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Abstract: There is growing concern about the environmentally relevant concentrations of new emerg-
ing persistent organic pollutants, such as perfluorinated compounds and pharmaceuticals, which
are found to bioaccumulate in aquatic organisms at concentrations suspected to cause reproductive
toxicity due to the activation of estrogen receptor (ER) α and β subtypes. Here, we use a combined in
silico and in vitro approach to evaluate the impact of perfluorononanoic acid (PFNA) and Enalapril
(ENA) on grey mullet (Mugil cephalus) hepatic estrogen signaling pathway. ENA had weak agonist
activity on ERα while PFNA showed moderate to high agonist binding to both ERs. According to
these effects, hepatocytes incubation for 48 h to PFNA resulted in a concentration-dependent upregu-
lation of ER and vitellogenin gene expression profiles, whereas only a small increase was observed
in ERα mRNA levels for the highest ENA concentration. These data suggest a structure–activity
relationship between hepatic ERs and these emerging pollutants.
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1. Introduction

Chemicals interfering with the endocrine system known as endocrine disrupting
chemicals (EDCs) are pollutants that typically occur in aquatic environments as a result of
municipal wastewater discharge, landfill leachates, and agricultural and urban runoff [1].
EDCs are considered a major cause of aquatic wildlife decline and loss of biodiversity [2].
Aquatic organisms such as fish may experience life-long exposures to EDCs and may
bioaccumulate them developing a wide range of hormonal abnormalities [3]. Today, there
is growing concern about the environmentally relevant concentrations of new emerging
persistent pollutants, such as perfluorinated compounds (PFCs) and pharmaceuticals (e.g.,
contraceptives and anti-depressants), which are found to bioaccumulate in aquatic food
webs at concentrations suspected to perturb neuro-endocrine processes in living organisms
including humans [4,5].

PFCs are synthetic chemical compounds that due to high stabilities and low surface
tensions are increasingly used in various industrial applications and common consumer
products [6]. Among PFCs, the perfluoroalkylated substances (PFAS) have been discovered
as global pollutants remaining most persistently in each environmental compartment [7,8].
Although PFAS are considered moderately to highly toxic, some of these (e.g., perfluorooc-
tane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA)) are suspected endocrine
disruptors and have been found to cause adverse health effects, especially reproductive
toxicity, in different vertebrate models [9,10]. Similarly, pharmaceuticals that include any
chemical product used by individuals or agribusiness for promoting personal and livestock
health, have aroused great interest as environmental pollutants for their ecotoxicological
potentials [11,12]. These compounds have been detected, unchanged or as metabolites, in
wastewater, surface and drinking waters throughout the world [13–15]. Calamari et al. [16]
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have defined pharmaceuticals as pseudo-persistent pollutants due to their continuous in-
troduction into the environment, the biotic and/or abiotic transformation and the ability to
exert subtle effects in non-target organisms. In this regard, the estrogenic potential of some
pharmaceuticals has attracted great concern especially in the aquatic environment [17,18].

Estrogen-like EDCs (xenoestrogens) have the capability to bind to the estrogen recep-
tors (ERs), mimicking the female steroid hormone, 17β-estradiol (E2), and thus activating
intracellular signaling pathways. Activation of the ER-mediated signaling pathway has
been extensively studied in several models, particularly fish in which feminization has
been considered a direct result of xenoestrogen contamination [19–23]. In this regard,
the ER-induced hepatic vitellogenin (Vtg) production is typically used to confirm expo-
sure to estrogenic compounds in male fish [24,25]. Of the different fish organ cells, liver
cells are widely used in in vitro primary culture models due to their ability to retain na-
tive liver properties including estrogen responsiveness [26–28]. For that reason, in vitro
methods using primary cultures of fish hepatocytes represent a fundamental and recom-
mendable alternative to in vivo studies for investigating several toxicologically relevant
mechanisms [29,30].

In the present work, we focused our attention on the ability of perfluorononanoic
acid (PFNA) and enalapril (ENA) to interfere with estrogen receptor signaling using
a combined in silico/in vitro approach. The selected compounds belong to the most
frequently detected classes of emerging EDCs in the aquatic environment such as PFAS
and pharmaceuticals [31–35]. The Endocrine Disruptome program package was used
to predict their potential interference with nuclear ERs in silico. A bioassay that uses
primary hepatocytes from the grey mullet (Mugil cephalus) was then employed for screening
estrogenic potential by assessing classical biomarker responses such as VTG protein and
ER isoform mRNA expression. In addition, cytotoxicity using Alamar Blue and 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays was evaluated after
24 and 48 h exposure.

