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Abstract: The sorption/desorption processes of the cationic herbicide paraquat (PQ) onto various
clays, namely, kaolinite (KLN), illite (ILT), and montmorillonite (MNT), were investigated. After the
attainment of sorption equilibrium, PQ was extracted from the clays by a double-stage desorption
process utilizing an electro–ultrafiltration (EUF) procedure. The Freundlich isotherm model and a
pseudo-first kinetic release model were found to adequately fit the sorption and desorption data,
respectively. The experimental maximum sorbable amounts of paraquat were 5.56, 31.88, and
91.63 mg g−1 for KLN, ILT, and MNT, respectively, consistently with the order of magnitude of
the cation-exchange capacity (CEC) of the clay minerals. The desorption experiments revealed
that the amounts of PQ retained by the MNT samples were significantly larger than the respective
amounts retained by KLN or ILT. The EUF-PQ desorption patterns of differently cation-saturated
MNT samples indicated that the presence of monovalent cations could further hamper PQ release,
while the opposite seemed to be true for divalent cations. Our results clearly show that a substantial
aliquot of PQ is strongly retained by montmorillonite, probably via interlayering, thus suggesting
that smectitic clays could act as a stable soil sink for cationic herbicides such as paraquat, favoring
soil long-term contamination.

Keywords: clay minerals; paraquat; electro–ultrafiltration; sorption; desorption

1. Introduction

The compound 1,1′-dimethyl-4,4′-bipyridinium dichloride, commonly known as
paraquat (PQ), is a nonselective foliar herbicide that has been used in more than 100 coun-
tries, among which the U.S.A. and Brazil [1], for more than 60 years. Despite PQ being
excessively toxic to all living organisms including humans [2,3], its unique properties,
i.e., rapid action, limited mobility in the soil environment, and hence, reduced effect on
roots and rhizomes, have enabled its widespread use [4], including in sustainable farming
systems [5]. Indeed, as many herbicides, PQ exhibits a high affinity for soil components, in
particular humic substances and clay minerals, by which it is strongly sorbed, becoming
protected against leaching and microbial degradation and remaining inactivated for a long
time period [6–8]. With reference to clay minerals, the literature data clearly show that
the PQ sorption mechanism is complex, mainly governed by cation-exchange interactions
and enhanced by additional processes such as interlayer sorption into expanding lattice
minerals, H- bridging, van der Waals interactions, and charge transfer [9–11]. The capacity
of a soil to sorb PQ strongly depends on the amount and type of clay minerals it contains:
non-expandable kaolinite is capable of sorbing, in total, about 2500–3000 mg kg−1 of PQ,
while expandable montmorillonite can sorb up to 75,000–85,000 mg kg−1 [5]. Furthermore,
clay minerals’ features also control PQ mobility in the soil environment, as PQ remains
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exchangeable and hence available to living organisms if sorbed on kaolinite and vermiculite
but not if bound to montmorillonite or smectite [12,13].

Under normal application conditions, most paraquat (some 99.99%) is strongly sorbed
to soil [5,14], with just a small amount of it remaining in solution in the soil and consti-
tuting the potentially bioavailable fraction. PQ loosely bound to soil components could
be available for living organisms as a result of desorption processes [15]. This free PQ
can be taken up by crop roots, as discovered by several studies in field and greenhouse
conditions [15–17] as well as in laboratory conditions [18,19]. Therefore, to better predict the
fate of clay mineral-bound paraquat in soil, it is useful to investigate not only its sorption
mechanism but also the kinetics of its release [20–22].

A useful technique to obtain both quantitative and kinetics information on nutrient
availability is electro–ultrafiltration (EUF), introduced by Németh [23] as a multiple-element
soil test to determine nutrient availability to plants. Over the years, the application of this
technique has been extended, for example, to the modelling of plant uptake of metals [24],
the reduction of membrane fouling in industrial processes [25–27], and the removal of
heavy metals from water [28]. EUF involves a combination of electrodialysis and ultrafil-
tration to remove electrolytes from aqueous suspensions under controlled electrical field
strength and temperature [29,30]. By the suitable adjustment of electrical field strength and
temperature, the fractions of a given compound retained with different energy levels by a
soil matrix can be collected. Under low-energy extraction conditions, the loosely bound,
easily exchangeable forms of the compound are prevailingly extracted. In high-energy
conditions, the strongly retained and part of the selectively retained exchangeable forms of
the compound are also extracted [31,32].

