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Abstract: This research presents a classification methodology for the detection of new or emerging
stress in trees using indices derived from hyperspectral data and tests whether existing hyperspectral
indices are effective when used as the classification features for this problem. We tested six existing
indices—Water Band Index (WBI), Gitelson–Merzlyak B Index (GMb), Normalized Phaeophytization
Index (NPQI), Combined Carotenoid/Chlorophyll Ratio Index (CCRI), Photochemical Reflectance
Index (PRI), and Red-Edge Chlorophyll Index (CIre)—along with a seventh Test Index—generated as
a composite of PRI and Cire—as classification features. Analysis was conducted using data collected
from trees with and without emerald ash borer (EAB) infestation to develop a methodology that could
be adapted to measure emerging stress from other pathogens or invasive pests in other tree species.
Previous work has focused specifically on the identification of damage or stress symptoms caused
by a specific pathogen. In this study, we adapted that work to develop a system of classification
that can be applied to the identification of stress symptoms from a range of sources, measurable in
trees based on spectral response and, in some cases, detectable prior to the onset of visible symptoms
that can be measured through human observation. Our data indicate that existing indices derived
from hyperspectral data are effective as classification features when measuring spectral responses
indicative of emerging stress in trees.

Keywords: tree pathology; urban forestry; environmental stress; hyperspectral indices; vegetation
classification; suburban landscapes; disease spread; remote sensing

1. Introduction

One major challenge in plant research is the development of more sensitive techniques
for the early detection of plant stress. Remote sensing techniques, particularly at the leaf
level, have proven to be valuable tools for collecting such data. In particular, hyperspectral
remote sensing has proven to be a promising technique for detecting stress response
in a variety of plant types, including trees and woody vegetation [1,2]. Hyperspectral
remote sensing, which can be broadly defined as the acquisition of reflectance in the
electromagnetic spectrum in a large number of contiguous spectral bands [3], is effective in
remote sensing studies of vegetation stress because it resolves the response from surfaces
into much finer spectral detail, allowing for the detection of reflectance and absorption
features which might not be detectable to multispectral remote sensing systems with
coarser spectral response [4]. This is particularly useful in the analysis of vegetation, where
physiological responses due to environmental stress often manifest themselves as chemical
changes to various photochemical pigments (e.g., chlorophyll, carotenoids, carotene) that
control the specific wavelengths at which plant leaves absorb or reflect light [5]. These stress-
induced changes are therefore detectable via their effect on pigment response, provided
the specific wavelengths at which responses occur can be resolved [6]. Measures of foliar
spectra provide information about water content, plant productivity (e.g., chlorophyll), and
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overall plant health, and spectral changes can indicate plant stress that may occur from a
variety of sources, such as heat, inconsistent soil moisture, and ecological disruptions [7].

While hyperspectral responses have proven effective for the analysis of vegetation
conditions, the volume of the data presents a challenge to their use [8]. These challenges have
typically been addressed through the use of indices derived from the data [9–11]. Typically,
these indices are calculated by combining spectral responses from two or more regions of
the spectrum known to be sensitive to various aspects of plant physiology. These band
combinations effectively reduce the dimensionality of the data while retaining the spectral
information needed for its effective application [10]. For example, chlorophyll responses occur
at wavelengths throughout the visible region of the spectrum, so stress-induced effects on
chlorophyll can be detected by indices constructed from reflectance in this spectral range [12].
Similarly, responses in the accessory pigments are also detectable in these wavelengths, albeit
at more specific wavelengths [5]. Spectral indices sensitive to these pigment responses are
widely used in vegetation stress detection [13,14]. Indices further into the near-infrared
region have been used for detecting and quantifying water stress in plant leaves [15]. These
indices have been applied to the measurement of environmental stress in trees, including
drought and increasing temperatures (see, for example, [16,17]). However, these indices have
not previously been used as classification features to differentiate between trees based on
stress status.

