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Abstract: Urban ecosystem services (UES) is an essential approach to the development of sustainable
cities and must be incorporated into urban planning to be able to improve humans’ life quality.
This paper aimed to identify remote sensing (RS) data/techniques used in the literature in five years
(2013–2017) for UES investigation and to analyze the similarity between them. For this purpose, we
used the Scopus database of scientific journals, and a set of appropriate filters were applied. A total of
44 studies were selected, being 93.18% of them located in the Northern Hemisphere, mostly in Europe.
The most common dataset used was the secondary data, followed by the Landsat family products.
Land use and land cover (LULC) was the most common approach utilized, succeeded by radiometric
indexes and band related. All four main classes (provision, regulation, supporting, and cultural) of
ecosystem services (ES) were identified in the reviewed papers, wherein regulating services were
the most popular modality mentioned. Seven different groups were established as having 100% of
similarity between methods and ES results. Therefore, RS is identified in the literature as an important
technique to reach this goal. However, we highlight the lack of studies in the southern hemisphere.

Keywords: urban planning; urban land cover; spatial analysis; urban forest; satellite data; human
well-being; urbanization

1. Introduction

Ecosystem services (ES) are described as the processes, conditions, and benefits provided by
nature to maintain and fulfil the human needs and are commonly subdivided into four main classes of
services: (i) Provision; (ii) Regulation; (iii) Supporting and; (iv) Cultural [1–3]. All these classes can be
represented by at least 17 different types of ES with a total estimated value of about $33 trillion on
average [1].

The ES supply depends on biophysical factors and their modifications over time and space [4–7].
Since ES are the benefits that humans acquire directly or indirectly through nature [2,8], the urban
environments are important study areas for ES supply and demand analysis, once it is where most of
the users and beneficiaries of the ES live [7,9–11]. The incorporation in quantity, quality, and diversity
of ES increases the socioecological resilience of urban areas, changing the spatial distribution of
the main natural coverages that produce ES [12]. In this context, the preservation and restoration
of natural environments within urban areas is socio-environmentally necessary and, commonly,
economically viable [13]. Thus, mapping urban ecosystem services (UES) is described in the literature
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as an opportunity to monitor natural and anthropized areas that provide ES (its identification and
classification), verify how this provision changes according to time and space [5,6,9,14,15], and assess
how human-driven changes impacted the urban areas, positively or negatively [7,16,17].

Previously literature reviews on UES have found key challenges and insights for future
research [18,19]. These papers agreed that the current studies about this subject have some lacks when
they are analyzed under the interdisciplinary context and usually have limitations when interpreted
under spatial coverage. Some other reviews that consider the remote sensing (RS) of the ES variables,
showed that even though RS is not the perfect solution for understanding and monitoring ES, it has the
potential to comprehend and improve the quality of the work anywhere in the world, as long as the
correct tool is chosen [20,21]. However, all reviews acknowledged here, which considered the spatial
distribution of the papers assessed, show that the main part of RS studies of ES and UES variables are
concentrated in the Northern Hemisphere [10,18,22].

A key aspect of UES mapping is to locate and identify environmental variables responsible for
ES functioning. Aspects related to the temporal dynamics of UES have also been mentioned in the
literature, such as the vegetation structural attributes [23] and the change in provision of UES [15,23,24].
Existing research [25–27] has already emphasized the role played by RS data/techniques in enhancing
ecological studies given the number of open access data and software available for this purpose [27]. Its
potential is still greater when considering data sources with daily images [28], especially for tropical
regions with high cloud coverage [29]. Furthermore, RS is highlighted for several authors as an efficient
method for urban green spaces [30,31], land use land over (LULC) [32–36], and urban heat islands
analyses [24,37,38]. However, current RS methods can vary greatly. For instance, different applications
include the LULC change detection [39] and forest disturbance history [40], data fusion of optical and
radar data for precisely machine learning supervised mapping of LULC [41,42], the evaluation of water
quality index with machine learning algorithms [43], the use of ALOS-2 PALSAR-2 and Sentinel-2A
imagery to estimate aboveground biomass [44], and the use of synthetic aperture radar (SAR) and light
detection and ranging (LiDAR) data to evaluate the flood depth through the application of a normalized
difference index [45].