2. Materials and Methods
2.1. Endocrine Disruptome Screening Tool

A molecular docking approach for predicting interactions between PFNA/ENA and
estrogen receptor α (ERα) and β (ERβ) ligand binding domains has been performed
with Endocrine Disruptome Simulation (EDS) Tool. This web service has already been
successfully adopted as a software tool for predicting the endocrine disruption potential of
compounds, using well-validated crystal structures of 14 different human nuclear receptors
including ER subtypes [36]. The crystal structures of 1A52, 3OLS, 1SJ0, and 1QKN have
been chosen as templates on the basis of their sequence identity with fish receptors (higher
than 60%). The docking scores reported are a measure of how the contaminants fit within
the receptor-binding pocket, taking into account continuum and discreet parameters.
According to the threshold calculations sensitivity (SE), it is possible to obtain four broad
groups indicating predicted affinity for ER isoforms as follows: “red” (SE < 0.25), high
probability; “orange” (0.25 < SE < 0.50) and “yellow” (0.50 < SE < 0.75), medium probability;
and “green” (SE > 0.75), low probability of binding [36].

2.2. Hepatocyte Isolation and Primary Cell Culture

Flathead grey mullet (Mugil cephalus) males (95.5 ± 10.9 g initial weight) were pro-
vided by professional fishermen during fishing activities. Fish were acclimated for 2 weeks
in 2.00 m × 2.00 m × 0.60 m tanks with constant aeration and natural photoperiod at Unità
di Ricerca e Didattica of San Benedetto del Tronto (URDIS), University of Camerino in San
Benedetto del Tronto (AP, Italy). Water quality parameters were monitored daily showing
the following values: pH 8.4 ± 0.2, O2 = 10.3 ± 0.5 mg L−1, and temperature = 20–22 ◦C,
salinity 36 ± 2 psu; undetectable level of nitrites and ammonia. Following the acclima-
tion, fish were randomly euthanized using MS-222 within 5 min after capture. Animal
manipulation was executed following the procedures established by the Italian law (Leg-
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islative Decree 116/1992), the European Communities Council Directive (86/609/EEC
and 2010/63/EU) for animal welfare and under the supervision of the authorized inves-
tigators. The liver tissue was collected to obtain hepatocytes under a laminar flow hood,
according to Cocci et al. [37] and Palermo et al. [38]. Purified hepatocytes were suspended
in Leibovitz (L-15) phenol red-free medium, antibiotic-antimycotic solution (100 U/mL)
and 10 mM HEPES. The cell density was measured in a Burker Chamber and the viability
of hepatocytes was over 90%, as assessed with the Trypan blue exclusion assay. Cells
were seeded on 24-well Falcon Primaria culture plates (1 × 106 cells per well) in L-15
phenol red-free medium, antibiotic-antimycotic solution (100 U/mL) and 10 mM HEPES.
Cells were cultured for 24 h in an incubator at 23 ◦C before chemical exposure to allow
attachment. Then, 50% of the L-15 phenol red-free medium culture was removed, and
hepatocytes were exposed to medium containing the vehicle (ethanol, final concentration
0.01%) and 1.0, 0.01, or 0.0001 µM of E2, ENA or PFNA. Hepatocytes were incubated in an
incubator at 23 ◦C for 96 h. Media and cells were harvested separately at 0, 24, 48, 72 and
96 h with medium changes every 24 h. Doses of ENA and PFNA were chosen on the basis
of environmentally relevant concentrations [33,39–41] and six independent wells were
setup for both the control and each concentration of compound. The entire experiment was
repeated 3 times.

2.3. MTT Cytotoxicity Assay

The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide (MTT) activity was
measured according to Smeets et al. [42] with slight modifications, using the MTT Cell
Proliferation and Cytotoxicity Assay Kit assay (Boster Biological Technology, Pleasanton,
CA, USA, Catalog # AR1156). After 0, 24, 48, 72, 96 h of treatment described above,
incubation medium was removed and replaced with fresh culture medium containing MTT
reagent (5 mg/mL MTT diluted in phosphate buffered saline, PBS). After an incubation
of 40 min at 23 ◦C, the formazan crystals produced were solubilized by adding 200 µL
Formazan solubilization solution. After the complete solubilization, 200µL of medium was
transferred to a 96-well microplate and absorbance values were measured at 570 nm using
a microplate reader (BioChrom, Cambridge, UK).

