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Abstract: This study aims to assess the short-term response of groundwater to the main hydro-
meteorological variables of drought in a coastal unconfined aquifer. For this purpose, a multiple
fuzzy linear regression-based methodology is implemented in order to relate rainfall, streamflow and
the potential evapotranspiration to groundwater. Fuzzy regression analysis is recommended when
there is a lack of data. The uncertainty of the system is incorporated into the regression coefficients
which, in this study, are considered to be fuzzy symmetrical triangular numbers. Two objective
functions are used producing a fuzzy band in which all the observed data must be included. The first
objective function, based on Tanaka’s model, minimizes the total width of the produced fuzzy band.
The second one includes the first while additionally minimizing the distance between the central
value of the fuzzy output of the model and the observed value. Validity of the model is checked
through suitability measures. The present methodology is applied at the east part of the Nestos River
Delta in the Prefecture of Xanthi (Greece), where the observed values of the depth of groundwater
level of four wells are examined.

Keywords: fuzzy regression analysis; groundwater level; unconfined aquifer; Nestos River Delta

1. Introduction

Groundwater is a vital resource of ecosystems and it is affected by natural and anthro-
pogenic factors. Primarily, groundwater is the main water source in case of drought caused
by the variability of precipitation and temperature. The groundwater level of unconfined
aquifers is strongly influenced by the variability of the amount of rainfall of an area and
the temperature [1–3]. Particularly, on a local scale, these climate changes have greater
impact on shallow aquifer systems than on deeper ones [3]. Additionally, shallow aquifers
in lowland areas, which constitute an important role in the development of societies, are
under more pressure since they are commonly associated with meeting the irrigation needs
of crops. Different approaches have been developed to groundwater modeling in which
mathematical relationships represent either the physical laws (physical models) or the nat-
ural processes of the system (conceptual models). Furthermore, natural processes may be
represented through relations coming from the general theory of systems analysis without
any consideration of physical laws and empirical relations (statistical-stochastic models).

Several studies, which intend to relate hydro-meteorological variables to groundwater,
have been proposed. Viswanathan [4] suggests a multiple linear regression model in order
to determine the recharge parameters of a coastal unconfined aquifer. Based on daily
rainfall and water table records of the year 1979, he uses a recursive least squares method
in order to minimize the difference between the groundwater level of an exploratory
well and that estimated of the model. The water table level is estimated as a function
of the given series of rainfall events and the prior water table levels. In their research,
Ferdowsian et al. [5] investigate statistically the trends of groundwater levels by taking
into account the time lag between rainfall and its impact on groundwater. Based on daily
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rainfall records, two forms of accumulative residual rainfall are estimated and compared
in order to be used as one of the two independent variables in a multiple linear regression
model. The other independent variable is the number of months since the commencement
of the observation. The output (dependent variable) of the model is the water table depth,
for which sufficient data from forty-nine (49) wells, both of shallow and deeper aquifers,
are collected every three (3) or nine (9) months during a sampling period of 7 to 10 years.
The regression coefficients estimated by the model represent the impact and the trend rate
of the groundwater level rise or fall over time. In the study of Chen et al. [6], precipitation
and temperature are linked to the groundwater level of a carbonate aquifer. On the basis of
a groundwater flow and a water budget model, they proposed a statistical-empirical model
applying a multiple linear regression in which groundwater level constitutes one function
of meteorological variables with a time delay ∆t. In another research [7], a multiple linear
regression model between rainfall and groundwater is applied in order to investigate the
groundwater response to rainfall. The model is powered by monthly records of water table
depth and rainfall by considering their values from the previous monthly step. Data from
several piezometric stations during the period of 2007 to 2008 are used and the analysis
is conducted at representative areas in a regional scale basin. Zhang et al. [8] evaluated
the effects of several factors with regard to the fluctuations in water table elevations in
the case of shallow aquifers at a local scale. For this purpose, multiple/stepwise multiple
regression techniques are used to investigate the linear relationship between identified
groundwater level response height and independent factors. Six wells at an experimental
site covering a region of 17 km2 are used to collect water table elevation data every fifteen
minutes on a weekly basis while hydrogeological data and site specific data are also used.
In another experimental research [9], a statistical model is suggested for the investigation
of the groundwater level response to precipitation, evaporation, river stage and tide level.
Daily water table data are selected from twelve (12) wells in a shallow unconfined aquifer
of a farmland covering an area of 50 × 150 m2 for one year.

All the aforementioned researches are important and useful for the understanding of
the interrelationships between the groundwater level and other hydrological and climate
factors. The use of such models relies on the availability of sufficient long-term time
series of the hydrogeological and hydrometeorological variables examined at each research.
Furthermore, analysis in most of these researches is conducted on the basis of a river basin
or a regional scale basin.

In the last two decades, fuzzy logic and sets have an increased use in surface water
and groundwater hydrological applications examining various problems [10]. Several
applications are based on fuzzy IF –THEN rules based methodologies [11–14], while
others are based on hybrid fuzzy multicriteria techniques [15–18]. These applications
are very popular because of the ANFIS toolbox of MATLAB. As far as fuzzy regression
methodologies are concerned, a variety of applications werecarried out in modeling both
qualitative and quantitative parameters [19–31].