Understanding how ecological studies involving RS data/techniques can relate different areas and
apply different methodologies is; therefore, an issue of great interest in UES identification, classification,
and modeling. Conceptually, the outcomes obtained from UES studies are linked to the human
well-being and its close relationship with nature [46,47]. From a global point of view, researchers must
contribute to the efforts of United Nations (UN) to promote the development of sustainable cities and
communities (Sustainable Development Goal, SDG 11) until 2030 [48–52]. Thus, RS data/techniques
turns the findings of ES studies more relevant [53], more adequate to urban planning, and able to guide
for sustainable development in these areas [13,54–57].

Therefore, by considering the importance of identifying, classifying, and modeling ES in urban
environments, as well as the recent developments achieved by the RS data/techniques, the objectives of
this work are: (i) To analyze, through a literature review, how researchers are interpreting results from
RS data/techniques under a UES perspective; (ii) to identify the methodologies and databases used
and; (iii) to analyze the similarities and differences between the studies.

2. Materials and Methods

In order to evaluate and interpret the available and relevant research developed under the topic
UES by using RS data/techniques, a systematic literature review was carried out [58,59]. Thus, to
present the state of art of the suitability of RS data/techniques to identify, classify, and model UES, a
was conducted survey covering five full years of research on this topic, starting from January 2013
until December 2017.

Scopus bibliographic database was chosen to identify these papers. Scopus has a broad coverage
with more than 22,000 titles from over 5000 international publishers. This indexer has functional tools
for acquiring relevant documents, besides providing them in different ways and covering research areas
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that are relevant to the keywords chosen [60]. The Scopus platform contains results refinement tabs
that offers several types of filtering options, which are (i) Access type; (ii) Year; (iii) Author name; (iv)
Subject area; (v) Document type; (vi) Source title; (vii) Keyword; (viii) Affiliation; (ix) Funding sponsor;
(x) Country/territory; (xi) Source type; and (xii) Language. These options support the appropriate
choice of relevant scientific articles. For these reasons, Scopus is mentioned in the literature as a
trustable tool for identifying relevant papers [60–63].

In this work, we chose published scientific journals and relevant conference papers, both were
selected using the Scopus database, as it was provided by the education institute where this analysis
was carried out. We selected three different sets of keywords, which were chosen in previous analysis of
relevant articles to the UES study. These sets of keywords were (a) “Satellite,” “Ecosystem Service,” and
“Urban”; (b) “Mapping,” “Ecosystem Service,” and “Urban”; and (c) “Remote Sensing,” “Ecosystem
Service,” and “Urban.” Moreover, this literature survey considered the following subject areas: (1)
Environmental science; (2) agricultural and biological science; (3) social science; (4) Earth and planetary
science; (5) decision science; (6) engineering; (7) physics and astronomy; and (8) economics, econometrics,
and finance. These subjects were selected as they can be related, in some level, to the scope of this work.

We have further defined some exclusion criteria, which are mentioned, in order, as follows: (i)
Removal of duplicate results in the identification section; (ii) in the screening segment, by reading the
abstracts, we removed studies that did not use RS applications, nor were UES studies, and studies that
did not involve only urban areas; (iii) in the eligibility section, we verified, by assessing the full body
of the text, the information described in the exclusion criteria number (ii).

The results found were arranged in three main classes: (1) Database; (2) method; and (3) types
of ES considered. To better understand the similarity between the techniques used and the types of
results found in each study, we performed a multivariable statistical analysis, and a dendrogram was
produced for visualizing the result, as mentioned by Booth et al. [64] as an important approach for
systematic reviews.

Figure 1 illustrates the flowchart of the processing analyses performed. In the identification step,
only duplicated data were removed. For screening, we read the abstracts and excluded the ones not
related to our scope. Then, the full-text analysis was done, and 44 studies from the initial 215 were
included in both qualitative and quantitative analysis.
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3. Results

A total of 44 (20.46% of the total) papers were analyzed in both quantitative and qualitative
investigation. This number is considered a low quantity for systematics literature reviews. Hence,
we highlight that a small amount of studies relating RS data/techniques with UES approaches were
produced during the period analyzed. All these articles were manually reviewed in order to ensure
that they were truly applications of RS data/techniques for UES approaches.

