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Abstract: The aim of this paper is to use a methodology to introduce uncertainty of hydrological and
operational input data into mathematical models needed for the design and operation of reservoirs.
The application of uncertainty to input data is calculated, with the reservoir volume being affected by
these uncertainties. The values of outflows from the reservoir and hydrological reliability are equally
affected. The simulation model of the reservoir behavior was used, which allows to evaluate the
results of solutions and helps to reduce, for example, the cost of dam construction, the risk of poor
design of reservoir volumes, future operational risk of failures and reduce water shortages during
the operation of water reservoirs. The practical application is carried out on the water management
analysis of a reservoir in the Czech Republic. It was found that uncertainty of storage volume with
100% reliability achieved ±4% to ±6% values and the subsequent reliability uncertainty is in the
value interval of ±0.2% to ±0.3%.

Keywords: uncertainty; open water reservoir; Monte Carlo; reservoir simulation model; reliability;
storage volume; reservoir design

1. Introduction

Climate change, redistribution of annual rainfall, more frequent occurrence of hydrological
extremes in the form of floods and droughts are all phenomena that have a major effect on the
management of water resources. Worsened conditions of outflow from the landscape cause a decrease
of values of long-term mean flow rates in the river network and a long-term decrease of underground
water sources. Together, they all gradually change the hydrological regimes in river basins. The winter
of 2013/2014 and the year 2015 have shown that climate change is a truly serious topic and its impact
on the water management in the Czech Republic must be addressed in detail.

In the said years, the consequences of low rainfall deficiencies became fully manifest. As a result,
low levels of both underground and surface waters were observed together with major damages in
agriculture. The consequences can still be observed to this day. The underground water level is still
below the long-term normal state. The above reported is only a brief list of the effects that the “dry”
years caused. The adverse situation has been addressed by the government of the Czech Republic
by adopting the Strategy for Adaptation to Climate Change within the Conditions of the Czech
Republic [1]. The said document takes into account adaptive measures in the form of the optimization
of the existing reservoir volumes and recalculations of water volumes in profiles protected for surface
water accumulation. The situation has also been addressed by the river basin state enterprises that
have commissioned the elaboration of technical-economic studies of reservoirs in selected profiles of
water courses on all of the Czech Republic territory.

Current methods of calculation of the reservoir storage volume are based predominantly on a
deterministic solution and do not regard uncertainties that may affect the results. This opens space
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for employing modernized methods of calculating water management solutions for reservoirs while
taking into consideration the uncertainty of input parameters necessary for the design and operation
of the reservoirs.

In terms of current knowledge, uncertainties were first described in the study of Knight [2].
At present, the concept of uncertainty is considered from several viewpoints; as uncertainties, risks,
and measurement uncertainties.

Uncertainties of measurement were first formulated based on the Western European Calibration
Cooperation—WECC Doc 19-1990 [3] agreement followed by other documents that clearly defined
the implementation and calculation of measurement uncertainties such as the Guide to Expression
of Uncertainty in Measurement, 1993 [4]. The ISO GUM—Guide to the expression of uncertainty
in measurement, Supplementary 1 [5] document addresses the distribution and promotion of
uncertainties using the Monte Carlo simulation. In the Czech Republic, uncertainty of measurement
has been introduced under the technical standard TPM 0051-93 [6]. Uncertainty of measurement while
determining flow rates in open river beds is also addressed by the standard ČSN EN ISO 748 [7].

Uncertainties used in hydrology have been presented by e.g., Beven K.J. and Binley A., 1992 [8]
who for the first time described the method of Generalized Likelihood Uncertainty Estimation which
is largely used today, known also under the abbreviation GLUE. Many publications followed, dealing
with the issue in question. Uncertainties of flow rates in the hydrometric profile have been studied
for the needs of the planning of water management and research on river basins in Great Britain by
Westerberg I.K. et al. 2016 [9]. For the estimation of uncertainty, they used the Monte Carlo method
for the construction of random measurement curves of the river bed. Uncertainties of hydrological
data entering the rainfall-outflow models and models designed for the planning of water management
have been described by Westerberg I.K. and McMillan H.K, 2015 [10]. The hydrological model of the
Kaidu River basin, used for simulating or predicting water resources in China, was developed by
Zhang J. et al. (2016) [11]. In this case, the Markov-Chain-Monte-Carlo based multilevel-factorial-
analysis can investigate the individual effects of multiple parameters on model output. The influencing
factors of soil conservation were a moisture condition, a fraction of snow volume, snow water
equivalent, infiltration and evaporation.