Concerning the regression methodologies, the research of Bardossy et al. [19] was
one of the first applications in groundwater hydrology and surface hydrology dealing
with finding a relationship between saturated hydraulic permeability and resistivity. In
addition several methodological points and criteria of vagueness were proposed by [19].
Furthermore, Bardossy et al. [32] developed a fuzzy unit hydrograph based model in
order to calculate the fuzzy ordinates of the proposed fuzzy unit hydrograph. In the
current study, a fuzzy linear relationship between rainfall (R), streamflow (Q), the potential
evapotranspiration (PET) and the groundwater depth (DGW) is investigated in the case of a
shallow unconfined aquifer covering a local site of a deltaic environment. Two multiple
linear regression models based on the principles of fuzzy logic and sets are implemented.
Fuzzy linear regression models may satisfactorily function when there is a lack of data by
incorporating uncertainty into the regression coefficients which consider them as fuzzy
numbers [19,33]. All of the observed data must be included into the produced fuzzy band,
the spread of which is minimized. Appropriateness of the models is checked through
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the value of the objective function which indicates the total fuzziness. Other suitability
measures are also proposed in this work.

2. Materials and Methods
2.1. Basic Consepts of Fuzzy Logic and Sets

Fuzzy logic and sets consist of an extension of Boolean logic, which means that an
element x of a given fuzzy set B may take not only two values {1,0}, but also all the values
between 1 and 0 including limit values. Thus, an element x may belong to some degree to
a fuzzy set B, whereas in the case of Boolean logic an element x either belongs or it doesn’t
to a given set (crisp set). Fuzzy methodologies can be autonomous (for example, a set of
fuzzy rules based on Mamdani approach, for example, [34]) or hybrid, where uncertainty
of complex issues can be incorporated through analysis. Fundamental concepts of fuzzy
logic and sets are referenced below:

A fuzzy set B̃ is a mapping B : X → [0, 1] . The membership function µ(x) of an
element x ∈ X indicates the degree of membership in the B̃.

A fuzzy number Ỹ defined on R is a special kind of fuzzy set satisfying the following
properties [35]:

• ∃x ∈ X such that µ(x) = 1 (normal fuzzy set)
• the α-cut, Y[α], must be a closed interval ∀α ∈ (0, 1]
• the support set (strong zero-cut), Y[0]+ , of the fuzzy number Ỹ must be bounded

The α-cut, Y[α], of the fuzzy number Ỹ (and for any fuzzy set) is a crisp set containing
all the elements in the X that have membership value in Ỹ greater than or equal to α:

Y[α] = { x ∈ X : Y(x) ≥ α} (1)

Y[α]+ = { x ∈ X : Y(x) > α} (strong α-cut) (2)

It should be noted that the total fuzziness is taken into account when the strong zero
cut, Y[0]+ , is used. More analytically, according to Equation (2) above the 0-cut is an open
interval and does not contain the boundaries. For this reason and in order to have a closed
interval containing the boundaries, Hanss [36] proposed the phrase worst-case interval W,
which is the union of the strong 0- cut and the boundaries.

A symmetric triangular fuzzy number (STFN) (Figure 1) is a special kind of fuzzy
number of which the membership function is expressed by the following equation:

µY(x) =


1 f or x = r
x−(r−w)

w i f r− w ≤ x ≤ r
(r+w)−x

w i f r ≤ x ≤ r + w
0 otherwise

(3)

where w = the semi-width of the Ỹ, r = the central value of the Ỹ.
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The extension principle is a fundamental principle in fuzzy set theory. In brief, with
the use of the extension principle all the operations of the crisp functions can be extended
as the fuzzy arithmetic and fuzzy algebraic operations [37,38]. Thus, a crisp function
can be performed on a fuzzy number and the result of this operation should also be a
fuzzy number.

Let Ỹ be a fuzzy number and let f be a continuous crisp function. Then the result of
the performed operation will be a fuzzy number Z̃ with a membership function µZ(x), the
α-cuts of which can be described as follows [39]:

LZ[α] = min { f (x) | x ∈ Y[α]

}
,

RZ[α] = max { f (x) | x ∈ Y[α]

} (4)

for 0 ≤ α ≤ 1, where LZ[α] and RZ[α] are the left boundary and the right boundary of the
fuzzy number Z̃.

2.2. Fuzzy Linear Regression Analysis
2.2.1. Fuzzy Multiple Linear Regression based on Tanaka’s Model

In this research, a fuzzy multiple linear regression (Equation (5)) is implemented in
order to relate the independent variables (R, PET and Q), to the dependent variable (DGW).
Uncertainty caused by the complexity of natural processes can be incorporated through
the use of the fuzzy regression based on Tanaka’s approach [40]. This study examines
the case of input and output data taken as experimental crisp values while the output of
the model and the regression coefficients constitute STFN. Uncertainty is incorporated
into the fuzzy regression coefficients, the determination of which leads to a conventional
constrained optimization problem [41,42]. The objective function J of this optimization
problem is minimized since it indicates the total fuzziness of the solution.

D̃GW
j = Ã0 + ÃRRj + ÃPET PET + ÃQQj (5)

where R, PET, Q are the crisp data of rainfall, potential evapotranspiration and streamflow,
respectively, at the examined point in time j, and Ãj = (rj, wj) are the regression coefficients
selected as symmetric triangular fuzzy numbers with central value r and semi-width w.