Our research presents a classification methodology for the detection of new or emerg-
ing stress in trees using indices derived from hyperspectral data and tests whether existing
hyperspectral indices are effective when used as the classification features for this problem.
We tested six existing indices—Water Band Index (WBI), Gitelson–Merzlyak B Index (GMb),
Normalized Phaeophytization Index (NPQI), Combined Carotenoid/Chlorophyll Ratio
Index (CCRI), Photochemical Reflectance Index (PRI), and Red-Edge Chlorophyll Index
(CIre)—along with a seventh Test Index—generated as a composite of PRI and Cire—as
classification features. Analysis was conducted using data collected from green and white
ash trees (Fraxinus pennsylvanica Marshall and Fraxinus americana L.) with and without
emerald ash borer (EAB; Agrilus planipennis Fairmaire) infestation to develop a methodol-
ogy that can be adapted to measure emerging stress from other pathogens or invasive pests
in other tree species. Previous related work has focused on the identification of damage or
stress symptoms caused by a specific pathogen. In this study, we developed a system of
classification that can be applied to the identification of stress symptoms from a range of
sources, measurable in trees based on spectral response and, in some cases, detectable prior
to the onset of visible symptoms that can be measured through human observation.

By analyzing leaf-level hyperspectral data for the detection of infestation stress in
individual trees, based on changes in foliar chemistry, this research expands the appli-
cations of indices derived from hyperspectral data in several ways. First, our approach
utilizes hyperspectral indices as classification features for categorizing trees based on their
condition, infestation status, and health. Second, this technique is focused on detecting
new stress in individual trees, separate from existing background stress caused by growing
conditions in the trees’ environment. This allows for the assessment of the spread or spatial
extent of an emerging source of stress, such as a pathogen or invasive pest. In addition, our
methodology compiles multiple indices and compares them with each other, both in terms
of their efficacy in identifying new plant stress and in terms of their correlation with each
other, thereby developing an effective combination to provide a best practice for plant stress
detection at the leaf level using hyperspectral indices. Finally, this analysis utilizes data and
techniques developed during a multiyear study in order to identify optimal timing during
the stages of leaf development through the growing season for the collection of sample
data to best identify trees affected by a new source of stress. While the data presented in
this analysis pertain to a specific pest affecting two tree species (in this case, EAB in green
and white ash trees), these were employed as a test case for developing a methodology that
can be adapted for the detection of other stressors in other tree species.
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The important goals of this current research are, therefore, to (1) determine the efficacy
of the various indices as classification features to classify trees into stress categories based
on the detection of spectral changes, (2) identify the optimal combination of hyper-spectral
indices sensitive to the early detection of emerging stress in trees, and (3) lay the ground-
work for a method of detecting new stress in trees across a range of species by linking
foliar chemistry to species properties and monitoring for changes indicative of infestation
or other harm. This work addresses two key questions. First, can hyperspectral indices
be used effectively as classification features to differentiate trees with differing states of
infestation and sources of stress? Second, how and when is this methodology best applied
to generate a protocol for the early detection of emerging tree stress?

2. Materials and Methods

To address the research questions outlined above, we identified five groups of trees
with varying infestation and stress conditions. Three of the sampling sites were located in
Johnson County, Kansas, a suburban area west of Kansas City, Missouri, USA. Emerald
ash borer was identified in Johnson County in July 2013; thus, each of these sites was
classified as infested. These three infested sites were chosen to represent a variety of
growing environments and included a group of trees located along a residential street, one
in a recreational sports complex, and one in an urban park. In order to be certain that a
comparative sample area would have ash trees that were definitely not EAB-infested, we
established two more collection sites in Riley County, Kansas, USA, where monitoring had
so far indicated no EAB presence (Bomberger, K, Kansas Department of Forestry, Personal
Communication). The first of these two sites consisted of non-infested, mature ash trees
located on a university campus that is maintained as an arboretum. These trees were
maintained in a more favorable environment and were in a relatively healthy condition
at the time of data collection. The second Riley County group also consisted of ash trees
located on the campus but in less favorable environments around parking lots and high-
traffic areas. These trees were in poorer conditions, including some impacted by endemic
fungi, especially mycosphaerella spp. This second group was added in order to compare
non-infested trees in poorer overall condition with those known to be in a poor condition
due to EAB presence. For a more detailed description of the study sites, see [18].