The effect of uncertainties of the real flow time series has been published in Marton D. et al.
(2011) [12]. The article described in detail the procedure of introducing uncertainty of measurement into
the determination of mean monthly flow values through the discharge rating curve of the flow rate in
the hydrometric profile, and the historical time series of the water level measurement in the measuring
profile. It resulted in creating random ensembles of a number of mean monthly flow rates which then
served as input data for the water management solution of the reservoir storage volume. The Monte
Carlo method was also used for introducing uncertainties of water level measurements and measured
points of the discharge rating curve of flows of the river bed. Following up on the mentioned paper,
the article by Marton D. et al. (2014) [13] described the storage capacity calculation under conditions of
uncertainty using the Autoregressive—AR and Autoregressive Moving Average —ARMA generators
of artificial flow series of mean monthly flows. Both papers have shown that the current water storage
volumes in reservoirs can be undervalued, and may cause an unexpected shortage of surface water
supply in the dry seasons. These papers create a basic methodology for uncertainty simulation of
water inflow into a reservoir and its influence on storage capacity of a fictive reservoir.

Hydrological applications including the promotion of uncertainties in hydrological procedures in
measurements of the rainfall, water inflow into the reservoir, and evaporation on the water balance
were studied by Winter T.C., 1981 [14]. LaBaugh J.W., Winter T.C., 1984 [15] investigated the effect
of uncertainties of measuring the water inflow into the reservoir, water outflow from the reservoir,
evaporation, and other hydrological and operational parameters on the volume and chemical analysis
of water in the reservoir. More recent publications studying the risks and effects of uncertainty on the
reservoir storage volume using the Monte Carlo simulation include e.g., those of [16]. Kuria F.W. and
Vogel A., 2014 [17] who conducted an analysis of uncertainties of the reservoir storage volume using
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the Water Supply Yield Model. The paper of Sordo-Ward Á. et al., (2016) [18] focused on an uncertainty
analysis of hydrological parameters in the rainfall runoff model and subsequent application in a water
resources system. The uncertainty simulation was created using the Monte Carlo method. A case study
was made on three water resources systems in the Duero river in Spain. In the work of Oskoui I.S. et al.
(2015) [19], the sequence analysis using series data was tested in the simulation model relationship
between storage volume, yield and reliability. The model used a predictive relationship, the Monte
Carlo method and the test performed using 1000 sequences of synthetic data with the same length as
historical data. The Monte Carlo simulations are known in the design and operations of oil reservoirs.
For example, the simulation of subsurface parameters in an Oil reservoir simulation was described
in Lu D. et al. (2016) [20]. For simulations of oil reservoir uncertainty, the multilevel Monte Carlo
(MLMC) method was used.

The publication from Marton D. et al. (2015) [21] describes the application of uncertainties on
all hydrological, morphological, and operational data needed for the calculation of the reservoir
storage volume and for calculations of hydrological reliability of the reservoir under conditions
of uncertainty. Uncertainty was applied consistently on inflow water, evaporation, seepage, and
area–volume curves on the existing open water reservoir Vir I. In this case, the initial data was based
on historical measurements.

The novelty of this paper is on right selection of uncertainty, suitable for reservoir design and
the application of all knowledge in follow-up publications [13] and [21]. Based on this information,
the method, algorithm and user interface are developed. This methodology allows the generation
of uncertainty together or separately as an individual source of uncertainty. Using correct data, the
described method will allow the design of a new reservoir capacity under conditions of hydrological
uncertainty including water losses. The aim of the paper is to use the existing knowledge to introduce
uncertainties of input hydrological, morphological, and operational data required for the design of
the reservoir storage capacity and for the calculation of hydrological reliability of the water outflow
from the reservoir. The methodology will be applied on the reservoir design in the protected profile of
Hanušovice on the Morava/Krupá River.