By performing stepwise extractions, the EUF technique allows for estimating both
the actual as well as the potential supply of a compound and for obtaining its release
kinetic parameters [29,30]. Moreover, EUF offers some advantages compared with classical
ion-exchange techniques, as follows: (1) the use of pure water as the reaction medium
avoids undesired side effects due to foreign electrolytes; (2) the solution is continuously
diluted under a constant soil/suspension ratio, preventing the aggregation of soil particles;
(3) element release is not mediated by a specific ion-exchange reaction but is essentially
dependent on the strength of element/matrix interactions. All this makes the performance
of EUF in providing extraction isotherms free from the constraints of the electrolytic
nature of the medium and of ion selectivity and competition during the release process in
exchange reactions.

On this basis, a study was carried out aiming at investigating by a batch method and
the EUF technique the sorption and desorption of PQ in the presence of some clay minerals,
i.e., kaolinite, illite, and montmorillonite. In addition, the effect of different saturating
cations on PQ release from montmorillonite was also evaluated.

2. Materials and Methods
2.1. Clay Minerals

The clay minerals used in this study were kaolinite (KLN) from Macon (GA, USA),
illite No. 35 (ILT) from Fithian (IL, USA), supplied by Ward’s Natural Science Establishment
Inc. (Rochester, NY, USA), and montmorillonite (MNT) from the Uri pit (Sardinia, Italy).
The clays were preliminary treated once with 0.1 M HCl and five times with Na acetate
buffer at pH 5.0, to remove alkaline and alkaline earth carbonates. Fractions with material
<2 µm in size were collected by centrifugation and treated with a 1 M NaCl solution. The
above procedure (centrifugation and NaCl treatment) was repeated on the collected clay
fractions another four times to ensure Na+ saturation. The excess salt was removed by
washing the minerals with water for three times, then with water/acetone 1:1 until they
were Cl−-free, and lastly with methanol to remove any impurities. Finally, the samples
were dried in an oven at 40 ◦C for 3 days. The CECs of the Na-saturated clays were 6.7,
28.1, and 72.5 cmol [+] kg−1 for KLN, ILT, and MNT, respectively.
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Oriented-aggregate specimens for X-ray powder diffraction (XRD) were obtained by
drying aliquots of the samples (previously sonicated) on glass slides. The XRD patterns
were recorded at room temperature with a Rigaku diffractometer using Fe-filtered Co
Kα radiation.

2.2. Reagents

All reagents were purchased from Merck KGaA (Darmstadt, Germany). Because of its
hygroscopic nature, PQ was stored in a desiccator over P2O5 until use.

2.3. Sorption Studies
2.3.1. Sorption Isotherms

The sorption experiments on PQ were conducted in 1.0 M NaCl. Preliminary tests
showed that the ionic strength, in the investigated range of values, did not affect the
PQ absorbance spectra. For each clay, a set of 1.0 M NaCl solutions containing PQ at a
concentration ranging from 1.25 to 200.00 mg L−1 was prepared. The suspensions, prepared
into stoppered 15 mL polypropylene centrifuge tubes, were shaken at 25.0 ± 0.5 ◦C for
16 h (a time sufficient for sorption equilibration) on a mechanical end-over-end shaker.
Afterwards, the supernatant solutions were recovered by centrifugation at 15,000 rpm for
15 min and then analyzed for PQ spectrophotometrically, as explained in Section 2.5.

2.4. Desorption Studies
2.4.1. Addition of PQ to the Clays

Three sets of experiments were performed in three replicates, as follows:

(i) Clays containing an amount of PQ corresponding to their CEC value. We added 10 mL
of aqueous solutions containing the suitable amount of PQ to 200 mg of KLN, ILT, or
MNT into stoppered 100 mL polypropylene centrifuge tubes. The suspensions were
kept under agitation as described for the sorption studies and then gently evaporated
to dryness in an oven at 40 ◦C for 3 days, allowing the residual PQ in the liquid phase
to deposit on the clays. The samples prepared in this way were denoted as KLN +
PQCEC, ILT + PQCEC, and MNT + PQCEC, respectively.

