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Abstract: To minimize the eutrophication pressure along the Gulf of Mexico or reduce the size of
the hypoxic zone in the Gulf of Mexico, it is important to understand the underlying temporal
and spatial variations and correlations in excess nutrient loads, which are strongly associated with
the formation of hypoxia. This study’s objective was to reveal and visualize structures in high-
dimensional datasets of nutrient yield distributions throughout the Mississippi/Atchafalaya River
Basin (MARB). For this purpose, the annual mean nutrient concentrations were collected from thirty-
three US Geological Survey (USGS) water stations scattered in the upper and lower MARB from
1996 to 2020. Eight surface water quality indicators were selected to make comparisons among
water stations along the MARB over the past two decades. Principal component analysis (PCA) was
used to comprehensively evaluate the nutrient yields across thirty-three USGS monitoring stations
and identify the major contributing nutrient loads. The results showed that all samples could be
analyzed using two main components, which accounted for 81.6% of the total variance. The PCA
results showed that yields of orthophosphate (OP), silica (SI), nitrate–nitrites (NO3-NO2), and total
suspended sediment (TSS) are major contributors to nutrient yields. It also showed that land-planted
crops, density of population, domestic and industrial discharges, and precipitation are fundamental
causes of excess nutrient loads in MARB. These factors are of great significance for the excess nutrient
load management and pollution control of the Mississippi River. It was found that the average
nutrient yields were stable within the sub-MARB area, but the large nitrogen yields in the upper
MARB and the large phosphorus yields in the lower MARB were of great concern. t-distributed
stochastic neighbor embedding (t-SNE) revealed interesting nonlinear and local structures in nutrient
yield distributions. Clustering analysis (CA) showed the detailed development of similarities in the
nutrient yield distribution. Moreover, PCA, t-SNE, and CA showed consistent clustering results.
This study demonstrated that the integration of dimension reduction techniques, PCA, and t-SNE
with CA techniques in machine learning are effective tools for the visualization of the structures
of the correlations in high-dimensional datasets of nutrient yields and provide a comprehensive
understanding of the correlations in the distributions of nutrient loads across the MARB.

Keywords: Mississippi/Atchafalaya River Basin; principal component analysis (PCA); t-distributed
stochastic neighbor embedding (t-SNE); clustering analysis (CA); surface water quality; nutrient yields

1. Introduction

Numerous fish and wildlife species, including about 75% of waterfowl traversing the
U.S., seabirds, wading birds, fur-bearers, and sport and commercial fisheries, are habituated
in the Gulf’s coastal wetlands [1]. The Gulf of Mexico encompasses over five million acres
(about half of the U.S. total). Unfortunately, hypoxia in the Gulf of Mexico threatens the
coastal economy, and the water quality is decreased due to the increasing municipal and
manufacturing needs, which are destroying coastal wetland habitats at an alarming rate [1].
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The excess nutrients (N and P) in the Mississippi/Atchafalaya River Basin (MARB) are
highly correlated with the hypoxic zone in the Gulf of Mexico [2]. To effectively manage
and precisely control excess nutrient export from the MARB, it is important to understand
the nature of nutrient loads, identify the critical source areas, and pinpoint the important
sources of nutrients in specific areas [3,4].

Many efforts have been made to describe the major sources of N and P throughout
the MARB and evaluate the effectiveness of nutrient reduction strategies [4]. Because of
the randomness in the observations of nutrient loads [5], various statistical methods have
been implemented to analyze trends in nutrient loads [6–12]. Linear regression was used
to study yields throughout the MARB, considering various environmental impacts [13],
and to identify the relative importance of sources and land use in nutrient delivery [14,15].
Forecasting methods, such as correlation, linear regression, principal component analysis
(PCA), and clustering analysis (CA), are the most used statistical approaches for the anal-
ysis of water quality and spatial properties [16–21]. Spatially Referenced Regression on
Watershed attributes (SPARROW) models and the Soil and Water Assessment Tool (SWAT)
are the most commonly used simulation techniques to describe loads/yields throughout
the MARB, analyze the relative importance of various sources, and evaluate the effective-
ness of management practices [22–25]. Bayesian methods have been used in the decision
analysis for environmental and resource management [26]. However, there is a defect in
statistical methods such as linear regression and principal component analysis; that is, they
can only capture global and linear variations in nutrient loads and are not able to analyze
local and nonlinear variations in the distribution of nutrient loads. t-distributed stochastic
neighbor embedding (t-SNE) is one of the promising machine learning methods to address
this issue [27,28]. Moreover, there are few known studies combining the machine learning
methods PCA, t-SNE, and CA to systematically analyze spatial properties in the distribu-
tions of nutrient loads throughout the MARB. This study investigates eight nutrient yields
(ammonia nitrogen (NH3), dissolved organic carbon (DOC), nitrates–nitrites (NO3-NO2),
orthophosphate (OP), silica (SI), total suspended sediment (TSS), total nitrogen (TN), and
total phosphorus (TP)) throughout the MARB during 1996–2020 and explores the spatial
properties of the distributions and variations in nutrient yields. The purpose of this research
is to identify and visualize the structures in correlations of nutrient yield distribution and
reveal the development of similarities in the nutrient yield distribution throughout the
MARB using linear and nonlinear dimensionality reduction and clustering techniques,
which may be useful to identify the critical source areas and pinpoint the important sources
of nutrients in specific areas.