2. Methods

2.1. Monte Carlo Method

The general methodology for generating uncertainty affected hydrological, morphological and
operating input data for the related water management analysis of a reservoir for its storage capacity
was described in [21]. Generally, uncertainties of input quantities are introduced into the calculations
using the Monte Carlo method. Using cumulative distribution function F(X) and a random number
generator, random positions of values NXi corresponding to the interval of initial uncertainty are
generated. Value Xi is considered as a random and independent value to the values Xi-1 and Xi+1.
This presumption allows the use of the normal probability distribution N(µ(X),σ(X)). Then, the input
value Xi is considered as the mean µ(X) and uncertainty size is defined as the standard deviation σ(X).
Subsequently to each mean µ(Xi), a cumulative distribution function F(X) of the standard normal
probability distribution is created. The random number generator creates random numbers from the
interval and then the position of the random value NXi is calculated.

The basic principle of generating random positions of (NVi, Nhi) is similar to the above mentioned
theory. The difference is given by the construction of random points which requires building two
independent Monte Carlo generators. Each generator will design a random position of point NXi
(e.g., water level elevation Nhi) and will add a random value NYi to it (of the water volume in
the reservoir NVi). For the line of the area–volume curve, the result is a random point coordinate
(NVi, Nhi) of the line of the elevation–volume curve, see Figure 1.
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Figure 1. The principle of generating the uncertainty of input elements using the Monte Carlo 
method. Where V is the volume of water, h is height of the water level, µ(V) is the mean volume 
value, µ(h) is the mean of the water level, F(V) and F(h) are cumulative distribution functions and ξ is 
a random number ranged in the interval 〈0,1〉. 

From the point of view of the Monte Carlo simulations, the main differences from the 
publications [13] and [21] are in the data which enters into the reservoir simulation model. 
Regarding the design of a reservoir, water seepage it is not considered in calculations such as those 
in [21]. In addition, neither is extended hydrological data in form of artificial time series based on AR 
and ARMA models considered [13]. The uncertainty is applied on the inflows into the reservoir;  
the water evaporation losses from the reservoir, the reservoir elevation–volume curve and the 
reservoir elevation–area curve are considered as hydrological and operating inputs. The principle of 
introducing uncertainty into the calculation of the active reservoir conservation storage capacity is 
shown in Figure 2. 

 

Figure 2. Symbolic introduction of reservoir parameters affected by uncertainties. 

Figure 1. The principle of generating the uncertainty of input elements using the Monte Carlo method.
Where V is the volume of water, h is height of the water level, µ(V) is the mean volume value, µ(h) is
the mean of the water level, F(V) and F(h) are cumulative distribution functions and ξ is a random
number ranged in the interval 〈0, 1〉.

From the point of view of the Monte Carlo simulations, the main differences from the
publications [13] and [21] are in the data which enters into the reservoir simulation model. Regarding
the design of a reservoir, water seepage it is not considered in calculations such as those in [21].
In addition, neither is extended hydrological data in form of artificial time series based on AR
and ARMA models considered [13]. The uncertainty is applied on the inflows into the reservoir;
the water evaporation losses from the reservoir, the reservoir elevation–volume curve and the reservoir
elevation–area curve are considered as hydrological and operating inputs. The principle of introducing
uncertainty into the calculation of the active reservoir conservation storage capacity is shown in
Figure 2.
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The application of uncertainties into the input data gives rise to generated random water
inflows into the reservoir, random water evaporation from the reservoir and a random reservoir
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elevation–volume curve and reservoir elevation–area curve. These random ensembles serve as input
values for a simulation model which uses single-pass simulation of the reservoir behavior in the
conditions of data uncertainties.

2.2. Reservoir Simulation Model and Reliability Assessment

The reservoir simulation model was developed based on Starý (1995) [22], and in [17],
the methodology was extended by the Monte Carlo simulation approach. The basis for the reservoir
simulation model is an adapted reservoir equation in the summing form converted into the following
Equation (1) [22]. Equation (1) is used in the simulation reservoir model for the calculation of the
reservoir storage volume at 100% reliability of water outflow from the reservoir. Equation (2) [22]
provides a basis for calculations of hydrological reliability.