The Earth’s Northern Hemisphere accounted for most of the studies (93.18%), mainly located
in Europe (52.27%), followed by China (15.90%), and USA (13.63%). The South America countries
represented the Southern Hemisphere with 6.81% of the total. The Asian countries were also important
contributors to the overall number of studies (25%)—as mentioned, mainly located in China (63.63% of
Asia’s contribution). The map in Figure 2 illustrates the spatial distribution of the papers assessed.

1 
 

 
Figure 2. Spatial distribution of the papers considered in our study. Some of the papers assessed used
more than one country as a study area, so we added one value for each country.

The studies assessed were distributed along six years according to the following percentages:
2013 (4.55%), 2014 (18.18%), 2015 (9.09%), 2016 (22.73%), and 2017 (45.45%). In this range, it is possible
to identify a slight tendency in the increase in the numbers of UES papers published during these
years, something that did not happen only in the year 2015, when the number of published articles
was lower than in 2014. Largely, 2017 was the major contributor, indicating an increasing trend for
research involving ES for urban areas sustainable development.

Figure 3 illustrates that, for the selected studies, the most used primary data (Landsat family)
were costless. Usually, secondary data are also costless and appear to be widely employed in UES
studies, especially those related to LULC mapping, which were highly mentioned.
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Figure 3. Identification of data source used by the authors, separated by year (2013–2017). * Abbreviations
mentioned in the data source axis stands for TM, thematic mapper; ETM+, enhanced thematic mapper plus;
OLI/TIRS, operational land imager/thermal infrared sensor; SPOT, satellite pour l’observation de la Terre;
MODIS, moderate-resolution imaging spectroradiometer; ASTER, advanced spaceborne thermal emission
and reflection radiometer; DEM, digital elevation model; API, application programming interface.

With regards to LULC secondary data, the information extracted from these were related with
zoning plans [65], urban atlas [16], soil maps [66], high ecological resolution classification for urban
landscape and environmental systems (HERCULES) [33], census data [67], and information regarding
naturalness and natural protected areas [68].

The Google Earth images, another free and open access data source, were used by the UES
authors for LULC purposes and for validation analysis of supervised and unsupervised classification
algorithms [33,69–71]. Similarly, the Google Street View API was used for understanding the urban
green canopy cover, while Google Street View photos, for instance, were used to determine the green
canopy cover in different locations of Singapore [72].

In the methodological analyses (Figure 4), the most cited methodology was the LULC (75%),
followed by the normalized difference vegetation index (NDVI) with 15.91%, leaf area index (LAI)
(11.36%), and land surface temperature (LST) (11.36%). Some methods were mentioned only once
(2.27%): normalized difference green-building volume (NDGB), green canopy cover, ES Index, modified
normalized difference water index (MNDWI), and visible red and NIR-based built-up index (VrNIR-BI).
The biomass estimation in urban areas, the species mapping, and the modeling of carbon assessment
(MOCA) flux model were cited in 4.55% of the papers selected.

Urban trees mapping methodology was mentioned as one useful approach for understanding
and regulating services [73–76] and supporting services [76]. Such mapping usually uses high-quality
images as aerial orthophotos [73,74] and LiDAR [75], since its accuracy is essential to identify the tree
coverage in urban areas.

The UES index methodology was mentioned only once in the selected papers [32]. However, it is
important to highlight that results found in that study delivered a more consistent approach on UES
importance as well as ES supply and demand in the urban scenario. Such finding seems to be a robust
tool to instantly propose suggestions for urban planning and development of sustainable cities.
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Figure 5 summarizes the four main ES groups (Provisioning, Regulating, Supporting, and Cultural)
identified in the literature review and their ES subtypes. Additionally highlighted, in a separated
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Figure 5. UES identified in the literature reviewed, separated by year (2013–2017).

All the four main classes of ES described by Costanza et al. [1] and TEEB [2] were found in the
selected studies. The ES types mentioned in all five years considered were: local climate and air quality
(70.45%), carbon sequestration and storage and wastewater treatment (22.73%) for regulating types of
services habitats and genetic diversity (22.73%) for supporting services, and recreation and aesthetic
contemplation (34.09%) representing cultural services.
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The most mentioned regulating services identified were, generally, extracted by the direct
interpretation of spectral indexes related to ecological components [77]. In contrast, other regulating
services, such as erosion, soil fertility, and pollination, would only be estimated using factors and
coefficients throughout data interpretation [67,71].