Leaf samples for analysis were collected from each of the five sample site groups
described above four times during each of the 2017 through 2019 growing seasons. Collec-
tion dates were selected to correspond to four general stages in the foliar season: (1) early
leaf stage, (2) mature leaf stage, (3) peak greenness, and (4) late leaf stage. Each of these
stages represents variation in the age of the leaf (which affects its internal optical properties,
see [6], and tree physiology, e.g., nutrient or water stress). Weather conditions and seasonal
differences precluded the exact replication of collection dates between the three years,
so efforts were instead made to sample at times consistent with these four stages of leaf
development. Sample dates and sizes for each site are summarized in Table 1. Because our
method was focused on identifying spectral changes at specific points in leaf development,
for any given growing season, collection data were aggregated by leaf development stage
across all years of the study rather than by year. To the extent possible, leaf samples were
collected from the same trees during each data collection; however, this was not always
feasible since some trees died or were removed during the study period. Whenever possi-
ble, trees lost from the sample groups were replaced with others from the same area and
conforming to similar conditions.
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Table 1. Summary of sample collection.

Site Type Sample Size Collection Dates ¹ Notes ²

2017 2018 2019 2017 2018 2019

Infested,
Not Treated

(INT)
19 27 16

Early:
29 April–6 May

Mature:
25–28 June

Peak:
26 August–8
September

Late:
17–25 October

Early:
9–13 May
Mature:
1–9 July

Peak:
1–7 September

Late:
29–30 September

Early:
13–19 May

Mature:
18–25 June

Peak:
30 July–6 August

Late:
15–18 September

Residential site,
Johnson County

Infested,
Treated

(IT)
18 17 17 Recreation ctr. site,

Johnson County

Recently Infested,
Treated
(RIT)

9 9 9 Park site,
Johnson County

Not Infested,
Good Condition

(NIG)
15 15 15 Campus site,

Riley County

Not Infested,
Poorer Condition

(NIP)
16 15 15 Campus site,

Riley County

1 Each site was sampled during each of the indicated sampling periods. 2 See methods section for additional
information about sampling sites.

Sample leaves used for pigment and spectral analyses were collected from random mid-
canopy locations within each of the sampled trees using a telescoping pruner, temporarily
stored in a cool and dark container, and then transported to the lab for further analysis. Spectral
reflectance curves were collected from the adaxial surface of the terminal leaflet of each sample
using an ASD-FR spectrometer equipped with a leaf clip with an internal light source. High
spectral resolution data are often used to calculate differences or ratio-based indices, which
characterize the spectral response in specific wavelengths or spectral regions known to be
relevant to leaf structure, physiology, or water content [19]. A wide array of indices have been
used for applications of this type, including those related to canopy structure, biochemistry,
and physiology [20]. Since one of our research questions addressed the efficacy of using these
indices derived from spectral data, we chose seven indices to test. Six of these indices were
selected based on a survey of existing literature on the effects of EAB infestation on spectral
reflectance [21–23] as well as other types of plant physiological stress more generally [12,15,24,25].
In addition to these existing indices, we added an additional one, called the Test Index (TI). See
Table 2 for a detailed description of the indices. The seven indices were calculated from each of
the ASD reflectance spectra, using the HSDAR package in R [26].

Table 2. Spectral indices tested.

Index Definition 1 Descriptive Purpose
of Index 2 Reference

Water Band Index (WBI) R970/R900 Water stress, general organism stress [17]

Gitelson–Merzlyak B Index (GMb) R750/R700 Chlorophyll estimation, leaf senescence [27]

Normalized Phaeophytization Index (NPQI) R435−R415/R435+R415 Chlorophyll breakdown and general
environmental stress [28]

Combined Carotenoid/Chlorophyll Ratio
Index (CCRI)

((R720−R521)/R521)/((R750−
R705)/R705)

Combination of a carotenoid index with
a red-edge chlorophyll index [13]

Photochemical Reflectance Index (PRI) (R531−R570)(R531+R570) General organism stress [14]

Red-Edge Chlorophyll Index (CIre) (R750−R705)/R705 Chlorophyll content [29]