0 ≤
k

∑
i=0

(Oi −Qi)∆t + (Oi+1 −Qi+1)∆t (1)

0 ≤
k

∑
i=0

(Oi −Qi)∆t + (Oi+1 −Qi+1)∆t ≤ Vz,max (2)

where Oi is the water outflow from the reservoir, Qi is the water inflow into the reservoir for
i = 1, . . . , k, ∆t is the time step of the calculation (one month). Oi+1 is the water outflow from
the reservoir in the subsequent time step in step i+1. If the sum in (1) and (2) is less than zero, the value
Oi+1 will be substituted by the value of the reservoir outflow or water demand, called the required
improved outflow Op. The required outflow Op is defined as the total outflow from the reservoir.
In times of inflow water deficit, when the storage capacity is using for water supply, the required
outflow consists of ecological outflow QECO and water consumption for water supply. The time course
of the calculated sum simulates the course of the emptying of the reservoir storage volume by time steps
i = 1, . . . , k. For i = 0, the initial condition of the solution needs to be entered after the sum value.

Equation (2) is limited from the left by value 0, which represents the full storage capacity and
from the right side, it is limited by the VZ,max empty storage capacity. These boundaries characterized
the active conversation storage capacity, which is possible to use. From the argument calculation in (2),
the actual emptying of the reservoir is obtained, called V’Z,i+1, which is then tested if it is in a given
interval 〈0,VZ,max〉. If not, it is important to find the value Oi+1, when the argument in the summation
is equal to zero—then, a manipulated outflow is created, or a given argument is equal VZ,max—a failure
or unsatisfactory state is created.

A general definition of the reliability of the water management system has been successively
described by Kritskiy and Menkel (1952) [23], Klemeš (1967) [24] and Hashimoto (1982) [25].
Classification of the failure of the reservoir storage volume for the subsequent calculation of reliability
is as follows Equation (3)

Zt,i =

{
Zt,i = 1, Oi ≥ OP
Zt,i = 0, Oi < OP

(3)

where Zt,i = 1 describes the state of the reservoir storage capacity in the satisfactory time step of the
calculation. Zt,i = 0 describes the state of the reservoir storage capacity in the unsatisfactory (failure)
time step of the calculation. The given reliability used in the paper is known as temporal reliability
or time based reliability and can be calculated from Zt,i values. Each value Zt,i represents a month.
The reliability RT is defined as Equation (4)

RT =
1
k

k

∑
i=1

Zt,i (4)

where k is the number of all months for the given solution of time series.
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Generated random ensembles of water inflows into the reservoir, water evaporations from the
water level, and random curves of area–volume curves are repeatedly read by the simulation reservoir
model. The simulation model makes calculations of the reservoir storage volume both with and
without considering water losses from the reservoir. The repeated calculations result in a range of
reservoir storage volumes for 100% reliability. Furthermore, the hydrological reliability in the form
of RT time-based reliability is calculated. These sets of simulation results are further statistically
evaluated. Basic statistical analysis consists of a statistical histogram and statistical characteristic;
(i) the mean value µ, (ii) dispersion D, (iii) standard deviation σ, (iv) variation coefficient Cv and (v)
excess coefficient Ca.

Different to publications [13] and [21] is the storage capacity analysis. In [13], the storage capacity
analysis with 100% reliability with no water losses was made. The methodology was applied on a
fictive water reservoir. In [21], the reliability analysis on the existing reservoir Vir I was described.
For this kind of analysis, the historical measurements and data in the form of time series of water
inflow, evaporation historical data, and actual area–volume curves data were available. Further, the
practical application of the uncertainty analysis of storage capacity to a new design of reservoir will be
performed. Water management planning, as described in [26], is conducted in the site area.