Supporting services (habitats and genetic diversity) and cultural services (recreation and aesthetic
contemplation) were generally obtained by interpreting urban green coverage and identifying significant
localities for maintenance of local species of fauna and flora, as well as social interactions and social
life, respectively [76,78,79]. The provision services were only related to fresh water and food supply
which were identified through water bodies and urban agriculture in urban and peri-urban localities
and mainly related to urban green coverage [9,16,33,65,67,79–82].

Urban green spaces were considered in a different column, because its presence (natural or
human-made) can be related to the provision of bundles of ES, having positive effects on people’s
living and buildings’ monetary values situated in the neighborhood [9,23,69,70,83–88].

Another parameter considered in this literature review was the similarity of methodologies and
the UES estimated in the selected papers. The dendrogram shown in Figure 6 illustrates the findings
of cluster analysis. In Figure 6, two main clusters were created (which had 0% of similarity between
them and were divided in the components A and B. The difference between them was mostly related
to the type of UES identified. In group B, there was a higher number of UES types identified, when
compared with group A. Group B was the only one with recreation and aesthetic appreciation services,
food and fresh water provision, and pollination services identified. On the other hand, group A had
their researchers mostly considering local climate regulation and urban green cover. By dissociating
the groups from the methods used, we noticed that group A was more diverse than group B, but LULC
was the most common methodology implemented.Environments 2019, 6, x FOR PEER REVIEW 10 of 16 

 

 

Figure 6. Cluster analysis of the similarity between the methodologies used and the UES identified, 

the full body papers investigated are expressed according to the order of appearance in the body of 

the text Clusters were divided into two groups with more than 0% of similarity, group A (blue 

interactions) and group B (red interactions). 

5. Conclusions 

In this work, the range of RS applications from the UES perspective was analyzed. Most of the 

UES studies examined here were concentrated in Northern Hemisphere sites, drawing attention to 

the need for additional UES studies and scenarios analysis in developing countries. In such regions, 

science investments are scarce, and; therefore, the use of RS methods with free and open data sources 

is an option, since the data source most mentioned in the surveyed studies are available for free. As 

a result, we highlight the importance of free data access for RS purposes, especially from the 

perspective of developing countries. 

Among the benefits of using secondary data for UES studies, it appears as being the cheapest 

and most accessible alternative to estimate ES per area unit using trustable data. For instance, most 

of the studies, which considered cultural services, were able to estimate the provision of ES with a 

high degree of quality. In addition, official data previously validated can reduce costs related to 

ground truth observations and measurements. 

LULC was the most mentioned methodology from those surveyed. Radiometric indexes and 

data able to be extracted directly from bands math, such as NDVI and LST, were also mentioned a 

few times. These indexes and band derived estimations are a way of having reliable data (once images 

are correctly pre-processed) without human interference. 

All core classes of ES, described in the classic literature of ES, were mentioned for urban 

environments in the sample assessed. Regulating services showed a vast range of methodologies 

used to identify the benefits that urban green areas have to regulate local climate, as well as to 

estimate the amount of carbon captured and stored in the urban forest. 

The similarity test for the studies assessed demonstrated that there is no standard procedure for 

producing or reproducing RS techniques in UES analyses, because the methods can vary according 

to the dataset used and their quality, the type of ES evaluated, and the researcher’s experience. 
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Figure 6. Cluster analysis of the similarity between the methodologies used and the UES identified, the
full body papers investigated are expressed according to the order of appearance in the body of the text
Clusters were divided into two groups with more than 0% of similarity, group A (blue interactions)
and group B (red interactions).

De Mola et al. [69], Peng et al. [85], and Richards et al. [86] developed LULC methodologies for
mapping urban green spaces. It is noteworthy the different approaches of obtaining LULC information,



Environments 2019, 6, 51 8 of 15

since all authors used different data sources in their studies: Google Earth data [69], ASTER, Landsat 7
ETM+ and Landsat 5 TM imagery [85], and only Landsat 7 ETM+ imagery [86].

The papers published by Van de Voorde [87] and Ren et al. [23] used NDVI to identify urban green
spaces. However, findings from [86] suggest that its results, using Quickbird high spatial resolution
satellite imagery, were more accurate than those obtained by [23], which used a 30 m resolution free
data source Landsat 5 TM.

