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Abstract: Terrestrial oil spills have severe and continuing consequences for human communities and
the natural environment. Sorbent materials are considered to be a first line of defense method for
directly extracting oil from spills and preventing further contaminant spread, but little is known
on the performance of sorbent products in terrestrial environments. Dog fur and human hair
sorbent products were compared to peat moss and polypropylene sorbent to examine their relative
effectiveness in adsorbing crude oil from different terrestrial surfaces. Crude oil spills were simulated
using standardized microcosm experiments, and contaminant adsorbency was measured as percentage
of crude oil removed from the original spilled quantity. Sustainable-origin absorbents made from
dog fur and human hair were equally effective to polypropylene in extracting crude oil from non-
and semi-porous land surfaces, with recycled dog fur products and loose-form hair showing a slight
advantage over other sorbent types. In a sandy terrestrial environment, polypropylene sorbent was
significantly better at adsorbing spilled crude oil than all other tested products.

Keywords: crude oil; petroleum contamination; disaster management; land pollution

1. Introduction

Crude oils are complex in composition and form the basis of many materials and fuels in
high demand by global communities [1]. When crude oil spills occur, they often cause acute and
persistent damage to the impacted environments, with lethal or sub-lethal consequences for plant,
animal, and microbial communities, as well as human settlements [2–4]. The immediate health
impacts of spilled oil on animals include cancers, organ function disruptions, internal bleeding,
brain lesions, dehydration, loss of body weight, suffocation via smothering and increased population
mortality rates [5,6]. Chronic dangers of spilled oil on individuals include reduced metabolic rates,
altered behaviors, stunted growth patterns and impaired infant development [7,8]. The lingering
after-effects of oil spills on whole populations also include changes in migration, competition behaviors
and decreased species abundance [9,10].

Terrestrial oil spills are particularly hazardous, if untreated, as they can contaminate soils and
sediments and persist in harmful effects for many decades [11]. Furthermore, crude oil from terrestrial
spills can leach into groundwater and other fresh water sources, spreading further across the landscape
and causing severe damage to surrounding ecosystems [12]. It is therefore imperative to rapidly
respond with effective solutions once terrestrial oil spills occur in order to prevent significant and
lasting ecological damage [13].

Current methods for the immediate treatment of terrestrial oil spills include the use of trenches,
manual recovery through mechanical excavation, exclusion booms, and different types of sorbent
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materials (i.e., deployed as booms and padding). These methods have been reported as effective in
large scale events; however, they can be very expensive to utilize, and may not be uniformly suitable
for diverse terrestrial surfaces [14–16]. Furthermore, direct comparisons of oil-remediation methods to
quantify which is the most effective are rare. For marine and freshwater environments, sorbents are
an effective and popular choice for disaster response teams and have been used extensively over the
last few decades in efforts to remediate affected sites [17]. These sorbents are normally applied as
sheets or as booms directly upon the surface layer of the crude oil in attempts to contain and absorb
the oil. Synthetic sorbents like polypropylene are a popular material for oil spill sorbents due it its
oleophilic and hydrophobic properties and high buoyance, making it useful for aquatic sites [18].
However, recent research has suggested that natural-origin and recycled materials such as human
hair waste, recycled sulfur polymers, dog fur clippings, and peat moss are beneficial in extracting
oil due to their natural absorbance, low value and easy biodegradability [17,19–21]. Booms made of
recycled human hair waste were significantly better at adsorbing crude oil from simulated oceanic spills
compared to mainstream commercial sorbents including polypropylene, recycled cellulose, and cotton
by-products [17]. No research to date has comparatively investigated the decontamination of crude oil
from terrestrial surfaces using standardized sustainable-origin sorbents, including recycled human
hair and dog fur.

The central aims of this study are to assess the crude oil adsorbance effectiveness of eight different
sorbents within a comparative framework, including controlled microcosm environments; to quantify
whether sustainable-origin products perform as well at adsorbing crude oil as polypropylene; and to
determine if crude oil decontamination is influenced by the terrestrial environments the sorbents are
deployed upon.

2. Materials and Methods

2.1. Sorbent Materials

The sorbents tested included two commercially available products (i.e., polypropylene and
peat moss) as well as sustainable-origin prototypes including felted mats comprised of dog fur and
human hair, and prototype oil spill sorbent booms filled with dog fur and human hair (Table 1).
The sustainable-origin sorbents were sourced from Matter of Trust (USA) and Sustainable Salons
(Australia). Matter of Trust is a not-for-profit organization that produces sustainable-origin textiles for
environmental applications, including felted mats. Although primary textile for the organization is
recycled human hair, during the 2007 Cosco Busan disaster, the organization used recycled dog fur for
oil spill decontamination. Similarly, following the 2010 Deepwater Horizon disaster, the organization
deployed human hair-filled sorbent booms to adsorb oil that washed onto beaches of the southern
states of America. Sustainable Salons is an Australian-Pacific based company which recycles various
salon waste products and dog grooming wastes into sustainable-origin products, including oil spill
booms. Each sorbent product tested was standardized to 10 g of material.