Test Index (TI) PRI/CIre Composite of PRI and CIre This Study

1 R indicates reflectance in a particular band or wavelength, in nanometers. 2 Based on published literature.
WBIm, GMb, NPQI, CCRI, PRI, and Cire from previous literature on effects of EAB on spectral reflectance. TI new
index for this study.
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Feature selection was used to determine which of the seven hyperspectral indices
(Table 2) were best suited for the classification step and which might be redundant. To
determine which spectral indices to use, principle component analysis (PCA) was run
separately on all five iterations of the data (four individual collections and the combined
collection). Indices that were correlated in PCA space were considered redundant and
were candidates for elimination from further analysis. The degree of association between
the various indices was determined by examining the loading matrices for each of the
collections. Indices with high negative or positive loadings on a particular principal
component were considered correlated and, in those cases, the index that was most closely
correlated with a particular component was retained for further analysis. This feature
selection method was chosen over other methods (such as simple correlation) because
it allowed the strength of association between the various indices to be determined in
multivariate space [30].

Classification was performed using the gradient-boosted decision tree [31], with
categorical feature splits made using the information gain criteria based on entropy [32].
Decision tree classification was chosen for this application because it is a non-parametric
technique relatively insensitive to noisy input data [33] and is relatively robust in the face
of small sample sizes [34]. This last criterion was important in this application, since some
of the datasets classified were small, especially when single collections were classified.

3. Results

Graphical presentations of the first two components of the PCA are shown in Figure 1
for the entire dataset (all four collection time periods) and in Figure 2 for each of the four
individual collection periods. In these figures, vectors for highly correlated variables lie
along the same line, with positively correlated variables pointing in the same direction
and negatively correlated variables pointing in opposite directions. Vectors for variables
that were uncorrelated would be orthogonal to each other. For example, the CCRI and TI
variables for all collections (see Figure 1) would be highly negatively correlated, and both
would be nearly uncorrelated with the Water Band Index (WBI).
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Figure 1. Bivariate plot of first two principal components of the spectral index data for all four
collection periods combined. The vectors associated with each of the seven input spectral variables
are shown by the blue arrows in the diagram. Sites are defined in Table 1. Percentage of variance for
each component is indicated in parentheses.

Examination of the PCA plots in Figures 1 and 2 shows that while some indices (e.g.,
CIre and GMb) were consistently correlated throughout all four collection time periods,
most of the indices showed some variation in their correlation patterns, which made the
determination of redundant variables difficult. To evaluate redundancy more thoroughly in
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the data, we used the loading matrices output by the PCA analysis, summarized in Table 3.
To simplify the process, we used only the first four of the seven components generated by
the analysis. These four components accounted for more than 90% of the total variance
in the dataset and therefore adequately summarized the information within the dataset.
The PRI, CIre, CCRI, and GMb indices all showed similar loading on the first principle
component throughout all iterations of the dataset. The absolute loading values of these
four indices typically varied from about 0.44 to 0.48, which indicated a modest level of
significant correlation; however, the consistency of these associations across the entire range
of the data indicated redundancy in these four indices.

Table 3. Loading matrices for principle components 1 through 4 for each collection period and for all
collections combined.