Larondelle et al. [89] and Kim et al. [90] studied the same type of UES by using the same
method, as noticed in Figure 6. These authors chose the LULC method and had their results based
on regulating services–local climate and air quality, and carbon sequestration and storage. Similarly,
Behling et al. [91] and Goldenberg et al. [92] also chose the same type of methodology to identify the
same range of UES. In their method, regulating services were the focus of the study, but LULC was also
selected. Nonetheless, the services considered were local climate, air quality, and wastewater treatment.

For the estimation of local climate and air quality regulation services only, three 100% similar
groups were identified: (i) Chen et al. [93] and Zhang et al. [77], both studies used LST and LULC
(similarly to them, Greene et al. [37] used the same techniques plus NDVI (commonly used for LST
estimation purposed) to derive the same UES estimative); (ii) Fusaro et al. [94] and Manes et al. [95]
used LULC and LAI; and (iii) Manes et al. [96,97], used the same types of methods of Fusaro et al. [94]
and Manes et al. [95] and added the MOCA (modeling of carbon assessment) and flux model to identify
local climate and air quality regulating services.

Ala-Hulkko et al. [98] and Casado-Arzuaga et al. [68] also chose LULC as methodology. These
papers found the cultural services of recreation and aesthetic opportunities as results. The data source
selected by these authors was the secondary data, since, for recreation and aesthetic purposes, to
understand the local objectives and concerns is important as the feature’s identification.

From all papers assessed with 100% of similarity, Liu [82] (China) and Mcphearson et al. [33]
(USA) were the ones with more UES estimations. Both studies used LULC as the only methodology.
They estimated the four main classes of ES: (i) Provision (food and fresh water); (ii) Regulating (local
climate and air quality, carbon sequestration and storage and waste-water treatment); (iii) Supporting
(habitats and genetic diversity), and iv) Cultural (recreation and aesthetic appreciation).

4. Discussion

A large concentration of UES studies in the Northern Hemisphere was also found by
Haase et al. [10] for UES and for ES in Barbosa et al. [22]. The results concentrated in the Northern
Hemisphere confirm that a lack of studies exist in the Southern Hemisphere for sustainable development
of cities, when compared with the ones in developed countries [48,51,99], and we could confirm that in
our systematic review. However, the number of studies in Asia exceeding the number of studies in the
USA, contrasts with what was presented by Haase et al. [10], which shows an interesting trend in the
region in terms of UES.

We found that secondary data was the most used data source close agreement with the literature
concerning the idea that RS facilitates ecological studies given the low-cost investments needed to study
natural phenomena [27,100]. The Landsat and Sentinel satellite families are some of the most cited
satellite source images. These are related to the easy access and availability in platforms such as the
United States Geological Survey (USGS) and the Copernicus Sci-Hub from the European Space Agency
(ESA) [101]. The data aggregation of Landsat and Sentinel constellation provides an Earth observation
status with a revisit interval of 2.9 days, which is a perfect scenario for monitoring environments and
their ES [102].

High resolution imagery, such as SPOT-5 [70,80], aerial and digital orthophotos [73,74,88]
Worldview-2 [79], RapidEye imagery [75], GeoEye, IKONOS [81], Quickbird [70,87,93], and HyMap [91]
are considered more trustable and accurate resources for UES evaluation. However, these data are
generally related to the researcher level of data access and research funding, since this type of
high-quality imagery usually has a high acquisition cost.
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Recently, the United States (US) Government started to consider charges introduction to USGS
data acquisition, including the Landsat family [103]. This might bring impacts on the LULC studies
and deforestation monitoring in critical ecosystems in the world and consequent effects on UES studies,
since most have used free source data up to now. The combination of different datasets is also an
important alternative to the monitoring of difficult areas, such as the rainforest where the cloud
coverage is commonly elevated [104,105], which may be a good alternative for tropical countries,
facilitating further studies of UES for many countries in the Southern Hemisphere.

Among several methodologies surveyed, LULC was the only cited in all years. As mentioned,
LULC is obtained from several types of techniques and different data sources, including data extracted
directly from secondary data. Machine learning (ML) techniques, such as random forest (RF), support
vector machine (SVM), and artificial neural networks (ANN) are tended towards for the LULC
classification and identification of ecological variables. The accuracy of the methods is increasing
along with the diversity in its modes of application, this is because of the popularization of the
techniques [41,42,106–109], even for UES studies [9,69,81,82].