According to the extension principle the estimated fuzzy output, D̃GW
j will also be a

symmetric triangular fuzzy number with a central value r and a semi-width w (Equation (6)).

central value : D GW
r,j = r0 + rRRj + rPET PETj + rQQj

semi− width : D GW
w,j = w0 + wR

∣∣Rj
∣∣+ wPET

∣∣PETj
∣∣+ wQ

∣∣Qj
∣∣ (6)

Based on the concept of inclusion (Equation (7)), all the observed data must be included
into the produced fuzzy band aiming at its minimum width.

DGW,obs
j ⊆ D̃GW

j,[h] (7)

The concept of inclusion interprets the inclusion constraints (Equation (8)) of the
optimization problem according to which an observation of groundwater depth (DGW,obs

j )
at the examined point in time j is included into the estimated fuzzy groundwater depth
(D̃GW

j ) with an associated degree h ∈ [0, 1]. The level h denotes that the observation DGW,obs
j

is contained in the support set of the corresponding estimated D̃GW
j with a membership

degree greater than h [43].(
r0 + rRRj + rPET PETj + rQQj

)
− (1− h)

(
w0 + wR

∣∣Rj
∣∣+ wPET

∣∣PETj
∣∣+ wQ

∣∣Qj
∣∣) = LDGW

j,[h] ≤ DGW,obs
j(

r0 + rRRj + rPET PETj + rQQj
)
+ (1− h)

(
w0 + wR

∣∣Rj
∣∣+ wPET

∣∣PETj
∣∣+ wQ

∣∣Qj
∣∣) = RDGW

j,[h] ≥ DGW,obs
j

w0, wR, wPET , wQ ≥ 0

(8)
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where LDGW
j,[h] and RDGW

j,[h] are the left boundary and the right boundary of the estimated D̃GW
j ,

respectively, while DGW,obs
j is the observation of the groundwater depth at the examined

point in time j.
Fuzzy regression analysis based on Tanaka [40] has no error term since the subject of

the inclusion constraints is the minimization of the spread of the produced fuzzy band. The
objective function J summarizes all the produced semi-widths for all points in time (j = 1, 2,
. . . , k). Thus, suitability of the model is checked by the value of the objective function J
(Equation (9), Fuzzy linear regression model I (FLR-1)). A small value of J indicates small
fuzzy band and therefore the model has high suitability.

minJ = min

{
k

∑
j=1

wGW
j

}
= min

{
kw0 +

k

∑
j=1

(
wR
∣∣Rj
∣∣+ wPET

∣∣PETj
∣∣+ wQ

∣∣Qj
∣∣)} (9)

where k is the number of observations.

2.2.2. Modification of Tanaka’s Model with the Use of a Non-linear Objective Function

When using STFN, the objective function suggested above by Tanaka [40] minimizes
the total semi-width for all the fuzzy regression coefficients and for all observations. Thus,
under inclusion constraint conditions, it takes into account the distance between the left
and the right boundary of each fuzzy output.

In their research, Tzimopoulos et al. [33] use a non-linear objective function based
on the least squares model suggested by Diamond [44], which minimizes the distance
between the observation (crisp output) and the left and the right boundary of the estimated
fuzzy output. Tzimopoulos et al. [33] apply this non-linear objective function in the
case of crisp experimental data without taking into account the inclusion constraints and
thus, the regression coefficients result crisp numbers. It is worth mentioning that in the
case of fuzzy experimental data the non-linear objective function used in the research of
Tzimopoulos et al. [33] works well regardless of whether the inclusion constraints are used.

This research applies a modified fuzzy multiple linear regression model based on
Tanaka [18] through the use of the non-linear objective function based on Tzimopoulos
et al. [33] (Equation (10), Fuzzy linear regression model 2 (FLR-2)) by taking into ac-
count the inclusion constraints in the case of crisp experimental data. In contrast with
the current study, in their research, Papadopoulos et al. [45] apply this modified fuzzy
regression model between only one independent and one dependent variable and they
work with probabilities.

minS =
k

∑
j=1


[

DGW,obs
j −

(
r0 − w0 + rRRj − wR

∣∣Rj
∣∣+ rPET PET − wPET

∣∣PETj
∣∣+ rQQj − wQ

∣∣Qj
∣∣)]2

+[
DGW,obs

j −
(
r0 + w0 + rRRj + wR

∣∣Rj
∣∣+ rPET PET + wPET

∣∣PETj
∣∣+ rQQj + wQ

∣∣Qj
∣∣)]2 (10)

where the first bracket denotes the Euclidian distance between the observed groundwater
depth, DGW,obs

j , and the left boundary of the corresponding produced fuzzy output of the

fuzzy regression model, LDGW
j , for level h = 0. The second bracket denotes the Euclidian

distance between the DGW,obs
j and the right boundary of the corresponding produced,

RDGW
j , for level h = 0.

