditions [59,60]. In the present study, higher ABA contents were observed
in the MF × 2- and MF × 4-treated plants than in NT and CF-treated plants (Figure 1).
In contrast, a decrease in ABA content was observed in MF × 6-treated plants, possibly
due to an overdose of food waste that led to the death of plants, a hypothesis that is also
supported by the observed growth parameters. The increase in ABA content in MF × 2
and MF × 4-treated plants might have been due to the double and quadruple increase in
the salt content of food waste. This result also supports the observation [61–63] that high
salinity in maize, rice, and soybean enhances ABA contents. Furthermore, this increase in
ABA content was also correlated with the ICP analysis of Na content in Chinese cabbage
plants, which showed a higher Na content in MF × 2–MF × 6-treated plants than in NT
and CF-treated plants. This increase was due to the salt content present in food waste
powder. Moreover, Na content also affected the uptake of K, Mg, Ca, and P mineral ions
in Chinese cabbage (Table 4). The concentrations of potassium, calcium, phosphorus, and
magnesium were higher in the MF and MF × 2 groups than in the MF × 4 and MF × 6
groups. The amount of sodium increases with increasing concentrations of food waste
(which is alarming) and induces salinity stress. Excess sodium ions cause ionic imbalance,
as they compete with potassium ions, possibly resulting in necrosis and chlorosis [63].
Higher contents of K were observed in the MF- and MF × 2 -treated plants, with significant
effects on plant growth and photosynthetic rates. Previous studies showed that K plays a
vital role in photosynthesis and in the translocation of nutrients in plants; it is considered
a major nutrient, essential for plant growth and development [64]. Similarly, higher Mg
concentrations also play an essential role in plant photosynthesis and growth, as this
element is the central atom amid four nitrogen atoms in the chlorophyll molecule [65].
Another micronutrient is calcium (Ca), which provides structural support to the cell wall
and acts as a secondary messenger when plants are stressed [66].
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Figure 1. Endogenous abscisic acid quantification in Chinese cabbage. Each data point is the mean
of at least three replicates. Error bars represent standard errors. The bars presented with different
letters are significantly different from each other as evaluated by DMRT.

Table 4. ICP analysis results for Chinese cabbage (ppm).

Fertilizations NT CF MF MF × 2 MF × 4 MF × 6

K 39,299.7 ± 1293.15 bc 35,599.1 ± 1196.16 cd 41,376.2 ± 1799.51 b 45,963.0 ± 453.94 a 34,778.5 ± 255.90 d 33,702.2 ± 1560.46 d

Ca 26,330.3 ± 313.83 c 24,458.4 ± 46.37 e 27,073.3 ± 235.13 b 28,049.7 ± 72.54 a 25,568.1 ± 144.60 d 25,286.8 ± 70.72 d

P 5196.9 ± 32.98 a 5261.6 ± 58.48 a 5152.1 ± 32.12 a 5244.7 ± 36.28 a 4894.4 ± 104.39 b 4661.9 ± 25.51 c

Mg 5597.6 ± 30.18 d 5641.4 ± 17.84 cd 5768.0 ± 3.47 bcd 6046.8 ± 20.85 a 5826.1 ± 132.71 bc 5892.6 ± 2.15 ab

Na 5368.8 ± 213.93 bc 4543.9 ± 240.26 c 5165.0 ± 343.59 bc 5466.0 ± 102.77 bc 6322.9 ± 179.15 b 8739.3 ± 605.16 a

Each value represents the mean + SD of three replicates. Values with different letters in rows are significantly different from each other, as
evaluated by DMRT.

In summary, the combined application of organic and mineral fertilizers is the best
approach to achieve multiple aims in terms of high yields, low-cost farming, and minimal
negative environmental impacts. The good performance of this combination, together
with the reduced expenses for mineral fertilizers, can encourage farmers to accept the use
of organic fertilizers. Nabel et al. [67] reported that organic fertilization with digestates
had a positive influence on soil properties (e.g., increased soil respiration and enhanced
water-holding capacity), particularly in marginal sites. Organic fertilization via food waste
would improve crop yields and soil fertility and should be considered as an effective
strategy to manage compostable wastes. Mu et al. [68] reported the impacts of different
compost treatments rates (10%, 30%, 50%, and 70% v/v), and synthetic fertilizers showed a
positive effect on soil fertility, plant yield, and plant nutrient content in arugula and radish
plants. Similarly, Dlamlnl et al. [69] also investigated the effect of organic food waste on
soil conditions and on the yield of vegetables, and concluded that food waste fertilizers
can be used as an alternative to synthetic fertilizers to increase crop yield and improve the
physical properties of soil. At the same time, the negative impact of synthetic fertilizers on
the environment would be reduced, as well as the impact of disposing of vegetable food
waste in landfills.

9. Conclusions

In this study, Chinese cabbage was treated with different concentrations of food waste
along with a 70% fertilizer component. An increase in Chinese cabbage growth parameters
was observed up to the MF × 2 treatment. However, when the dose of food waste was
further increased to four- and sixfold concentrations, plants showed inhibitory growth
regulation. We demonstrated that the fertilization of seedlings with food waste within the
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optimal MF to MF × 2 range provides a valuable, ecofriendly, and low-cost biotechnological
approach for the improvement of sustainable crop production. Further on-field studies are
needed to observe the effect of food waste on the soil micro- and macronutrient composition,
as well as on the fertility rate in the long term. In addition, as the release of Na+ increases
soil salinity, it is necessary to determine the proper application doses of these organic
by-products in order to avoid negative impacts on soil, the environment, and human health.
Moreover, different strategies are needed to avoid the negative impact of sodium on the
growth of crops, as food waste contains more salt.
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