3. Practical Application

Practical application is based on the needs for a feasibility study of variants for the open water
reservoir Hanušovice. The Morava River Basin Authority has commissioned a study of a water
management solution for the Hanušovice reservoir in order to enhance the water supply purposes of
the regions in the north-east part of the Czech Republic. The presented results of calculations are done
for the intended variant A—a large reservoir below the confluence of Morava and Krupá Rivers, see in
Figure 3.

Environments 2017, 4, 10 6 of 14 

 

where k is the number of all months for the given solution of time series. 
Generated random ensembles of water inflows into the reservoir, water evaporations from the 

water level, and random curves of area–volume curves are repeatedly read by the simulation 
reservoir model. The simulation model makes calculations of the reservoir storage volume both with 
and without considering water losses from the reservoir. The repeated calculations result in a range 
of reservoir storage volumes for 100% reliability. Furthermore, the hydrological reliability in the 
form of RT time-based reliability is calculated. These sets of simulation results are further statistically 
evaluated. Basic statistical analysis consists of a statistical histogram and statistical characteristic; (i) 
the mean value µ, (ii) dispersion D, (iii) standard deviation σ, (iv) variation coefficient Cv and (v) 
excess coefficient Ca. 

Different to publications [13] and [21] is the storage capacity analysis. In [13], the storage 
capacity analysis with 100% reliability with no water losses was made. The methodology was 
applied on a fictive water reservoir. In [21], the reliability analysis on the existing reservoir Vir I was 
described. For this kind of analysis, the historical measurements and data in the form of time series 
of water inflow, evaporation historical data, and actual area–volume curves data were available. 
Further, the practical application of the uncertainty analysis of storage capacity to a new design of 
reservoir will be performed. Water management planning, as described in [26], is conducted in the 
site area. 

3. Practical Application 

Practical application is based on the needs for a feasibility study of variants for the open water 
reservoir Hanušovice. The Morava River Basin Authority has commissioned a study of a water 
management solution for the Hanušovice reservoir in order to enhance the water supply purposes of 
the regions in the north-east part of the Czech Republic. The presented results of calculations are done 
for the intended variant A—a large reservoir below the confluence of Morava and Krupá Rivers, see in 
Figure 3. 

 

Figure 3. Variant of profile A of the Hanušovice reservoir. 

The input values for the calculation were constituted by the time series of the mean monthly 
flow in the duration of 66 years for the time period of 1950 to 2014 in the profiles of Vlaské on the 

Figure 3. Variant of profile A of the Hanušovice reservoir.

The input values for the calculation were constituted by the time series of the mean monthly flow
in the duration of 66 years for the time period of 1950 to 2014 in the profiles of Vlaské on the Morava
River and Habartice on the Krupá River. Both profiles are operated and data is managed by CHMI
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(Czech Hydrometeorological Institute). The mean annual evaporation Ea was consequently divided
among individual monthly values of evaporation according to the standard Reservoir storage capacity
analysis (ČSN 75 2405, 2004) [27]. Bathymetric curves are determined using the GIS software and a
DTM—Digital Terrain Model.

The reservoir is designed with regard to the calculation of the storage volume Vz for 100%
reliability. Furthermore, the reliability of the reservoir storage volume is analyzed, as well.

The value of annual evaporation from the water level Ea is 700 mm from the estimated water level
altitude of approximately 460 m a.s.l. Improved outflow from the reservoir Op ranged between 0.6
and 0.8 (60% to 80%) of the reservoir yield. According McMahon and Adeloye [28], the yield is the
controlled release from the reservoir system and is often expressed as a ration or percentage of the mean
annual inflow to the reservoir. During calculation, many different possibilities of reservoir yield have
tested. A yield interval from 0.6 to 0.8 is taken into account according to the best utilization of water
inflow conditions. The input value of extended uncertainty of the storage volume is entered constantly
for all parameters within the range of ±6% and ±9%. For all uncertainties, a uniform distribution is
considered. The presented initial uncertainty evaluation is considered as more conservative, rising
from uncertainty of measurement. The number of repetitions of random input parameter generation
using the Monte Carlo method equaled 300. A total of 300 repetitions were done due to two reasons:
first, better statistical evaluation; second, 300 repetitions is the best ratio between the value according
to computation time and the accuracy of results. For these two reasons, the different number of
repetitions was tested.