Based on the consideration that the total produced fuzziness can be analyzed either
around the central values or the observations (Equation (11)) (similar considerations can be
found in [46] which aim at different purposes), it is concluded (Equations (11)–(14)) that
the objective function S (Equation (10)) takes into account both the distance between the
central value and the left-right boundaries, and the distance between the central value and
the observation.

k

∑
j=1

[(
RDGW

j − DGW,obs
j

)
+
(

DGW,obs
j − LDGW

j

)]2

=
k

∑
j=1

[(
RDGW

j − D GW
r,j

)
+
(

D GW
r,j −

LDGW
j

)]2

(11)
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Analyzing Equation (11) and solving for
k
∑

j=1

(
RDGW

j − DGW,obs
j

)2
+

k
∑

j=1

(
DGW,obs

j − LDGW
j

)2
and developing the analytical expression from the right, it is con-

cluded, as shown in the following equation [45,46].

k
∑

j=1

(
RDGW

j − DGW,obs
j

)2
+

k
∑

j=1

(
DGW,obs

j − LDGW
j

)2
=

k
∑

j=1

(
RDGW

j − D GW
r,j

)2
+

k
∑

j=1

(
D GW

r,j −
LDGW

j

)2
+ 2

k
∑

j=1

(
D GW

r,j − DGW,obs
j

)2 (12)

The analytical expression from the left denotes the total sum of the difference between
the DGW,obs

j and RDGW
j raised to the second power plus the total sum of the difference

between the DGW,obs
j and LDGW

j raised to the second power. The first and the second terms
of the right analytical expression are the total sum of the difference between the boundaries
(right and left, respectively) and the central value of the fuzzy groundwater depth (D GW

r,j )
raised to the second power. The last term denotes the (double) total sum of the difference
between the D GW

r,j and DGW,obs
j .

In the case of STFN (Figure 1) the distance between the central value and the right bound-
ary is equal to the distance between the central value and the left boundary (Equation (13)),
thus the first and the second terms of the right part of the Equation (12) can be written
as follows:

k

∑
j=1

(
RDGW

j − D GW
r,j

)2
=

k

∑
j=1

(
D GW

r,j −
LDGW

j

)2
=

k

∑
j=1

D GW
w,j

2

=
k

∑
j=1

(
w0 + wR

∣∣Rj
∣∣+ wPET

∣∣PETj
∣∣+ wQ

∣∣Qj
∣∣)2 (13)

where
k
∑

j=1
D GW

w,j denotes the total semi-spread of the produced fuzzy band.

Hence, Equation (12) can be re-written as follows:

k
∑

j=1

(
RDGW

j − DGW,obs
j

)2
+

k
∑

j=1

(
DGW,obs

j − LDGW
j

)2
=

2
k
∑

j=1

(
w0 + wR

∣∣Rj
∣∣+ wPET

∣∣PETj
∣∣+ wQ

∣∣Qj
∣∣)2

+ 2
k
∑

j=1

(
r0 + rRRj + rPET PET + rQQj − DGW,obs

j

)2 (14)

Consequently, the objective function S includes both the total fuzziness and the
(double) distance between the central value of the fuzzy groundwater depth (D̃GW

j ) and

the observed groundwater depth (DGW,obs
j ).

2.3. Suitability Measures

As aforementioned above, validity of the applied fuzzy linear regression models
is checked through the values of the objective functions J and S. Lower values of J and
S indicate higher suitability of the models. In addition, two more suitability measures
are used.

The first one is based on Theil’s inequality coefficient U [47], as presented according
to Bliemel [48] (the first of the two formulae) and Botzoris and Papadopoulos [49]. The
difference with the conventional U is that the fuzzy output estimated by the two fuzzy linear
regression models (which in this study is the fuzzy groundwater depth) is used instead
of the (crisp) output estimated by the conventional regression. Based on the extension of
principle [36,39], algebraic operations between fuzzy numbers and crisp numbers can be
performed producing fuzzy numbers and hence, a fuzzification of U is achieved. Thus, this
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study proposes, for the first time, the fuzzified Theil’s inequality coefficient, Ũ, which is
expressed as follows:

Ũ =

√√√√ 1
k

k
∑

j=1

(
D̃GW

j − DGW,obs
j

)2

√√√√ 1
k

k
∑

j=1
D̃GW

j

2

+

√√√√ 1
k

k
∑

j=1
DGW,obs

j

2
(15)

where D̃GW
j is the fuzzy output (fuzzy groundwater depth which is produced based on

the fuzzy linear regression model) and, DGW,obs
j is the observed groundwater depth at the

examined point in time j (which is crisp number).
The problem of Equation (15) is that the fuzzified Theil’s inequality coefficient, Ũ

contains some fuzzy inputs, that is, the fuzzy prediction of the water depth D̃GW
j . This

point can be addressed based on the extension principle. Finally, based on Equation (4),
the left (minimum) and the right (maximum) hand sides of the fuzzified Theil’s inequality
coefficient, Ũ are calculated as follows for one α-cut:

LU[α] = min { f (x1, . . . , xk) | x1 ∈ DGW
1 [α]

, . . . , xk ∈ DGW
k [α]

}
,

RU[α] = max { f (x1, . . . , xk) | x1 ∈ DGW
1 [α]

, . . . , xk ∈ DGW
k [α]

} (16)

where DGW
j [α]

, for 0 ≤ α ≤ 1, denotes the α-cuts of the fuzzy groundwater depth and x1, x2,
. . . , x9 are the solutions of the double optimization problem. By using a significant number
of α-cuts the fuzzified Theil’s inequality coefficient can be built.

Theil’s U can take values between zero and unit [0,1]. It is always reasonable that their
values be close to zero [48,49]. The two fuzzy linear regression models produce another
fuzzy groundwater depth value (fuzzy outputs) and therefore another Ũ are estimated for
each model. However, since the Theil’s U are produced as fuzzy numbers, it is demanded
to choose which of them is greater or smaller in order to decide the more suitable fuzzy
regression model. Therefore, a computationally efficient method to compare the fuzzy
numbers is presented in the Appendix A.