2.4. Alamar Blue Assay

Cell viability was also quantified using the Alamar Blue™ assay reagent (Thermo Sci-
entific, Waltham, MA, USA) as described by Cocci et al. [23] and following manufacturer’s
specifications. The incubation medium was removed after 24, 48, 72, 96 h of treatment,
replaced with a fresh culture medium containing AB reagent at a final concentration of
10%, and incubated for an additional 1 h. The absorbance was monitored at 570/600 nm
using a microplate reader. The cell viability was normalized to that of hepatocytes cultured
in the regular media without any of the tested compounds.

2.5. Quantitative Realtime PCR (q-PCR)

After exposure, the medium was carefully removed, and cells were lysed by adding
the TRIzol reagent (Invitrogen Life Technologies, Milan, Italy). Total RNA was isolated
according to the manufacturer’s specifications. RNA quality and concentration were mea-
sured spectrophotometrically at 260/280 nm, and purity was confirmed by electrophoresis
through 1% agarose gels stained with SafeView Classic (abm). The cDNA was synthesized
from 1.5 µg of total RNA in 20 µL using the 5X All-In-One RT MasterMix (with AccuRT
Genomic DNA Removal Kit) according to manufacturer’s instructions (abm). SYBR green-
based real-time PCR was used to evaluate expression profiles of ERα, ERβ, VTG target
genes. 18s rRNA was selected as appropriate reference gene [28,43,44]. All the primer se-
quences are reported in Table 1 and were provided from Ribecco et al. [45], Vieira et al. [46],
Cabas et al. [47], and Perez-Sanchez et al. [48]. The reaction included 10 µL of 2X BlasTaqTM

qPCR MasterMix (abm), 0.5 µL each of forward and reverse primers (10 µM), 2 µL of cDNA
template, and nuclease-free H2O to a final volume of 20 µL. The expression of individual
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gene targets was analyzed using the ABI 7300 Real-Time PCR software. Thermo-cycling
for all reactions was for 3 min at 95 ◦C, followed by 40 cycle of 15 s at 95 ◦C, and 60 s at
60 ◦C. Dissociation curve analysis revealed that a single peak was generated during the
reaction demonstrating the production of a single product. Each amplified fragment was
then compared with that obtained from amplification of Sparus aurata cDNA and verified
with agarose gel electrophoresis (for details see Figure S1 in Supplementary Material). The
efficiency of qPCR primer sets was reported in Table 1. Results were calculated using the
2−∆∆Ct method and reported as fold change corrected for 18s rRNA and with respect to
vehicle levels. Values are the mean ± SD of three independent experiments.

Table 1. List of primers used in this study.

Gene Primer Sequence (5′–3′) Genbank Product Size Efficiency (%)

ERα CTGGTGCCTTCTCTTTTTGC
TGTCTGATGTGGGAGAGCAG AF136979 181 96.85

ERβ TGTCATCGGGCGGGAAGG
GCTCTTACGGCGGTTCTTGTCT AF136980 188 91.74

VTG CTGCTGAAGAGGGACCAGAC
TTGCCTGCAGGATGATGATA AF210428 158 96.31

18s rRNA GCATTTATCAGACCCAAAACC
AGTTGATAGGGCAGACATTCG AY993930 135 98.65

2.6. Enzyme-Linked Immunosorbent Assay (ELISA)

VTG concentrations in the culture medium of Mugil cephalus hepatocytes were de-
termined using an ELISA method previously published [25]. Cell culture media were
diluted 1:8 as reported for routinely diluted media samples by Navas and Segner [49]. All
samples were analyzed in triplicate. Absorbance was recorded at 492 nm using a microplate
reader (Biochrom).

2.7. Statistical Analysis

Data were assessed with Graphpad prism v6.01 software (GraphPad Software Inc.,
San Diego, CA, USA) and expressed as mean ± standard error of the mean (SEM). Sta-
tistical analysis was performed using ANOVA (one-way analysis of variance) followed
by Bonferroni’s multiple comparison test. Differences with p < 0.05 were considered
statistically significant.

3. Results and Discussion

The prediction results obtained with the EDS model for ENA and PFNA are given in
Table 2.

ENA is a drug of the class of angiotensin-converting enzyme inhibitors (ACEI) that is
mainly used in the treatment of arterial hypertension. Several studies indicate a beneficial
interaction between ACEI and estrogens which in turn are involved in reducing ACE
mRNA concentrations [50]. Zilberman et al. [51] showed that chronic exposure to ENA
significantly up-regulated ERα and β protein expression in rats. To date, however, there
is no experimental evidence that ACEI can bind directly to ERs. Thus, it is not surprising
that, according to EDS simulation, ENA presents moderate binding affinity against the
agonist-active conformation of the ERα and low affinity for both conformations of the
ERβ, respectively.