The designed reservoir profile is located below the confluence of the Morava and Krupá Rivers;
the closest water measuring profile is Raškov. The flow series for the reservoir profile was considered
in a simplified way as the sum of the flow series Vlaské and Habartice. The effect of the sub-basin
between the profiles was neglected. The mean long-term annual flow Qa is 4.087 m3·s−1.

4. Results

Table 1 shows the results of calculations of the reservoir storage volume for a reservoir yield
from 0.6 to 0.8 and 100% reliability of the reservoir storage volume. The value µ(Vz) is considered
as the result of the calculation following statistical evaluation. The value 3σ(Vz) subsequently shows
the value of maximum uncertainty of the storage volume covering 99.97% of the volume occurrence
probability in the observed set of realizations.

Table 1. Reservoir storage volume considering uncertainties for 100% reservoir reliability.

Uncertainty ±6% ±9%

yield OP (m3·s-1) µ(Vz) (m3) 3 σ(Vz) (m3) 3 σ(Vz) (%) µ(Vz) (m3) 3 σ(Vz) (m3) 3 σ(Vz) (%)
0.6 2.453 27 764 638 ±638 831 ±2.30 27 823 438 ±903 776 ±3.25
0.7 2.861 44 111 900 ±1 830 159 ±4.15 44 105 676 ±2 742 899 ±6.22
0.8 3.270 68 148 752 ±1 831 426 ±2.69 68 148 040 ±2 756 372 ±4.05

For the calculation of temporal reliability of the reservoir volume, the reservoir storage capacity is
entered from the calculation of a deterministic solution and corresponds to the value of 44,127,380 m3

for the reservoir yield 0.7. Dead space is considered as 10% of the storage volume. Due to the
uncertainties entered into the calculation, for the reservoir yield yield = 0.7 the resulting reliability is
not RT = 100% as mentioned in Table 1 but only 99.90% for both input uncertainties ±6 % and ±9 %.
In order to achieve 100% reliability for uncertainty ±6 %, we must decrease the required outflow,
in particular, to yield = 0.693, and for uncertainty ±9 % even down to yield = 0.690. The decrease is
determined by the randomness of input values, or input uncertainty which in a certain number of
cases undervalues the series, thereby also causing the decrease of the value of reliability.

Table 2 represents the results of the analysis of reservoir reliability calculations. The value µ(RT)
is considered as the result of the calculation; the values 2σ(RT) and 3σ(RT) then describe the size of
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uncertainty occurring around the result of the calculation. The analysis has been done for the reservoir
yield values of 0.7 to 0.78.

Table 2. Calculation of temporal reliability of water outflow from the reservoir considering the
input uncertainties.

Uncertainty ±6% ±9%

Yield OP (m3·s−1) µ(RT) (%) 2 σ(RT) (%) 3 σ(RT) (%) µ(RT) (%) 2 σ(RT) (%) 3 σ(RT) (%)
0.690 2.819 100.00 ±0.00 ±0.00 100.00 ±0.00 ±0.00
0.693 2.833 100.00 ±0.00 ±0.00 99.99 ±0.05 ±0.07
0.70 2.861 99.90 ±0.21 ±0.32 99.90 ±0.23 ±0.34
0.72 2.943 99.62 ±0.03 ±0.04 99.63 ±0.07 ±0.11
0.73 2.984 99.53 ±0.12 ±0.18 99.54 ±0.13 ±0.20
0.74 3.025 99.30 ±0.18 ±0.26 99.29 ±0.24 ±0.36
0.76 3.107 98.49 ±0.14 ±0.22 98.52 ±0.21 ±0.31
0.78 3.188 98.06 ±0.22 ±0.33 98.02 ±0.25 ±0.38

In the first round of calculations, reservoir storage volumes have been determined for the sizes
of improved outflow corresponding to the reservoir yield of 0.6 to 0.8. Temporal reliability of water
outflow from the reservoir is calculated. The volume that defined the boundary of the maximum
storage volume determining the limit bounds of reservoir failure, or rather, reservoir emptying,
corresponded to the volume for the reservoir yield 0.7.