In the second suitability measure Edis, which is used in the research of [45], the
numerator denotes the Euclidian distance between the observed groundwater depth and
the left boundary, the right boundary and the central value of the corresponding fuzzy
estimate. The denominator denotes the distance between the observation and the unbiased
mean of the historical sample. It is calculated through the following algebraic expression:

Edis = 1−

k
∑

j=1

((
DGW,obs

j − LDGW
j

)2
+
(

DGW,obs
j − RDGW

j

)2
+
(

DGW,obs
j − D GW

r,j

)2
)

/3

k
∑

j=1

(
DGW,obs

j − DGW
)2

(17)

where LDGW
j , RDGW

j and D GW
r,j are the left boundary, the right boundary and the central

value of the fuzzy groundwater depth, respectively, while DGW is the mean value based on
the historical sample. The closer Edis is to unit, the better the model.

3. Results
3.1. Case Study

The study area is located at the south part of the City of Xanthi in the Prefecture of
Xanthi, N.E. Greece. It is bounded to the west by the Nestos River and to the south by the
Aegean Sea. Its geomorphology is generally considered to be flat with an elevation of a few
meters above sea level throughout the entire study area (Figure 2). It is located in a recent
sedimentary delta environment of a few tens of meters thick alternate sand, clay and silt
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layering deposits. It is worth mentioning the occasional presence of organic clay due to
the delta marshes. The evolution of the east part of the delta under flooding conditions
has been instrumental in forming low potential aquifers in the study area [50,51]. After
carefully studying drilling, piezometric and geophysical exploration data of the area, it was
concluded that at the north side of the study area, alternate clay and mostly sand layering
extend down to a depth of 30 m. A marly layer, 50 m thick, comes in between 30 m to 80 m
and below the depth of 80 m, the same clay and sand layers extend again [52–54].

Environments 2021, 8, x FOR PEER REVIEW 9 of 18 
 

 

 

Figure 2. Piezometric map of the unconfined aquifer at the east part of the Nestos River Delta and 
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Figure 2. Piezometric map of the unconfined aquifer at the east part of the Nestos River Delta and
the examined wells (October 2008) [52].

The east delta plain extends for 176.4 km2, forwhich 106.63 km2 are cultivated, while
the coastal saline uncultivated lands extend for 45 km2. The irrigated lands extend for
89.9 km2, while 35 km2 of them meet irrigation needs from the Nestos River. The remaining
areas meet irrigation needs by pumping groundwater from the unconfined aquifer of the
area. The mean annual water consumption is estimated at 27 × 106 m3 [51].

Hydrogeologically speaking, there is a shallow and a deeper aquifer system both
of which are formed within the alluvial deposits of the wider study area [53,54]. This
study focuses on the shallow hydrological system, which consists of phreatic and of semi-
confined aquifers extending to a depth of about 30 m. The transmissivity (T) value of the
unconfined aquifer is approximately 1.1 × 10−2 m2/sec [53,54].

As aforementioned, the inputs of the fuzzy regression models are rainfall (R), the
potential evapotranspiration (PET) and streamflow (Q). With respect to R and the PET, their
monthly measurements, which refer to the corresponding observations of the groundwater
depth (DGW,obs) for the month j and for the period of October 2006 to October 2008, that is,
k = 9, are utilized. It is mentioned that PET is calculated based on the Thornthwaite method.
Streamflow data are derived from the three-months mean value, starting from October 2006.
As far as the groundwater depth of the shallow unconfined aquifer is concerned, which
is the output of the two fuzzy multiple linear regression models, the used measurements
were collected from four (4) wells every three months, starting from October 2006 [52].

3.2. Results of the Two Fuzzy Regression Models

As aforementioned, for simplicity, the fuzzy linear regression model based on Tanaka’s
approach [40] will be symbolized as FLR-1 and that which uses the non-linear objective
function S will be symbolized as FLR-2. Likewise, the estimated Ũ based on the results of
FLR-1 will be symbolized as Ũ1 and the estimated Ũ based on the results of FLR-2 will be
symbolized as Ũ2.
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The results of the FLR-1 model are separately presented in Figure 3 in the case of well
194. For illustration purposes, only R-DGW and PET-DGW are presented. The coefficients of
the fuzzy regression are presented in Table 1.
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Figure 3. The results of the fuzzy linear regression(FLR)-1 model in the case of well194, (a) the rainfall R and the groundwater
depth DGW, and (b) the potential evapotranspiration (PET) and the groundwater depth DGW.

Table 1. The fuzzy coefficients regarding the examined wells based on the FLR-1 model.

Wells Constant Term R PET Qmean

r0
(centre)

w0
(semi-width)

rR
(centre)

wR
(width)

rPET
(centre)

wPET
(width)

rQ
(centre)

cQ
(width)

177 0.7371 0.4752 −0.0048 0 0.0456 0.0101 −0.0281 0
183 1.4440 0.6340 −0.0044 0 0.0416 0 −0.0384 0
186 1.2953 0.6977 −0.0021 0 0.0403 0 −0.0334 0
194 2.2853 0.1977 −0.0011 0 0.0260 0 −0.0442 0.0075

As it can be easily observed in the above Figure 3, all the observed data are included
into the produced fuzzy band as required by the inclusion constraints. Additionally, as
indicated in Table 1, most of the coefficients result incrisp numbers except from the constant
term. Particularly, as expected, the coefficients of R and Q are negative while the coefficient
of PET has a positive symbol.