Early Leaf Mature Leaf

Index PC1 PC2 PC3 PC4 Index PC1 PC2 PC3 PC4

PRI 0.46 0.38 −0.08 0.09 PRI 0.44 0.41 0.05 0.29

CIRE 0.49 −0.30 0.15 −0.15 CIRE 0.53 −0.26 0.07 −0.11

CCRI −0.49 0.11 0.01 −0.16 CCRI −0.41 0.33 0.06 −0.40

WBI 0.11 0.07 −0.81 −0.55 WBI 0.04 −0.06 −0.97 0.12

NPQI −0.01 0.45 0.52 −0.69 NPQI 0.25 0.44 −0.19 −0.72

GMB 0.48 −0.29 0.17 −0.16 GMB 0.52 −0.20 0.09 −0.20

TI 0.24 0.68 −0.08 0.36 TI 0.13 0.65 0.04 0.41

Peak Greenness Late Leaf

Index PC1 PC2 PC3 PC4 Index PC1 PC2 PC3 PC4

PRI −0.41 −0.41 −0.07 0.18 PRI −0.48 −0.04 −0.09 −0.02

CIRE −0.47 0.19 0.26 −0.30 CIRE −0.44 0.33 −0.10 0.38

CCRI 0.43 −0.11 −0.37 −0.28 CCRI 0.44 0.29 −0.29 0.21

WBI 0.28 −0.21 0.84 0.25 WBI 0.06 −0.68 −0.05 0.73

NPQI 0.11 −0.65 0.12 −0.66 NPQI −0.12 −0.25 −0.90 −0.28

GMB −0.47 0.17 0.15 −0.38 GMB −0.45 0.34 −0.11 0.32

TI −0.33 −0.53 −0.21 0.40 TI −0.41 −0.41 0.26 −0.32

All Collections

Index PC1 PC2 PC3 PC4

PRI −0.48 0.02 0.21 0.01

CIRE −0.44 −0.40 −0.12 −0.30

CCRI 0.45 −0.41 0.17 −0.14

WBI 0.14 0.38 −0.37 −0.82

NPQI −0.05 0.23 0.87 −0.35

GMB −0.45 −0.41 −0.06 −0.25

TI −0.39 0.54 −0.12 0.21

Among the remaining three indices (WBI, NPQI, and TI), WBI and NPQI consistently
loaded strongly on specific components. WBI loaded very significantly on the third com-
ponent in the early leaf stage, mature leaf stage, and peak greenness stage, the fourth
component in the late leaf stage, and the composite of all collection stages. On the other
hand, NPQI loaded most strongly on the second component (often a negative loading) for
all collection periods except the late leaf stage and the composite of all collections, where
it loaded strongly on component 3. Not only were WBI and NPQI not well correlated
with each other, based on their loadings, but each was typically the only index that loaded
strongly onto a particular component. Bivariate plots of the components (Figures 1 and 2)
further showed that these two indices were not well correlated with each other or with the
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four correlated indices described above. Similarly, the TI tended to load onto a specific com-
ponent (in this case, component 2) and, like WBI and NPQI, it tended to be the only index
loaded onto that component, though not as strongly or consistently as the other indices.Environments 2024, 11, x FOR PEER REVIEW 7 of 16 
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Because principal component analysis provides a more detailed assessment of the relation-
ships between indices (compared to simple correlation), it was useful for identifying the most
informative combination of features [35,36]. Based on the PCA results, we chose to retain four
indices for use in the subsequent classification step: WBI, NPQI, CCRI, and TI. We used these
four least correlated hyperspectral indices, rather than the components, because we wanted our
classification method to be based on directly measured features, rather than on the synthetic fea-
tures resulting from the eigenanalysis of the original indices. Further analysis and classification
of the five sites was therefore performed using only these four hyperspectral indices.

Five separate classifications were performed using the four selected features: one combin-
ing all of the collections (see Table 4) and one for each of the four data collection periods (see
Table 5a–d). Numbers in Table 4 through 5d (error matrices) represent the number of instances
classified by category, with the accuracy and Kappa value displayed at the bottom of each
table. We separated the analyses in this way to test whether there were seasonal variations in
the effectiveness of our classification method and, if so, determine at what times in the active
growing season the classification methods worked best. Prior to each of the classifications, the
data were split into two equal-sized parts: one for training and the other for validation. The
classification results and error matrices presented in this section were derived only from the
validation set. All classifications were done using the gradient-boosted decision tree (GBDT)
method implemented in the GBM library of the R analysis language [37]. Error matrices and
accuracy statistics were calculated using functions from the R Caret library [38].
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Table 4. Error matrices from all collection periods combined.

Reference

Pr
ed

ic
ti

on

NIG NIP IT INT RIT

NIG 37 3 5 10 1

NIP 4 32 7 8 4

IT 6 8 43 8 2

INT 12 5 11 42 2

RIT 4 1 3 9 22

Accuracy 60.9%

Kappa 0.505

Table 5. Error Matrices for each collection. a. Error matrices for collection 1 (early leaf stage). b. Error
matrices for collection 2 (mature leaf stage). c. Error matrices for collection 3 (peak greenness stage).
d. Error matrices for collection 4 (late leaf stage). See Table 1 for dates of each collection.

a. Error Matrices, Collection 1 (Early Leaf Stage)

Reference

Pr
ed

ic
ti

on

NIG NIP IT INT RIT

NIG 12 1 0 0 0

NIP 2 9 2 2 0

IT 2 1 12 1 1

INT 2 3 0 11 1

RIT 0 2 0 3 4

Accuracy 67.6%

Kappa 0.598

b. Error Matrices, Collection 2 (Mature Leaf Stage)