PFNA is one of the three main long chain PFCs, primarily used as an emulsifier for
producing fluoropolymers, that can be found at high concentrations in the environment [52].
PFNA has been detected in various waters and animal tissues worldwide suggesting high
bioaccumulation potential in the food chain [53,54]. In mammalian studies, an interference
with gonadal development in neonatal mice was observed after gestational exposure
to PFNA [55]. In addition, an increase in estrogenic activity was reported for exposure
to different PFCs, including PFNA, in in vivo studies using fish as models [56,57]. The
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results of in silico analysis obtained for PFNA allow us to support these effects because
the simulation tool predicts its agonist activity on the ERs, showing a high probability of
binding on ERβ and a slightly below probability on ERα. Only the agonist activity on the
ERα from different species was previously described in the literature [56]. This latter paper
reported that PFNA docked into the LBD region of ERα working as in vitro weak binders
and activators. In the present study, PFNA docking scores for ERβ were more favorable
than those for the ERα. In addition, an antagonist activity on the ERβ was also predicted
but any evidence of this potential activity has been found in the literature.

Table 2. Prediction affinities for 17β-Estradiol (E2), Enalapril (ENA) and perfluorononanoic acid (PFNA). +/− indicate the
crystal structures of estrogen receptors (ER) isoforms in complex with their respective agonist (+) or antagonist ligands (−).

CAS Name Structure Receptor/Predictions Free Binding
Energies (kcal mol−1)

50-28-2 E2
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In order to determine whether a structure–activity relationship between ERs and
tested compounds was evident, primary cultures of grey mullet hepatocytes were used
to investigate the impact of PFNA and ENA exposure on ERα/β and VTG expression. In
the first stage of our study, we examined whether the tested chemical compounds affected
cellular viability by using common in vitro cytotoxicity assays such as Alamar Blue and
MTT. The cell viability was expressed as metabolic activity, displaying 100% viability in
the media of both negative (EtOH) and positive control (E2) at each time point (Figure 1A).

In contrast, a significant inhibition of metabolic activity was obtained for both ENA
and PFNA. We found that cell viability decreased in hepatocytes after exposure to the
highest doses of ENA for 72 h (84.8% and 81.1% of solvent control at 0.01 and 1 µM ENA,
respectively) and 96 h (89.3% and 65.0% at 0.01 and 1 µM ENA, respectively) (Figure 1B).
Similarly, exposure of hepatocytes to 0.01–1 µM PFNA induced a significant change in
viability at both 72 h (cell viability 86.7% and 67.5%, respectively) and 96 h (cell viability
71.7% and 53.9%, respectively) after the start of treatment (Figure 1C). Complete cell death
was confirmed by microscopic examination of cells exposed to the tested chemicals. The
observed effects on cell viability were further investigated using the MTT assay (Figure 2).
ENA and PFNA performed similarly in both assays, showing the most significant decrease
in hepatocyte viability (from 71.7% to 53.9%) exposed to the highest concentrations (0.01
and 1 µM) for 96 h (Figure 2B,C). However, the MTT assay failed to detect cytotoxicity for
PFNA at 0.01 µM after 72 h exposure, thus proving to be slightly less sensitive than the
Alamar Blue assay.

To our knowledge, only one study has shown that ENA elicits specific cytotoxic effects
in primary cultures of hepatocytes through the involvement of a glutathione-dependent
detoxification pathway [58]. This effect was observed at concentrations ranging from 0.5
to 2 mM in an in vitro rat cell model. The potential cytotoxic and antiproliferative effects
of ENA were also found at concentration- and time-dependent manners in human HL60
acute promyelocytic leukaemia cells [59]. Interestingly, viability of ENA-treated HL60 cells
was observed to drop by about 20% after exposure to 3 µM for 48 h. On the other hand, the
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effect of PFNA on hepatocyte viability was previously demonstrated in humans, using the
WST-1 assay.
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Figure 1. Alamar Blue cell viability of Mugil cephalus hepatocytes following exposure to E2 (A),
ENA (B), PFNA (C) for up to 96 h. The dot line represents cell viability measured in the solvent
control (assigned a survival of 100%). Values are given as mean ± SEM of three independent
experiments and expressed as % relative to the solvent control. “*” indicates significant differences
between control and treated groups (p < 0.05).