Similar findings regarding the regression coefficients are obtained when using the FLR-
2 model (Table 2), while the observations of DGW and its corresponding fuzzy estimates are
illustrated (for the case of well 194) in Figure 4.

Table 2. The fuzzy coefficients regarding the examined wells based on the FLR-2 model.

Wells Constant Term R PET Qmean

r0
(centre)

w0
(semi-width)

rR
(centre)

wR
(width)

rPET
(centre)

wPET
(width)

rQ
(centre)

wQ
(width)

177 0.7790 0.4743 −0.0059 0 0.0452 0.0103 −0.0283 0
183 1.4824 0.6416 −0.0058 0 0.0413 0 −0.0384 0
186 1.3093 0.7005 −0.0026 0 0.0402 0 −0.0334 0
194 2.2438 0.2914 −0.0007 0 0.0259 0 −0.0432 0.0020

Furthermore, as it is observed in Table 1 and the Table 2, in both of models the fuzzy
coefficient of streamflow seems to be increasing (in terms of absolute value) as the coast
is approached, whereas the values of the rainfall’s modeldecreases (in terms of absolute
value). Meanwhile, the total fuzziness (J) gradually decreases as the coast is approached,
since it takes the highest value in the case of well 177 (the furthest well from the coast) and
the lowest value in the case of well 194 (the shortest well from the coast) (Table 3). In both of
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the fuzzy regression models, as it easily observed in Table 3, the lowest value of Ũ and the
higher value of Edis are also obtained in the case of well 194. The previous ascertainments
can be justified in hydrological terms considering the hydrogeological characteristics of the
aquifer under study focusing on the piezometric conditions and the depth values of the
groundwater level in the area of the wells 177, 183, 186, and 194 (Figure 2) [52].
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Figure 4. The results of the FLR-2 model in the case of well 194, (a) the rainfall R and the groundwater depth DGW, and
(b) the potential evapotranspiration PET and the groundwater depth DGW.

Table 3. Suitability measures and the values of the objective functions J and S for both of the fuzzy
linear regression models.

Results based on the FLR-1 model

Wells J S LU CU RU Edis

177 10.294 46.779 0.000 0.1212 0.2803 0.800
183 5.706 12.348 0.000 0.0653 0.1401 0.905
186 6.279 14.293 0.000 0.0700 0.1498 0.874
194 2.847 3.229 0.000 0.0379 0.0823 0.937

Results based on the FLR-2 model

Wells J S UL UC UR Edis
177 10.371 46.650 0.000 0.1196 0.2801 0.802
183 5.774 12.175 0.000 0.0633 0.1397 0.908
186 6.304 14.272 0.000 0.0695 0.1509 0.875
194 2.899 3.154 0.000 0.0370 0.0816 0.939

In the Table 3 below, the bold values constitute the lowest values of the objective
functions J and S and the lowest and highest values that the suitability measures (U and
Edis) correspondingly get in both fuzzy regression models. The fuzzified Theil’s coefficient
of inequality, Ũ, is described by the left boundary (LU), the central value (CU) and the right
boundary (RU).

It is worth mentioning that the Pearson’s r between DGW-R, DGW-PET and DGW-Q,
ranges (regarding all the examined wells) from −0.407 up to −0.497, from 0.931 up to 0.955
and from −0.466 up to −0.538 correspondingly.

As aforementioned, in both of the fuzzy regression models, Ũ gets the lowest value in
the case of well 194. However, it is difficult to choose the lowest Ũ between the applied
two fuzzy linear regression models (for each well) since the Ũ has a fuzzified shape. Hence,
the fuzzy numbers comparison method of the Appendix A is used, which is based on the
measure R. The values of the ranking measures R (R-values) are presented in Table 4.
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Table 4. R-values of the two fuzzified Theil’s inequality coefficients Ũ1 and Ũ2.

Ranking Measure/Wells 177 183 186 194

R (for Ũ1) 0.1277 0.0669 0.0717 0.0391
R (for Ũ2) 0.1266 0.0652 0.0717 0.0384

In the above Table 4, the lowest (bold) values indicate that in the case of well 194, Ũ1
and Ũ2 get the lowest value. In addition, the table information shows that Ũ2 is lower than
Ũ1. The lower the value of R, the closer the membership function of each Ũ becomes to 0
(Figure 5).
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well 194.

In the above Figure 5, the Theil’s inequality coefficients U are illustrated together
in the case of well 194. Ũ2 (the red shape) is lower than Ũ1 (the blue shape) and hence,
the FLR-2 model which uses the non-linear objective function S is a little more suitable.
Furthermore, Ũ2 is lower than Ũ1 regarding all the examined wells, while FLR-2 gets a
higher Edis-value than the FLR-1 in all cases of the examined wells.

4. Discussion Points

Based on the results above (Tables 1 and 2), two fuzzy linear relationships are pro-
duced, one for each multiple fuzzy linear regression model (FLR-1 and FLR-2). As expected,
rainfall (R) and streamflow (Q) negatively affect the groundwater depth (DGW), while the
potential evapotranspiration (PET) is positively related to DGW. In both of the two fuzzy
regression models, the fuzzy regression coefficient of the streamflow seems to have an
inversely proportional relation with the distance of the coast, while the fuzzy regression
coefficients of the rainfall grows lower. This could be explained by the geology of the case
study since grain size is increased approaching to the coast and therefore the hydraulic
interfacebetween the aquifer and the Nestos River may be stronger. This assumption
is consistent with the piezometric conditions of (Figure 2) and the observed depths of
groundwater of the case study.