2.2. Test Conditions

Three terrestrial landscapes were simulated in the experiment. Non-porous 20 cm wide × 2 cm
deep glass Petri dishes were used as a non-porous control surface. A semi-porous, 20 × 20 cm unglazed
flat terracotta tile was used to simulate a hard land surface. To represent a porous land surface,
the 10 cm Petri dishes were evenly filled with a 5 mm thick layer of Australian river sand (Bastion
Building Materials, Australia). In between replicates procedures the Petri dishes were fully cleaned
and dried.

5 mL (3.7346 g) of medium weight crude oil (Chem-supply Pty. Ltd., Gillman, Australia) was
carefully applied to the center of the surface of each microcosm. Sorbent materials were pre-weighed
to 4 decimal places, applied to the oiled surface, left to adsorb oil for 5 min, then removed from the
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surface and re-weighed (Figure 1). The sorbent-to-surface oil decontamination test was repeated five
times for each sorbent type and surface type.

Table 1. Oil spill sorbents used in microcosm experiments.

Sorbent
Material Description Origin of Sorbent

Polypropylene Polypropylene fabric cut into 2 cm
wide straps

Global Spill Control Pty. Ltd.,
Melbourne, Australia

Peat moss Organic peat moss in loose form Brunnings Garden Products Pty. Ltd.,
Oakleigh South, Australia

Human hair mat Felted product from mixed hair types,
approx. 10 mm thick Matter of Trust, San Francisco, USA

Dog fur mat Felted product from mixed dog breeds,
approx. 10 mm thick Matter of Trust, San Francisco, USA

Human hair
boom

Prototype hair-filled boom encased
in socking Sustainable Salons, Canberra, Australia

Dog fur boom Prototype fur-filled boom encased
in socking Sustainable Salons, Canberra, Australia

Loose dog fur Mixed breed loose dog fur Sustainable Salons, Canberra, Australia

Loose human hair Hair recycled from salon waste Sustainable Salons, Canberra, Australia
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sand surface.

In instances where the standardized sorbents were not large enough in surface area to cover the
whole area of the spill (e.g., tube-shaped oil spill booms), the materials were lightly moved across the
spill’s entire surface area in a consistent manner, comparable to actions which occur during large-scale
clean-ups of oiled environments. Due to extraction complications, peat moss was unable to be measured
for oil adsorbency when tested on a sand surface. When attempting to remove the peat moss from the
oiled sandy surface for re-weighing, the two substances had merged during the 5-min intervals and it
was not feasible to extract the peat moss from the sand. This indicates if peat moss was applied to an
oiled sand surface in-situ, it would not be advantageous in crude oil removal. This merging effect was
not observed in any of the other sorbent treatments, including loose dog fur and loose human hair.
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2.3. Statistical Analyses

We used beta regression [22] to model oil adsorption (response variable as a proportion from 0 to
1) as a function of the eight material types (categorical explanatory variable with eight levels) in R [23].
A separate model was used for each of the three surfaces (glass, sand, tile). Analysis of deviance was
used to determine the statistical significance of the effect of material on oil adsorption in each model.
The lsmeans package [24] was used to determine significant pairwise differences between material
types with P value adjustment using the Tukey method for comparing a family of eight estimates. All
sorbent treatments with statistically similar performance comparisons are grouped with alphabetical
letters within the figures.

3. Results

There was an overall significant effect of material type on oil adsorption for all three surfaces;
glass (χ2 = 92.95, DF = 7, p < 0.0001), sand (χ2 = 201.03, DF = 7, p < 0.0001) and tile (χ2 = 90.71,
DF = 7, p < 0.0001). Within the non-porous surface, fur booms and fur mats performed as well as
polypropylene at adsorbing higher quantities crude oil (i.e., >85% removal), as did loose hair and
loose fur (p ≥ 0.05) (Figure 2). Hair booms, hair mats and peat moss also adsorbed a similar amount of
crude oil from the non-porous surface (p ≥ 0.05), adsorbing less than the strongest performing sorbents,
but still displaying a >60% contaminant removal.
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In a semi-porous environment, adsorbency results were more varied across sorbents. Fur mats,
fur booms and loose fur had similar increased oil adsorbency to polypropylene of > 75% contaminant
removal (p > 0.05), as did hair booms (Figure 3). Loose hair was highly varied in its capacity to
consistently adsorb oil from the tile surface. The lower performing sorbents in this scenario were peat
moss (i.e., average of 48% removal) and hair mats (i.e., average of 57% removal).
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In a porous, sand environment, polypropylene had the highest crude oil adsorbency (i.e., average of
69% removal) and performed significantly better than all other sorbent materials (p < 0.001). Following
this, loose hair and loose fur had similar crude oil adsorbency of 15 to 20% removal (p = 0.9822). All
other sorbent materials performed similarly (p > 0.05) with less than 5% crude oil removal from porous
sand surfaces (Figure 4).
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4. Discussion