Reference

Pr
ed

ic
ti

on

NIG NIP IT INT RIT

NIG 11 0 1 2 0

NIP 1 12 1 1 0

IT 1 2 12 1 3

INT 0 0 3 11 1

RIT 1 0 0 1 7

Accuracy 73.6%

Kappa 0.668

c. Error Matrices, Collection 3 (Peak Greenness Stage)

Reference

Pr
ed

ic
ti

on

NIG NIP IT INT RIT

NIG 8 0 2 3 0

NIP 1 7 0 5 2

IT 1 2 9 4 1

INT 1 1 1 16 0

RIT 0 1 2 2 4

Accuracy 60.3%

Kappa 0.490
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Table 5. Cont.

d. Error Matrices, Collection 4 (Late Leaf Stage)

Reference

Pr
ed

ic
ti

on

NIG NIP IT INT RIT

NIG 16 1 1 3 0

NIP 0 10 4 3 0

IT 1 1 21 3 1

INT 2 2 3 24 1

RIT 1 2 6 2 4

Accuracy 67%

Kappa 0.573

Using the combined results from all four collection periods, the overall classification
accuracy was 60.9%, with a Kappa value of 0.505. The Kappa metric quantifies the improve-
ment of a classification over random assignment [39]. A value like the one reported here
suggests that, in this case, the results were significantly improved (vs. random assignment),
but that the overall effectiveness of the classification was modest at best.

The classification results from each of the four leaf development stages (not combined)
showed substantial variation in accuracy among these stages of the growing season. The
best results tended to occur either earlier in the growing season or near its end. Collections
1 and 2 (early leaf stage and mature leaf stage) returned accuracies of about 68% and
74%, respectively (Table 5a,5b), both of which were better than the results obtained using
data from the combined collections. Collection 4 (late leaf stage) also returned about 67%
accuracy (Table 5d), although its Kappa value indicated somewhat less improvement over
random assignment compared to either the early leaf stage (Table 5a) or all collections
combined (Table 4). The only collection period for which the accuracy did not exceed that of
the combined classification was collection 3 (peak greenness stage), whose overall accuracy
value was only slightly greater than 60% and whose Kappa value indicated less than 50%
improvement over random assignment (Table 5c).

To test whether there were significant differences between the various classification
results, we compared the results for each of the four leaf development time periods using
the method of Foody [40]. In this method, pair-wise z-scores were calculated:

z =

Xi
ni

− Xj
nj√

p(1 − p)
(

1
ni
+ 1

nj

) (1)

where

p =
Xi + Xj

ni + nj
(2)

In this analysis, X represented the number of correctly classified cases in each sample,
while n was the sample size (number of observations) for each collection. The results of
these comparisons showed that the classification results for each of the sampling periods
were significantly separable from at least one of the other leaf development time periods,
and, with the exception of the mature leaf period, all were separable from the results
of the combined collection (Table 6). The period of peak greenness was significantly
separated from all of the other collection periods, whereas the early and mature periods
were not separable. Since the greatest classification accuracy occurred at the early and
mature leaf stages, this suggests that data collected at these two times have the greatest
potential for successfully discriminating infested from non-infested trees. Furthermore, the
comparatively poorer performance of the classifier at the mature leaf stage compared to all
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other stages indicates that this is the time when the classification is least likely to correctly
identify infested versus non-infested trees. Classification during the late-leaf period would
also be more effective than at the mature stage, although less so than at times earlier in the
growing season.

Table 6. Z-scores and p-values for pair-wise comparisons of classification accuracy between each
collection period and the combined collection. Collection periods are defined in Table 1.

Combined Early Leaf Stage Mature Leaf Stage Peak Greenness Late Leaf Stage

Combined - - - - -

Early Leaf Stage 1.07
(0.142) - - - -

Mature Leaf Stage 2.05 *
(0.020)

1.18
(0.119) - - -

Peak Greenness 0.084
(0.467)

1.45 **
(0.074)

2.79 *
(0.003) - -

Late Leaf Stage 1.17
(0.121)

0.21
(0.492)

1.31
(0.095)

1.83 *
(0.034) -

* = significant at p ≤ 0.05. ** = significant at p ≤ 0.10.