(ii) Clays containing an amount of PQ in the ratios of 10:1 and 20:1 (w:w), roughly
corresponding to the average PQ amount sorbable by KLT or MNT and the highest PQ
amount sorbable by MNT in the sorption experiments (see Section 2.3.1), respectively.
We added 10 mL of aqueous solutions containing 10 or 20 mg of PQ to 200 mg of each
clay. The samples were then prepared as described above in (i) and hereafter denoted
as KLN + PQ100, ILT + PQ100, and MNT + PQ100 or KLN + PQ50, ILT + PQ50, and
MNT + PQ50, respectively.

(iii) Samples containing amounts of PQ corresponding to the CEC of MNT, in which
MNT was saturated with K+, NH4

+, Ca2+, or Mg2+ ions according to the procedure
described for Na saturation (see Section 2.1). The samples were prepared as in (i) and
henceforth are referred to as Na- K-, NH4-, Ca-, and Mg-MNT, respectively.

At the end of the experiments, the dried material was lightly ground in an agate
mortar, passed through a 0.5 mm sieve, and finally subdivided in three subsamples again.

2.4.2. Desorption of PQ by EUF (EUF-PQ)

The EUF apparatus Vogel 724 (Giessen, Germany) was used for the extraction phase.
Fifty milligrams of each subsample of clay was used for the EUF-PQ desorption studies.
The experiment was performed in three replicates. Two subsequent sets of extraction
with pure water as the extractant, namely, EUF 1 at low energy and EUF 2 at high energy,
were performed. For each set, six fractions were stepwise collected every 5 min under the
conditions reported in Table 1.

For each fraction, the anodic and the cathodic extracts were pooled together into a
graduated flask and then diluted up to 100 mL.
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Table 1. EUF operational conditions.

Stage Temperature
(◦C)

Maximum Electric
Field Strength
(V)

Current
Intensity
(mA)

Extraction
Time
(min)

EUF 1 20 200 15 0–30
EUF 2 80 400 150 30–60

EUF 1 = first extraction step at low energy. EUF 2 = second extraction step at high energy.

2.5. Determination of PQ in Solution

The equilibrium PQ concentrations in the liquid phase for the sorption studies and the
PQ concentrations in the EUF extracts were determined spectrophotometrically by reading
the absorbance at 256 nm. The absorbance spectra were recorded by continuous scanning
from 400 to 200 nm using a UV-1280 Shimadzu instrument (Kyoto, Japan).

2.6. Data modelling

The sorption isotherm data were fitted by the Langmuir model [33] (Equation (1)), the
Freundlich model [34] (Equation (2)), and the Jovanović model [35,36] (Equation (3))

qe =
qmKLCe

1 + KLCe
(1)

qe = KFCe
N (2)

qe = qm

(
1 − e−KJCe

)
(3)

where

qe = amount of sorbate taken up per unit mass of sorbent at a given equilibrium concentra-
tion Ce in solution;
qm = maximum amount of sorbate that may be bound;
KL = equilibrium Langmuir constant;
KF = Freundlich constant;
N = heterogeneity index of the Freundlich model;
KJ = Jovanović constant.

The EUF release kinetics were fitted by pseudo-first-order (PFO, Equation (4)) and
pseudo-second-order (PSO, Equation (5)) kinetic models [37] and are here expressed in
terms of S, which is the residual amount of PQ retained per mass of clay.

St = S0 − Rm

(
1 − e−k1t

)
(4)

St = S0 −
Rm

2k2t
1 + Rmk2t

(5)

where

St = residual sorbed amount of PQ per mass of clay at time t;
t = extraction time;
k1 and k2 = kinetic constants related to the EUF release rate of PQ;
S0 = initial content of desorbable PQ;
Rm = maximum amount of PQ per mass of clay that can be released.

For each desorption experiment, the Rm and k parameters were calculated from the
second-stage extraction, EUF 2, data.
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3. Results
3.1. Sorption

The experimental equilibrium data of PQ sorption onto clays were interpolated by
the Langmuir, Freundlich, and Jovanović models. The estimated sorption parameters are
reported in Table 2. According to the values of the coefficient of determination R2, the
isotherm data were, overall, better described by the Freundlich model.