In the designed profile, the outflow corresponded to Op = 2.861 m3 s-1 for the reservoir
yield = 0.7. For the mentioned outflow, the storage volume is calculated for 100% reliability of water
outflow from the reservoir. The results can be interpreted as follows. The mean value of the storage
volume is considered as the resulting value. During the check of the calculation correctness, the storage
volume has calculated also for the deterministic solution. Its value is almost identical to the calculation
in the stochastic solution. In the deterministic solution, the storage volume is Vz = 44,127,380 m3.
If, along with the results, we also consider the uncertainties entering the solution, the results will
become markedly skewed. The storage volume with consideration of input uncertainties corresponding
to the value 3σ·µ(Vz) can be presented this way. For the value of input uncertainty ±6%, the storage
volume lies within the interval VZ∈〈42,281,741 m3; 45,942,059 m3〉 with the volume uncertainty being
±4.15%. For ±9% of input uncertainty, the volume range exceeds ±6% of the uncertainty interval.
The storage volume ranges within VZ∈〈41,362,777 m3; 46,848,575 m3〉.

The temporal reliability considering input uncertainties may be considered for the input
uncertainty of ±6% and OP = 2.984 m3 s-1 as RT = 99.53% ± 0.18%, or in other words, it will lie
within the interval RT∈〈99.35%; 99.71%〉; and RT = 99.54% ± 0.20% then works out for ±9% of the
input uncertainty, or in other words, it lies within the interval RT∈〈99.34%; 99.74%〉.

Figure 4 describes the course of reservoir filling considering water losses from the reservoir for the
initial uncertainties of ±9% and for the reservoir yield yield = 0.70. The histogram next to the course
shows the distribution of numbers of failure months in the course of the calculation.
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Also Figure 5 shows analysis of the course of reservoir filling considering water losses from the
reservoir for the initial uncertainties of ±9% and histograms for the reservoir yields yield = 0.72, 0.74,
0.76 a 0.78.
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5. Conclusions

As first, it is important to say that Czech national standards [27] valuated open water reservoirs
into the classification based on their strategic importance. Each class—Class A, B, C, D—is defined by
strategic importance in the water distribution system and is evaluated by time-based reliability. Class
A–RT ≥ 99.5%, B–RT ≥ 98.5%, C–RT ≥ 97.5%, D–RT ≥ 95%.

Based on further processed results presenting courses of reservoir filling and emptying with
histograms of failure months, we can present the temporal reliability also on the basis of the occurrence
frequency of failure months.

For example, from the histogram in Figure 4, where the yield 0.7 is, it seems that reliability
RT = 100.00% corresponds to the random ensembles with there being a 50.33% probability of zero
failure month occurring, that is 151 random ensembles from 300 repetitions. Reliability RT = 99.87%
corresponds to the random ensembles with there being a 19.00% probability of one failure month
occurring, that is 57 of 300. Reliability RT = 99.74% corresponds to the random ensembles with there
being a 30.67% probability of two failure months occurring, that is 92 of 300 repetitions. In general, it
can be said that the reliability complying with the highest category of reservoir operational reliability
according to Czech legislation Category A - RT ≥ 99.5%, will be attained or exceeded with a 100.00%
occurrence of probability, or in other words, all 300 random ensembles agree with this requirement.
Interpretation of results as per Table 2 can be described in the following way. Reliability with
the assumption 3σ (99.97% occurrence probability) for the same case, i.e., uncertainty ±9% and
OP = 2.861 m3·s−1 is RT = 99.90 ± 0.34% or RT∈〈99.56%; 100.00%〉. This interval will also comply with
the whole range of Category A.