4. Discussion

In this research, we addressed two questions: can hyperspectral indices be used to
classify trees with differing states of infestation and sources of stress and when (in the leaf
development cycle) can this methodology best be applied to generate a protocol for the
early detection of emerging tree stress? Our research was able to provide answers to both
of these questions, while also demonstrating their importance to the problem and their
relationship to each other.

The spread of emerald ash borer in North America provided a useful test case for de-
veloping and analyzing our classification method. Native to Asia, the invasive emerald ash
borer (Agrilus planipennis Fairmaire) is believed to have arrived in North America during the
mid-1990s, and was first identified in southeastern Michigan in 2002 [41]. The adult insect,
approximately 8.5 to 12.5 mm in length and bright green in color, bores into the tree and lays
eggs in the cambium [42]. After hatching, the larvae eat their way through the phloem and
xylem, eventually tunneling around the tree, under the bark, creating a girdling effect that
slowly cuts off the flow of moisture and nutrients to higher portions of the tree [43]. As upper
branches are deprived of water and nutrients, they become defoliated and, over time, large
sections of the crown may be devoid of leaves during the growing season. These easily visible
symptoms of disease do not usually become apparent until six years after initial infestation and,
because they result from significant, irreversible damage to the tree’s internal transport system,
it is generally too late to save the tree by the time they appear [44].

The progression of the pathology of EAB infestation illustrates the importance of early
detection and the value of developing a classification tool to differentiate between affected
and non-affected trees and track the spread of infestation. However, this disease progression
also makes emerald ash borer useful as a representative pathogen because the disruption to
the flow of nutrients and moisture through the tree is similar to the types of damage and
stress caused by other tree diseases and invasive pests [45]. Dutch elm disease, for example,
results from a fungal infection, generally introduced by a boring insect, that spreads from
tree to tree and leads to rapid wilting and death due to the blocked flow of moisture and
nutrients [46]. The development of more sensitive tools for the early detection of infestation
and the identification of affected individuals is therefore important for a variety of trees and
tree diseases [47], and similarities in the types of stress produced in impacted trees suggest
that our method could be beneficial when adapted to other species and pathogens.

Using EAB as a model pathogen system, our results show that hyperspectral indices
can be used to sort trees into infestation categories. We evaluated seven such indices
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and found that a subset of four of them was able to group trees into infestation classes
using a boosted-gradient decision tree classifier. The four specific indices that proved most
effective also shed some light on which leaf physiological properties are affected by disease
infestation and how these effects determine the infestation class of an individual tree. WBI
responds to water stress and was the only one of the four indices that was not linked in
some way to leaf pigment response. It was also the only one that was derived mostly from
leaf reflectance in the SWIR spectral region. Its inclusion indicates that leaf water status is
affected by infestation and the resulting stress on the organism. NPQI, on the other hand,
is associated with chlorophyll function and general environmental stress. The inclusion
of NPQI in the final predictive model is consistent with previous analyses of the spectral
effects of woody pathogen infestation [48]. It is noteworthy that of the non-composite
indices we tested that are closely linked to chlorophyll (GMb, CIre, and NPQI, see Table 2),
NPQI was the most useful and also the one related to chlorophyll degradation, rather than
just to chlorophyll content [28]. This suggests that it is the condition of the leaf chlorophyll,
rather than its concentration in the leaf, that is affected by pathogen presence and therefore
determines its infestation category. Furthermore, it is notable that this index is computed
from reflectance on the shorter end of the visible spectrum, emphasizing the importance of
spectral response across the spectrum in assessing the effects of pathogen stress.

The two remaining indices we used in the final classification model, CCRI and TI,
were both composites that combined other indices. This suggests that the impacts of
pathogen stress manifest themselves spectrally in multiple ways and that indices that take
this into account are more effective than those that target only one effect. In the case of
CCRI, this index reflects multiple pigment effects by including the impacts of stress on
both carotenoids and chlorophylls [25]. It also includes the influence of the red edge [49], a
spectral region closely associated with vegetation conditions [50]. TI, which we developed
for this study, was a composite of red edge index, sensitive to chlorophyll content, and PRI,
a very effective indicator of general organismal stress [51]. Again, the fact that these indices
worked better when incorporated into a composite indicates that the combined effects of
pathogen stress provide more effective diagnostic features for classification, creating a more
sensitive technique for the early detection of emerging stress.