Table 2. Estimated isotherm parameters for the sorption of PQ onto clays.

Clay Model qm
(mg g−1)

KL
(L mg−1) N KF

(LN mg1−N g−1)
KJ

(L mg−1) R2

MNT Langmuir 95 ± 2 0.13 ± 0.02 0.9939
MNT Freundlich 0.18 ± 0.02 40 ± 3 0.9925
MNT Jovanović 87 ± 1 0.0081 ± 0.009 0.9915

ILT Langmuir 33 ± 1 0.070 ± 0.010 0.9991
ILT Freundlich 0.27 ± 0.01 8.1 ± 0.4 0.9998
ILT Jovanović 28.9 ± 0.8 0.050 ± 0.007 0.9982

KLN Langmuir 5.7 ± 0.2 0.24 ± 0.03 0.9998
KLN Freundlich 0.25 ± 0.02 2.1 ± 0.1 0.9999
KLN Jovanović 5.2 ± 0.2 0.16 ± 0.02 0.9997

This suggested that the clays exhibited an energetically heterogeneous distribution
of sorption sites [38]. The results of the interpolation by the Freundlich isotherm are
graphically displayed in Figure 1.
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Figure 1. Sorption isotherms of PQ for the examined clays.

As can be seen in the figure, the investigated clay samples sorbed PQ in decreasing
amounts in the order MNT > ILT > KLN. An average equilibrium constant (K) was estimated
from the Freundlich isotherm using the expression [38]:

K = e
1
N (6)
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The K values for MNT, ILT, and KLN turned out to be 259 ± 160, 41 ± 6, and 55 ± 17,
respectively. The results denoted that MNT not only exhibited a higher number of sorbing
sites but also showed a greater affinity for PQ than kaolinite and illite, as inferred from
the higher K value. Interestingly, the trend of the qm values was consistent with that of the
respective clay CECs.

3.2. Desorption

Figure 2 shows the cumulative EUF-PQ extracted from the Na-clay + PQCEC samples.
To simplify the comparisons, the data are expressed as the percentage of residual PQ
saturating the clay CEC. After completion of EUF 1, the amounts of PQ desorbed from
KLN, ILT, and MNT were 4.4, 11.8, and 15.7 mg g−1, respectively; after completion of EUF
2, further amounts of 1.73, 2.92, and 5.76 mg g−1 were released, so that the residual sorbed
PQ, after 60 min of EUF extraction, was 45.9%, 59.2%, and 77.0% of the CECs of KLN,
ILT, and MNT, respectively. The application of Equations (4) and (5) to the EUF-2 stage
revealed that the pseudo-first-order kinetic release model better described the experimental
desorption data (see Table 3).
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Figure 2. Residual PQ sorbed by the clays during the EUF stages, expressed as the percentage of
residual PQ saturating the respective clay CECs.

The estimated Rm values corresponded to 65.1%, 42.2%, and only 24.2% of the CECs
of KLN, ILT, and MNT, respectively. This suggests that montmorillonite exhibited a PQ
replenishment ability with respect to its CEC substantially lower than those of kaolinite and
illite. A similar trend was observed when PQ was added at the rates of 50 or 100 mg per g
of clay (Table 3, Figure 3). However, the amounts of PQ retained by the MNT samples after
60 min of EUF extraction were dramatically larger than those retained by KLN or ILT. The
comparative analysis of the Rm and k1 parameters also showed that they both decreased
in the order KLN > ILT > MNT, for both the PQ–50 and the PQ–100 treated samples, thus
confirming the high buffer capacity of KLN and ILT for PQ and the strong PQ retention
power of MNT.