Sorbent products are a critically important tool for liquid-form contamination clean-up, including
crude oils [18]. For spills occurring on non-porous land surfaces, such as waterproof membrane-sealed
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concretes, there are several equally effective options for sustainable-origin sorbents. Dog fur sorbents in
mat and boom forms showed very high oil adsorbance in this type of spill environment, equally effective
as commercial polypropylene material in cleaning up spilled crude oil (Figure 2). Given that dog
fur sorbent products are a relatively new innovation, and the material is passively and continually
generated by the dog grooming industry and donated from domestic activities, this is a particularly
note-worthy finding for a sustainable sorbent option. For loose-form sorbent materials, human hair
was also highly effective at adsorbing spilled crude oil. Loose-form hair used in this study had no
special pre-treatments (i.e., unwashed salon waste), which indicates this material also has potential
application for up-scaling in a cost-effective manner, depending on deployment and collection methods.
Loose-form products are likely to be the hardest to recover in a real-world disaster from a logistical
perspective, as it would be difficult to retrieve disparate particles once spread across a larger outdoor
surface, and winds and other weather processes are likely to shift the materials.

More differentiation between sorbent effectiveness can be seen when applied to decontaminate a
semi-porous land surface, similar to concrete walking footpaths and bitumen road surfaces (Figure 3).
Dog fur products were equally effective at adsorbing crude oil regardless of the mode of deployment (i.e.,
felted mat, encased boom, loose) and the oil decontamination was found to be very consistent within
sorbent products, with little variation across replicates. A future avenue for scientific investigation
may be to explore the fur clippings of different breeds of dog to determine whether fur texture and
length promote crude oil adsorbency, although preferential fur sorting would add more complexity
to the creation of mat and boom oil spill products from waste streams and may not yield significant
decontamination benefits as a trade-off.

Stark difference in the oil adsorbency efficacy between products can be seen on river sand, with
performance decreasing dramatically overall for all sorbent products in this environment (Figure 4).
Polypropylene was markedly better at adsorbing crude oil compared to all other products, followed by
loose hair and loose dog fur. It appears oil adheres more strongly to polypropylene fabric over a sand
matrix, whereas the sustainable-origin products were less able to adsorb the oil from the sand, once
spilled. This indicates sandy shorelines are particularly vulnerable to prolonged crude oil contamination,
once floating oils reach land edges, and additionally crude oil run-off from larger, land-based spills are
likely to worsen in remediation difficulty once they reach sands and sediments. Particular importance
should be placed on decontaminating oils on water surfaces and harder terrestrial surfaces to avoid this
scenario. Furthermore, investigation into the physical characteristics of polypropylene fabric which
appears to make this a good crude oil sorbent for sand surfaces should be explored.

Peat moss did not remove spilled oil as effectively as sustainable-origin or polypropylene products
on semi-porous environments, being one of the lowest-performing products for non-porous land
surfaces, and was found to be entirely unusable on a sand surface in raw form. Peat moss is a
valuable organic substance that is generated by peat bogs. Given the limited availability of peat
worldwide, the need for peat to be destructively harvested from wetlands, and its relatively poor
performance within this experiment compared to other products, it is recommended this sorbent is not
used preferentially to decontaminate crude oil spills in this context.

In terms of ease of application and removal, felted mats and encased booms represented the easiest
method for deployment and recovery when compared to loose-form products. Visibly fewer fragments
and residues were left in the microcosms by the non-loose-form materials. A secondary benefit to
felted mats is they do not have any synthetic casings compared to booms and are therefore more likely
to be easier to process for sorbent re-use, as well as composting, compared to products with synthetic
external fabrics. Due to the stronger structural integrity of felted material, one future application for
felt-type sorbent is to decontaminate flowing polluted water, similar to existing membrane technology.
Further research investigating the oil saturation capacity of these new sorbent materials, as well as the
ease of crude oil extraction and recovery, re-use capacity of the sorbents, sorbent storage lifespan and
natural degradability as well as compositing ability and safety will further illuminate the potential for
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sustainable-origin sorbents to become part of large-scale decontamination protocols for land managers
at a local-level as well as national disaster-response agencies.
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