In addition, total fuzziness continues to decrease as the distance tothe coast decreases,
that is, the FLR-1 and FLR-2 models work better approaching the coast. As can be easily
observed in Table 3, in the case of well 194, the total fuzziness J gets its lowest value with
respect to the other wells in both fuzzy regression models. Simultaneously, the Theil’s U
and the suitability measure Edis get their lowest and highest values, respectively. Therefore,
there is a robust linear (fuzzy) relationship between the aforementioned hydrometeorologi-
cal variables in the case of well 194. This fact could also be explained by the geology of
the case study where significant variability of hydraulic characteristics of the aquifer ap-
pears [52]. For instance, a lower permeability in places can negatively affect the short-term
influence of streamflow and rainfall on groundwater.

Regarding the suitability measures,the value of Theil’s inequality coefficient U in-
creases when the total fuzziness increases as well, while the higher the values of the
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suitability measures Edis are, the lower the fuzziness of the models. Consequently, the
suitability measures are consistent. It is observed that the uncertainties of the influence
coefficients are negligible, especially for streamflow and rainfall, despite their correlation
coefficients being much lower than the corresponding ones of potential evapotranspiration.
However, both the higher correlation coefficient of streamflow than the corresponding
one of rainfall in all examined wells and the coefficients of streamflow in both of the two
fuzzy regression models, show that the contribution of streamflow should not be ignored.
Eventually, fuzzy linear relationships instead of crisp relationships are produced.

It is highlighted that in general, both the fuzzy regression models (FLR-1and FLR-2)
obtain similar results. However, it is worth commenting on the fact that although the total
fuzziness (objective function J) has alower value when using the FLR-1 model (which is
obvious, since for the FLR-1 model, J is the objective function), all of the measures, U and
Edis, are a little more suitable for the FLR-2 model regarding all the examined wells. Since
the solution of the FLR-2 model has a better performance according to the majority of the
criteria and because of the fact that the objective function of the FLR-2 model includes both
the distances between central values-observed values and the objective function of FLR-1
(Equation (14)), the authors propose that the use of the FLR-2 model shall be preferred.

In that point, it is desirable to point out the difference between the crisp-fuzzy linear
relationship. In fuzzy linear regression based on the Tanaka model the observed depth of
groundwater (DGW) is included in the support of the corresponding fuzzy estimate and
hence, a membership degree corresponds to it. Whereas, statistical regression creates a
single line in which the observations are either coincident or they are not. This is shown in
the following example:

Let us consider the point with the black cycle (4th point) of the multiple fuzzy linear
regression based on the Tanaka model (FLR-1) performed in the case of well 177 and
illustrated in Figure 6 below.
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where the brackets of the nominators denote the central value of the fuzzy depth of 
groundwater and the brackets of the denominators denote its semi-width. The up and 
down inequalities denote the left and right boundaries, respectively, while the term 

,GW obs
jD  is the observation j of groundwater depth.  

In the case of well 177 it holds: Y = 1.01, X1 = 150.60, X2 = 49.75, x3 = 33.66, where X1, 
X2, and X3 are the measurements of rainfall, potential evapotranspiration and streamflow, 
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The membership function of the fuzzy depth of groundwater is described by Equation (3).
Based on Equations (6) and (8), Equation (3) can be rewritten as follows:

µY(DGW
j ) =



1−
−DGW,obs

j +
(

r0+rR Rj+rPET PETj+rQ Qj
)

(
w0+wR

∣∣∣Rj
∣∣∣+wPET

∣∣∣PETj
∣∣∣+wQ

∣∣∣Qj
∣∣∣)

i f
(
r0 + rR Rj + rPET PETj + rQQj

)
−
(
w0 + wR

∣∣Rj
∣∣+ wPET

∣∣PETj
∣∣+ wQ

∣∣Qj
∣∣) ≤ DGW,obs

j ≤
(
r0 + rR Rj + rPET PETj + rQQj

)
1−

DGW,obs
j −

(
r0+rR Rj+rPET PETj+rQ Qj

)
(

w0+wR
∣∣∣Rj
∣∣∣+wPET

∣∣∣PETj
∣∣∣+wQ

∣∣∣Qj
∣∣∣)

i f
(
r0 + rR Rj + rPET PETj + rQQj

)
≤ DGW,obs

j ≤
(
r0 + rR Rj + rPET PETj + rQQj

)
+
(
w0 + wR

∣∣Rj
∣∣+ wPET

∣∣PETj
∣∣+ wQ

∣∣Qj
∣∣)

0 otherwise
w0, wR , wPET , wQ ≥ 0

(18)

where the brackets of the nominators denote the central value of the fuzzy depth of
groundwater and the brackets of the denominators denote its semi-width. The up and
down inequalities denote the left and right boundaries, respectively, while the term DGW,obs

j
is the observation j of groundwater depth.
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In the case of well 177 it holds: Y = 1.01, X1 = 150.60, X2 = 49.75, x3 = 33.66, where X1,
X2, and X3 are the measurements of rainfall, potential evapotranspiration and streamflow,
respectively, while Y is DGW,obs

j . Based on the results of fuzzy linear regression of Tanaka
(FLR-1), the left hand boundary is equal to 0.3563 m, the right hand boundary is equal to
2.3147 m and the central value is equal to 1.3370 m. Replacing these values into Equation (18),
the membership degree which corresponds to the value of the observation can be stimated:

1− (−1.01 + 1.3370)
0.9777

= 0.6655

Let us also consider another point in Figure 6 above (the last of the right point with
the yellow cycle). For that point it holds: Y = 8.90, X1 = 1.50 (R), X2 = 158.51 (PET), x3 =
7.59 (Q). According to the results, the left-, and right-hand boundaries and central value
are 5.6686 m, 9.8208 m and 7.7447 m, respectively, while DGW,obs

j is equal to 8.90 m. Its
membership degree is equal to

1− (8.90− 7.7447)
2.0761

= 0.4435

It should be noted that in the case that the modified version of Tanaka’s model (FLR-2)
is used, the membership degree, which corresponds to the 4th observation, is equal to
0.8210, while the membership degree which correspond to the last observation (9th point)
is equal to 0.4400.

In addition, the outputs of the fuzzy regression based on the Tanaka approach (depen-
dent variable) may have different uncertainties expressed by its own membership function,
whereas in statistical regression all the outputs have the same error [19]. Last, in fuzzy
linear regression there is no theoretical obstacle to take errors in independent variables into
account, while fuzzy measure (or measures of vagueness) are commonly used. Therefore,
the two approaches should not be interpreted by each other in the same way [19].

5. Concluding Remarks

This study investigates the short-term response of groundwater (in terms of the depth
of groundwater) to rainfall, streamflow and the potential evapotranspiration, seeking a
fuzzy linear relationship among these hydrometeorological variables. The area under
investigation is a shallow unconfined aquifer at the east part of the Nestos River Delta in
the Prefecture of Xanthi, Greece where a small size of observed groundwater depth of four
wells are related to the hydrometeorological records at the same point in time.

Fuzzy regression analysis is preferred in this application because of the lack of data.
Two fuzzy multiple regressions based on Tanaka’s model and a modified version of it are
applied. The modified version uses a non-linear objective function which additionally
considers the distance between the observed groundwater depth and the central value of
the corresponding fuzzy estimate. In both cases, the problem concludes to a constrained
optimization problem where all the observed data must be included within the produced
fuzzy band.

In fuzzy linear regression based on Tanaka’s approach there is no error term. Suitability
of the model is checked through the value of the objective function, while other fuzzy
measures may be used. This study uses a fuzzified version of Theil’s inequality coefficient
U, which is estimated for each fuzzy regression model. Since Theil’s inequality coefficient
U has a fuzzy form, a ranking measure, R, is applied in order to compare Theil’s inequality
coefficient with different fuzzy regression models. Another suitability measure, Edis, takes
into account the Euclidian distance between the observed groundwater depth and the
corresponding fuzzy estimate as well as the unbiased estimation of the mean value of the
historical sample.

Based on suitability measures, the two fuzzy multiple linear regression models per-
formed well in the case of well 194 and thus a fuzzy linear relationship is achieved. The
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fuzzy regression coefficients show that the groundwater depth is negatively related to rain-
fall and streamflow and positively related to the potential evapotranspiration. Groundwater
seems to be differentially affected by streamflow and rainfall as the coast is approached,
while the total fuzziness decreases when the distance of the coast decreases. Correlation
which is separately carried out between the dependent variable and the independent ones
shows that the groundwater seems to have a stronger linear dependence on streamflow
than on rainfall, while the highest correlation coefficient is that of potential evapotranspira-
tion. Meantime, the uncertainties of the influence coefficients of rainfall and streamflow are
negligible. However, the contribution of streamflow should not be ignored. Although simi-
lar results are obtained from both fuzzy linear regression models, based on the suitability
measures, the model which uses the non-linear objective function is preferred.
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Appendix A

Let Ũ1 be a fuzzy number (here, the fuzzified Theil’s inequality coefficients). Then,
the left and right areas are the integral between the inverse functions of the left and right
branches of the membership functions of Ũ1, respectively, and the x-axis (Figure A1).
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Nguyen, in his research [55], takes into account these areas in order to develop a
unified index for ranking fuzzy numbers. Mathematically, the left and right areas can be
expressed as follows in case of fuzzy numbers:

LR =

∣∣∣∣∣ 1∫
0

gL
U(y)dy

∣∣∣∣∣
RR =

∣∣∣∣∣ 1∫
0

gL
U(y)dy

∣∣∣∣∣
(A1)

where gL
U(y) and gR

U(y) stand for inverse functions of the left and right brunches of the
membership function µU(x) of each Ũ. These integrals can be easily calculated by using
numerical methods if a large number of the corresponding α- cuts are known.

Then, the ranking measure R for the fuzzy number Ũ1 can be calculated as follows:

R = λRR + (1− λ)LR (A2)

where the parameter λ ∈ [0, 1] is a level of optimism reflecting a data-revelation optimism
degree of a decision maker. The larger the λ is the more optimistic attitude the decision-
maker has on the data revelation. In our case, it is adopted that λ = 1/2, which reflects a
neutral decision attitude [32]. The comparison between two fuzzy numbers is depicted in
Figure A1.

This research uses the ranking measure R in order to compare to each other the
fuzzified Theil’s inequality coefficients Ũ estimated through the two fuzzy multiple linear
regression models. The lowest Ũ indicates the more suitable fuzzy regression model.
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