Figure 4 shows the residual PQ retained after the EUF treatments by the differently
cation-saturated MNT samples. It is evident that saturation with Ca2+ or Mg2+ resulted
in a similar effect on EUF-PQ desorption, as shown by the extraction curves overlapping
(Figure 4) in both EUF extraction runs. The cumulative EUF-PQ amounts extracted by
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Ca-MNT and Mg-MNT were 21.36 and 21.62 mg g−1 after 30 min, and 24.9 and 25.0 mg g−1

after 60 min, respectively. Therefore, the PQ residual in the divalent-cation saturated clays
satisfied 75% of the CEC. In contrast, the amounts of PQ extracted per gram of Na-MNT,
K-MNT, and NH4-MNT were 15.71, 18.20, and 16.47 mg g−1 after 30 min and 21.47, 24.75,
and 24.01 mg g−1 after 60 min, so that the residual sorbed PQ was 77%, 75%, and 76%
of the CEC, respectively. According to Table 4, the type of cation did not influence the
maximum desorbable amount of PQ by MNT. However, the release rate of PQ was higher
in the presence of divalent cations, as can be inferred from the values of k1.

Table 3. Kinetic parameters for PQ desorption from Na clays during the EUF-2 stage, with PQ added
in amounts corresponding to the respective clay CECs (EUF-PQCEC) or at the rate of 50 or 100 mg
per g of clay (EUF-PQ50 or EUF-PQ100).

Model Rm
(%)

k1
(min−1)

k2
(min−1) R2

KLN
PFO (EUF-PQCEC) 65 ± 1 0.029 ± 0.001 0.9931
PSO (EUF-PQCEC) 91 ± 2 0.00027 ± 0.00002 0.9967
PFO (EUF-PQ50) 79.6 ± 0.2 0.072 ± 0.001 0.9906
PSO (EUF-PQ50) 87.6 ± 0.6 0.0068 ± 0.0004 0.9901

PFO (EUF-PQ100) 79.9 ± 0.1 0.074 ± 0.001 0.9947
PSO (EUF-PQ100) 87.4 ± 0.7 0.0018 ± 0.0001 0.9826

ILT
PFO (EUF-PQCEC) 42.2 ± 0.2 0.056 ± 0.001 0.9958
PSO (EUF-PQCEC) 50 ± 1 0.0016 ± 0.0001 0.9891
PFO (EUF-PQ50) 45.5 ± 0.1 0.069 ± 0.001 0.9955
PSO (EUF-PQ50) 50.6 ± 0.2 0.0104 ± 0.0004 0.9940

PFO (EUF-PQ100) 76.4 ± 0.1 0.15 ± 0.09 0.9782
PSO (EUF-PQ100) 81 ± 1 0.0034 ± 0.0006 0.9072

MNT
PFO (EUF-PQCEC) 24.2 ± 0.1 0.051 ± 0.001 0.9950
PSO (EUF-PQCEC) 29 ± 1 0.0022 ± 0.0002 0.9868
PFO (EUF-PQ50) 105.6 ± 0.2 0.099 ± 0.005 0.9995
PSO (EUF-PQ50) 110.4 ± 0.4 0.014 ± 0.001 0.9999

PFO (EUF-PQ100) 24.1 ± 0.1 0.051 ± 0.001 0.9950
PSO (EUF-PQ100) 29 ± 1 0.0022 ± 0.0002 0.9868
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Table 4. Kinetic parameters for PQ desorption from MNT saturated with different cations during the
EUF-2 stage.

Model Rm
(%)

k1
(min−1)