One factor that stimulates researchers to use LULC techniques to UES identification and
classification purposes is that some authors describe the evaluation of each land use type. For instance,
the work of Burkhard et al. [7], and the ESMERALDA project [6], is highly mentioned since it
comprehends a description of how to evaluate ES from the CORINE land cover classification, which
by itself considers 44 different types of land use and cover. From the interpretation of this paper, it is
possible to perform the evaluation and modeling of other classifications simpler or that derivate from
the CORINE land cover map [9,16,73,81,82,98].

LULC has the advantage of being a product that is more easily understood by readers; however,
radiometric indexes calculation (such as NDVI, LAI, NDGB, and MNDWI), and methodologies directly
related with interpretation of sensor’s data, produces more accurate and well-defined results, strictly
based on band math, irrespective of human interpretation [38,78,94]. These indexes have been used in
some papers to increase the LULC accuracy from ML techniques [42,108].

Unlike the studies with 100% similarity presented in the results section, and by comparing the
studies of Tigges et al. [75], Alonzo et al. [110], and Sasaki et al. [111], we observe that their results were
not in line with those from the other papers reviewed, but all of them produced satisfactory results in
their analysis. Tigges et al. [75] suggested the use of the urban trees mapping methodology to identify
carbon sequestration and storage services. To this end, Alonzo et al. [110] used LAI and species maps,
whereas Sasaki et al. [111] used species maps to assess carbon sequestration and storage, and habitats
and genetic diversity results, respectively. This diversity of applications shows that there is a range of
RS applications that can be used to reach similar products, demonstrating the importance of RS to the
ecological variables, as Kwok [27] proposed it.

The UES index provided by Kremer et al. [32] was the only study, to present, no similarity with
others. An explanation would be that their study incorporates a vast range of ES to produce a result
reasoned in one value per pixel. Despite its unique methodology, this paper suggests an impressive
simulation for urban scenarios by identifying precisely what city areas have more supply or demand for
ES. An UES index was also proposed for Alam et al. [112], where several ES were selected as indicators
and weighted through a SWOT (strengths, weaknesses, opportunities, threats) analysis; however, this
paper was not found in the scope made for this systematic literature review. Baró et al. [113] also
considered several indicators of ecosystem services to have a greater understanding of the UES capacity,
flow, and demand; however, they do not develop an index to include all these results in one value.

5. Conclusions

In this work, the range of RS applications from the UES perspective was analyzed. Most of the
UES studies examined here were concentrated in Northern Hemisphere sites, drawing attention to
the need for additional UES studies and scenarios analysis in developing countries. In such regions,
science investments are scarce, and; therefore, the use of RS methods with free and open data sources
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is an option, since the data source most mentioned in the surveyed studies are available for free. As a
result, we highlight the importance of free data access for RS purposes, especially from the perspective
of developing countries.

Among the benefits of using secondary data for UES studies, it appears as being the cheapest
and most accessible alternative to estimate ES per area unit using trustable data. For instance, most of
the studies, which considered cultural services, were able to estimate the provision of ES with a high
degree of quality. In addition, official data previously validated can reduce costs related to ground
truth observations and measurements.

LULC was the most mentioned methodology from those surveyed. Radiometric indexes and data
able to be extracted directly from bands math, such as NDVI and LST, were also mentioned a few
times. These indexes and band derived estimations are a way of having reliable data (once images are
correctly pre-processed) without human interference.

All core classes of ES, described in the classic literature of ES, were mentioned for urban
environments in the sample assessed. Regulating services showed a vast range of methodologies used
to identify the benefits that urban green areas have to regulate local climate, as well as to estimate the
amount of carbon captured and stored in the urban forest.

The similarity test for the studies assessed demonstrated that there is no standard procedure for
producing or reproducing RS techniques in UES analyses, because the methods can vary according to
the dataset used and their quality, the type of ES evaluated, and the researcher’s experience.

In summary, it was possible to identify a vast range of data sources, techniques employed, and ES
classification. The findings indicated plenty of opportunities for reproducing methodologies for UES,
suggesting that the RS methods still have, in all countries, a valuable perspective for people to work
with. Finally, this review found evidences that UES identification through RS data/techniques provides
opportunities for scientists to conduct an array of environmental studies able to help countries to
achieve, by 2030, the SDG 11 related to the development of sustainable cities. Countries, states, and
municipalities in the development of more environmentally friendly public policies could discuss
results from these studies.
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