Among the indices that were not included in the final protocol (PRI, GMb, and CIre), their
elimination was based in part on the decreased effectiveness of single factor measurements,
the need to eliminate redundancies from correlations with other indices, and the lower rates
of reliability as an indicator of infestation stress. In some cases, these issues were addressed
by the use of composite indices, and they also demonstrated the importance of identifying
the optimal timing for sample collection within the leaf cycle stages. For example, previous
research indicates that PRI demonstrates some efficacy in differentiating between infested and
non-infested trees [18]. However, the effectiveness of PRI as an indicator varied across the foliar
season and was not consistent from year to year. The ability of PRI to detect manifestations of
stress was incorporated into the composite TI, and reliability and consistency were improved
by developing an optimal timing model for data collection.

Seasonality played an important role in influencing the effectiveness of hyperspectral
indices for detecting emerging stress. By tying our data collection calendar to the stages
of leaf development through the growing season, we were able to mitigate the impact of
the variability of environmental conditions from one year to another. This also helped
to identify the optimal timing for measuring new or emerging sources of stress, such as
pathogen or pest infestation, and separate them from ongoing background stress in the
environment, such as drought or heat stress. Our analysis indicates that data collection was
most effective at early and late points in the foliar season, when emerging infestation stress
had measurable impacts on reflectance indices, distinct from measurements in healthy trees
and therefore most useful in classifying trees based on infestation status. Data collected
during the hottest part of summer, when all groups of trees were most stressed from heat
and moisture, proved least effective for classifying tree infestation status. When trees were
most stressed by environmental conditions, they showed the least differentiation in their
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response to other stresses. Because the timing of peak heat and moisture conditions varies
from year to year, the stages of leaf development—early leaf stage, mature leaf stage, peak
greenness, and late leaf stage—present a more reliable guide for timing the collection of
diagnostic data. Data from samples collected at the early and mature leaf stages were
most effective for successfully identifying infested versus non-infested trees. Data from the
mature stage proved least effective for differentiating infested from non-infested trees. The
identification of this timing protocol provides an important component in the development
of a more sensitive technique for the early detection of emerging stress in trees.

5. Conclusions

The major contribution of this study to the existing body of research is the use of
hyperspectral indices as classification features. Previous work using hyperspectral indices
for tree research, as reflected in the literature, has utilized these data as indicators of tree
health or stress but has not employed them for the classification of trees as infested or non-
infested. Our development of this method of analysis significantly expands the usefulness
of hyperspectral data in both tree pathology research and forest management in that it
demonstrates the potential to identify which trees have been affected by a new pathogen or
emerging source of stress within a geographic area that has been impacted by an invasive
pest or other new stressor. While sources of stress previously studied—such as drought, heat,
or soil conditions—are likely to impact most or all trees within a region, invasive pathogens
impact trees individually and spread spatially, making the early detection and identification of
impacted trees, as well as the tracking of disease spread, crucial to addressing a new stressor
and potentially limiting damage.

Our research demonstrates the effectiveness of hyperspectral indices as classification
features to classify trees into stress categories based on the detection of spectral changes and
identifies an effective combination of hyperspectral indices sensitive to the early detection of
emerging stress in trees, along with a timing protocol for data collection. Previous research,
including some of our own, has focused on the use of indices derived from hyperspectral
data for measuring levels of stress or injury in trees based on spectral indicators of health.
This current work instead presents a method for using hyperspectral indices as classification
features to differentiate between affected and non-affected trees in areas impacted by a
new or spreading pathogen. It further lays out a timing protocol for separating emerging
infestation stress from ongoing background stress.

Our intention in this analysis was to demonstrate a potential approach to detecting
and classifying disease-infested trees, using ash species and EAB as model systems. It
may be that applying this methodology to other species of pest or tree would require
the selection of new indices, although testing this current model on another infestation
system would be instructive. This work lays the foundation of a strategy for detecting and
differentiating new stress in trees, across a range of species and a variety of pathogens,
by linking foliar chemistry to species properties, monitoring for changes indicative of
infestation or other harm, and utilizing indices as classification features for categorizing
the status of affected trees.
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