k2
(min−1) R2

Na-MNT
PFO (EUF-PQCEC) 24.1 ± 0.1 0.051 ± 0.001 0.9950
PSO (EUF-PQCEC) 29 ± 1 0.0022 ± 0.0002 0.9868

K-MNT
PFO (EUF-PQCEC) 25.3 ± 0.1 0.063 ± 0.002 0.9856
PSO (EUF-PQCEC) 29 ± 1 0.0036 ± 0.0005 0.9577

NH4-MNT
PFO (EUF-PQCEC) 24.7 ± 0.2 0.062 ± 0.003 0.9616
PSO (EUF-PQCEC) 28 ± 1 0.0036 ± 0.0007 0.9228

Ca-MNT
PFO (EUF-PQCEC) 25.2 ± 0.1 0.065 ± 0.002 0.9724
PSO (EUF-PQCEC) 28.4 ± 0.1 0.0040 ± 0.0002 0.9964

Mg-MNT
PFO (EUF-PQCEC) 25.3 ± 0.1 0.067 ± 0.002 0.9709
PSO (EUF-PQCEC) 28.3 ± 0.1 0.0044 ± 0.0002 0.9962

4. Discussion and Conclusions

The results of the sorption studies highlighted that PQ is much more effectively re-
tained by montmorillonite than by kaolinite or illite. This is likely due to an interlayer
sorption mechanism of PQ into expanding lattice clays such as montmorillonite [39]. Mont-
morillonite can trap PQ onto inner surfaces, taking away ions from the equilibrium solution,
thus favoring further sorption. In our investigation, the XRD analyses showed that the basal
d-spacing of Na-montmorillonite was 1.4 nm; after PQ addition, the d-spacing increased
to 1.6 nm (see Figure 5). These data clearly confirmed that montmorillonite easily interca-
lates PQ; furthermore, according to the molecular structure of paraquat, we estimated the
thickness of PQ ions to be about 0.2 nm, on the basis of the steric hindrance of the methyl
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groups at C(6) and C(6′). In line with literature reports [40], it is then reasonable to infer
that the bipyridinium moiety lies with aromatic rings parallel to the montmorillonite layers,
probably together with some water molecules.
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The high affinity of PQ for montmorillonite would suggest that PQ held by this clay
could be less extractable than that sorbed by kaolinite and illite; such a hypothesis is widely
supported by our desorption studies, which clearly demonstrated that both the actual and
the potential amounts of PQ extractable by EUF, as well as the desorption rate constants,
decreased, following the order KLN > ILT > MNT. For MNT, the saturation with different
cations induced some differences in the EUF-PQ desorption rate patterns, indicating that
the presence of monovalent cations could further hamper paraquat release, while the
opposite seems to be true for divalent cations. This finding could be related to the higher
water coordination numbers of divalent cations compared to those of monovalent cations,
which lead to a higher swelling degree of montmorillonite [41] and, hence, to an easier
release of PQ.

The outcome of our study also revealed that the EUF technique may be a suitable tool
for the quantitative and kinetic assessments of xenobiotic release from soil components.
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Abbreviations

PQ Paraquat
KLN Kaolinite
ILT Illite
MNT Montmorillonite
EUF Electro–Ultrafiltration
EUF 1 First extraction step at low energy
EUF 2 Second extraction step at high energy
CEC Cation-exchange capacity (cmol kg−1)
KLN + PQCEC KLN containing an amount of PQ corresponding to its CEC value
ILT + PQCEC ILT containing an amount of PQ corresponding to its CEC value
MNT + PQCEC MNT containing an amount of PQ corresponding to its CEC value
KLN + PQ100 KLN containing an amount of PQ at a ratio of 10:1 (w:w)
ILT + PQ100 ILT containing an amount of PQ at a ratio of 10:1 (w:w)
MNT + PQ100 MNT containing an amount of PQ at a ratio of 10:1 (w:w)
KLN + PQ50 KLN containing an amount of PQ at a ratio of 20:1 (w:w)
ILT + PQ50 ILT containing an amount of PQ at a ratio of 20:1 (w:w)
MNT + PQ50 MNT containing an amount of PQ at a ratio of 20:1 (w:w)
Na-MNT MNT saturated with Na+ containing amounts of PQ corresponding to its CEC value
K-MNT MNT saturated with K+ containing amounts of PQ corresponding to its CEC value
NH4-MNT MNT saturated with NH4

+ containing amounts of PQ corresponding to its CEC value
Ca-MNT MNT saturated with Ca2+ containing amounts of PQ corresponding to its CEC value
Mg-MNT MNT saturated with Mg2+ containing amounts of PQ corresponding to its CEC value
qe Sorbed amount per mass of clay at equilibrium (mg g−1)
qm Maximum sorbable amount per mass of clay (mg g−1)
KL Equilibrium Langmuir constant (L mg−1)
KF Freundlich constant (LN mg1−N g−1)
N Heterogeneity index of the Freundlich model (adimensional)
KJ Jovanović constant (L mg−1)
PFO Pseudo-first-order kinetic model
PSO Pseudo-second-order kinetic model
St Residual sorbed amount per mass of clay at time t
t Extraction time
k1 Kinetic rate constant related to the PFO kinetic model
k2 Kinetic constants related to the EUF release rate of PQ
S0 Initial content of releasable PQ
Rm Maximum amount of releasable PQ per mass of clay
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