PFNA was found to be more cytotoxic than PFOA and PFOS, causing a larger decrease
in cell viability upon exposure for 6–72 h to a concentration range of 200– 400 µM [60].
According to the obtained results, treatment incubation for 24 or 48 h was applied in the
further studies. However, the exposure duration and sampling time of 24 h for all molecular
endpoints were found to be inappropriate to obtain a clear concentration response of the
model compounds (Figure 3A–C). As expected, 48 h exposure to positive control (E2)
produced a dose-dependent induced expression of ERs and VTG compared with control
hepatocytes (Figure 3D). In contrast, a partial concentration-response curve (0.01–1 µM) for
expression of all molecular endpoints was obtained for the model compound PFNA after
48 h of exposure (Figure 3E), whereas only a small increase was observed in ERα mRNA
levels for 1 µM ENA (Figure 3F).
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Figure 2. MTT assay of Mugil cephalus hepatocytes following exposure to E2 (A), ENA (B), PFNA (C)
for up to 96 h. The dot line represents cell viability measured in the solvent control (assigned a
survival of 100%). Values are given as mean± SEM of three independent experiments in % relative to
the solvent control. “*” indicates significant differences between control and treated groups (p < 0.05).

We further discuss the mRNA expression of VTG at the level of protein concentrations
in the medium used for the primary cultures of grey mullet hepatocytes. At 48 h after
treatment, E2 caused a significant dose-dependent increase in VTG synthesis at any of
the tested concentrations relative to control cultures (Figure 4). Both PFNA and ENA also
increased the VTG synthesis, but to a lesser extent. Indeed, a significant increase in VTG
levels occurred following treatment with the highest doses (0.01 and 1 µM) of PFNA. In
contrast, VTG up-regulation was only induced in response to exposure at 1 µM ENA.
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different concentrations (0.0001–1 µM) of E2 (A,D), PFNA (B,E), ENA (C,F) for 24 and 48 h. Values are mean ± SEM of
three independent experiments. “*” indicates significant differences between control and treated groups (p < 0.05).

ER-mediated production of VTG is likewise by far the most used biomarker of xe-
noestrogen exposure in oviparous species [61–65]. VTG protein and gene expression
has been shown to be up-regulated by various environmental pollutants in a number of
in vitro–in vivo studies using fish models [66–68]. Interestingly, most of these works have
found that VTG induction is accompanied by a clear increase in hepatic ER expression,
mainly ERα. This latter is indeed considered the ER subtype with a major role in me-
diating VTG gene induction. However, there is evidence that ERβ subtype may have a
functional role in the up-regulation of ERα enhancing hepatic VTG induction in response
to E2 or xenoestrogen stimulation [69,70]. Our results on PFNA are in agreement with
those of Benninghoff et al. [56] who, in a recent study, found both in vitro and in vivo
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weak estrogenic activities of this PFC using a similar range of concentrations. Indeed,
according to the relative binding affinity (RBA) values obtained in vitro, dietary PFNA also
induced a consistent in vivo VTG induction in trout [56]. Collectively, our findings provide
clear confirmation of data reported so far regarding the ability of PFNA to act as weak
environmental xenoestrogen. PFNA has frequently been detected in surface waters at con-
centrations in the order of ng/L showing particularly high levels (up to a max of 100 ng/L)
in the recycling sites due to the recycling activities of electrical and electronic waste [40,71].
Thus, the prominence of PFNA in water from this typology of sites suggests the need of a
careful monitoring of this potential xenoestrogen in order to reduce its ecological impact in
aquatic ecosystems.
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differences between control and treated groups (p < 0.05).

Similarly, the occurrence of ENA in the environment can be related to incomplete
removal of this drug from wastewater treatment plants (WWTPs). ENA was detected
in wastewater influent at concentrations ranging from 35 to 1400 ng/L, while in the
wastewater effluent this range was reduced to 0.85–290 ng/L [39]. These data demonstrate
that total or high removal of this drug can be achieved in all WWTPs, thus suggesting a
substantially lower accumulation rate. Given also our results about the weak estrogenic
potential, one might predict that ENA has a mild impact on reproductive functions of
aquatic vertebrates.

4. Conclusions

In summary, an in vitro hepatocyte bioassay was used to characterize estrogenic
responses of gray mullet to PFNA and ENA as representative compounds of two classes of
emerging pollutants. According to the environmental occurrence of these chemicals, the
results would indicate potential adverse impacts especially on reproductive health. The
observed effects are likely to be mediated through direct actions of these compounds on
hepatic ERs suggesting a structure–activity relationship between ER and these emerging
pollutants. While the extent of PFNA estrogenic potential is substantially supported
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by literature data, further studies such as in vivo investigations need to obtain more
information on the estrogenic activity of ENA, especially to check its effectiveness following
long-term accumulation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/environments8060058/s1, Figure S1. Results of PCR amplification using template DNA from
Mugil cephalus or Sparus aurata.
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