For example, the histogram in Figure 5, for yield 0.72, we can say that reliability RT = 99.74%
corresponding to the random solution with two failure months will occur with an 8.00% probability,
that means 24 ensembles from 300 repetitions. Reliability RT = 99.62% corresponding to the occurrence
of three failure months in the random solution will correspond to a 91.33% occurrence probability, or
274 of 300. For four failure months, the reliability is RT = 99.48%, corresponding to a 0.67% occurrence,
which falls upon only two random solutions out of 300. Category A defined will be attained or
exceeded with a 99.33% occurrence probability, or in other words, 298 random ensembles out of
300 will meet this requirement. On the contrary, a solution not complying with Category A but still
complying with Category B (RT ≥ 98.5%) will occur with a 0.67% probability—that means, only in
two cases out of 300. As per Table 2 and again input uncertainty ±9% and OP = 2.943 m3·s–1 is
RT = 99.63 ± 0.11% or RT∈〈99.52%; 99.74%〉. This interval will comply with the whole range of
Category A of hydraulic structure reliability.

From the perspective of class A, the other results are not relevant, because for other yields—0.74,
0.76 and 0.78—the four months failure occurred in all ensembles and they are out of class A. It is clear
that Table 2 shows the same results. Reliability corresponding yields 0.74, 0.76 and 0.78 are out of class
A. From the perspective of class B, 11 failure months or more are interesting for another reason. In the
case of yield = 0.74, it can be classified to class B results, in the interval RT∈〈98.93%; 99.65%〉; however,
in yield = 0.76, there are 56% random ensembles, 168 cases of ensembles from 300, out of class B.
Yield = 0.78 is out of class B for all random ensembles.

Based on the obtained results, it seems, in Tables 1 and 2, that it is possible that the values of
both the storage capacities and the reliability, determined without considering input data uncertainty,
may be markedly undervalued. Under certain conditions, a reservoir may even be misclassified into a
significance (reliability) class of hydraulic structures [27] for purposes of water supply, and thereby
its operational capacity may be compromised in water deficient and dry periods. The consequence
may be apparent in the form of an operational failure of the storage volume. As can be seen in Table 2,
for given cases, yield = 0.72 mean values of reliability equal 99.53% and 99.54% but the occurrence
interval unequivocally falls under the weighed limit of 99.5%. A problem arises here with unequivocal
classification of the reservoir into a category of reliability.
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Another problem is the correct calculation and design of the flood protection volume of the
reservoir, the location of the height of the top of the dam and the associated future costs of reservoir
construction. For this reason, a preliminary design of the reliability overflow has been worked out,
and the volume size of the reservoir flood protection capacity has been determined. The known design
flood hydrogram was used. Based on the hydrogram volume, a given reservoir volume for yield = 0.7,
and the area–volume curve, the reservoir flood protection volume of 5.5 hm3 has been designed. If we
consider the resulting storage volume corresponding to the value of 44.1 hm3 and an uncertainty of
±2.7 hm3, then the reservoir flood protection volume may be up to a half affected by the uncertainty
of the storage capacity design. This also relates to the design of the height of the top of the dam which
can be approximately ±1.2 m of the total dam height. Figure 6 shows the connection of the uncertainty
of the reservoir storage volume to all the design and operation parameters of the reservoir.
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Figure 6. Connection of uncertainties to a complex reservoir design.

If we want the solution to be secure on the side, it is necessary to add the resulting uncertainty
of the reservoir storage volume to the volume. However, that consequently places demands on the
size of the reservoir body and on the total costs of the possible construction. It must also be added
that uncertainty of the input parameters were not considered in the solution of the reservoir retention
volume. For example, uncertainties of flood flows were neglected which may reach up to 10% to
20% values.

At present, the results cannot be generalized. However, the algorithm is written universally and
may be used for other reservoirs as well. While performing the sensitivity analysis, the same initial
uncertainty values are always counted for all input data. That means that the initial uncertainty ±6%
and ±9% is used. For future work, it is necessary to conduct an uncertainty analysis for each source of
uncertainty separately; to evaluate which input data and its uncertainty influenced storage capacity
more; whether the water inflow is the most significant source of uncertainty or not; and how other
input uncertainties affect the result. For example, in the present study, it is unknown which uncertainty
values may be reached by, e.g., courses of the area–volume curves, when their stated current course is
affected by reservoir clogging and other influences. Here, it may be assumed that higher uncertainty in
the course of the bathymetric curve may influence the results more. From the mentioned point of view,
the results may differ, and therefore the intervals describing the occurrence of calculated reliability RT
may differ, as well.
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