2. Materials and Methods
2.1. Materials

The surface water data used in this study were from the government public data source
(https://www.sciencebase.gov/catalog/item/61c08ec5d34ee9cd54ed3425 (accessed on 22
May 2023), of which thirty-three water quality monitoring stations of the US Geological
Survey (USGS) were selected. These stations were located in the states of Minnesota, Wis-
consin, Iowa, Illinois, Missouri, Kentucky, Tennessee, Arkansas, Louisiana, and Mississippi,
which are scattered in the upper, middle, and lower Mississippi/Atchafalaya River Basin
(MARB), as shown in Figure 1 and Table 1. The water quality data were presented on
an annual basis from 1996 to 2020 and recorded based on the water year (the 12-month
period from October 1 for a given year through September 30 of the following year). The
data contained eight basic nutrient yields, including ammonia nitrogen (NH3), dissolved
organic carbon (DOC), nitrates–nitrites (NO3-NO2), orthophosphate (OP), silica (Si), total
suspended sediment (TSS), total nitrogen (TN), and total phosphorus (TP), and they were
used for a comprehensive evaluation of nutrient yields and the characterization of nutrient
yields delivered from the MARB to the Gulf of Mexico.

https://www.sciencebase.gov/catalog/item/61c08ec5d34ee9cd54ed3425
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Figure 1. Study area and USGS water stations involved in the Mississippi/Atchafalaya River Basin. 

Table 1. USGS water stations used in the study during 1996–2020 (https://www.sciencebase.gov/cat-
alog/item/61c08ec5d34ee9cd54ed3425 (accessed on 22 May 2023). 

SITE_ABB SITE_QW_ID Location 
CANN 3303280 Ohio River at Cannelton Dam at Cannelton, IN 
HAZL 3374100 White River at Hazleton, IN 
NEWH 3374100 Wabash River at New Harmony, IN 
PADU 3609750 Tennessee River at Highway 60 near Paducah, KY 
GRAN 3612500 Ohio River at Dam 53 near Grand Chain, IL 
SHIN 5288705 Shingle Creek at Queen Ave. in Minneapolis, MN 
HAST 5331580 Mississippi River below L&D 2 at Hastings, MN 
CLIN 5420500 Mississippi River at Clinton, IA 
PROV 5451210 South Fork Iowa River NE of New Providence, IA 
WAPE 5465500 Iowa River at Wapello, IA 
KEOS 5490500 Des Moines River at Keosauqua, IA 
VALL 5586100 Illinois River at Valley City, IL 
GRAF 5587455 Mississippi River below Grafton, IL 
SIDN 6329500 Yellowstone River near Sidney, MT 

OMAH 6610000 Missouri River at Omaha, NE 
DENV 6713500 Cherry Creek at Denver, CO 
KERS 6754000 South Platte River near Kersey, CO 
THED 6775900 Dismal River near Thed Ford, NE 
NICK 6800000 Maple Creek near Nickerson, NE 
ELKH 6800500 Elkhorn River at Waterloo, NE 
LOUI 6805500 Platte River at Louisville, NE 
DESO 6892350 Kansas R. at Desoto, KS 

Figure 1. Study area and USGS water stations involved in the Mississippi/Atchafalaya River Basin.

Table 1. USGS water stations used in the study during 1996–2020 (https://www.sciencebase.gov/
catalog/item/61c08ec5d34ee9cd54ed3425 (accessed on 22 May 2023).

SITE_ABB SITE_QW_ID Location

CANN 3303280 Ohio River at Cannelton Dam at Cannelton, IN
HAZL 3374100 White River at Hazleton, IN
NEWH 3374100 Wabash River at New Harmony, IN
PADU 3609750 Tennessee River at Highway 60 near Paducah, KY
GRAN 3612500 Ohio River at Dam 53 near Grand Chain, IL
SHIN 5288705 Shingle Creek at Queen Ave. in Minneapolis, MN
HAST 5331580 Mississippi River below L&D 2 at Hastings, MN
CLIN 5420500 Mississippi River at Clinton, IA
PROV 5451210 South Fork Iowa River NE of New Providence, IA
WAPE 5465500 Iowa River at Wapello, IA
KEOS 5490500 Des Moines River at Keosauqua, IA
VALL 5586100 Illinois River at Valley City, IL
GRAF 5587455 Mississippi River below Grafton, IL
SIDN 6329500 Yellowstone River near Sidney, MT

OMAH 6610000 Missouri River at Omaha, NE
DENV 6713500 Cherry Creek at Denver, CO
KERS 6754000 South Platte River near Kersey, CO
THED 6775900 Dismal River near Thed Ford, NE
NICK 6800000 Maple Creek near Nickerson, NE
ELKH 6800500 Elkhorn River at Waterloo, NE
LOUI 6805500 Platte River at Louisville, NE
DESO 6892350 Kansas R. at Desoto, KS
HERM 6934500 Missouri River at Hermann, MO
THEB 7022000 Mississippi River at Thebes, IL
FIFT 7060710 North Sycamore Creek near Fifty-Six, AR

SEDG 7144100 L. Arkansas R. NR Sedgwick, KS
HARR 7241550 North Canadian River near Harrah, OK
LITT 7263620 AR River David D. Terry L&D below Little Rock, AR
LELA 7288650 Bogue Phalia NR Leland, MS
LONG 7288955 Yazoo River BL Steele Bayou NR Long Lake, MS
STFR 7373420 Mississippi River NR St. Francisville, LA
BELL 7374525 Mississippi River at Belle Chasse, LA
MELV 7381495 Atchafalaya River at Melville, LA

Note: SITE_ABB: a text abbreviation of the site name primarily for use within the National Water Quality Program;
SITE_QW_ID: unique USGS station number indicating the location where water quality samples were collected.

https://www.sciencebase.gov/catalog/item/61c08ec5d34ee9cd54ed3425
https://www.sciencebase.gov/catalog/item/61c08ec5d34ee9cd54ed3425
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2.2. Data Processing

The statistical software R 4.3.1 was employed to process and analyze the data collected
at the water sampling stations. Data were cleaned up using Microsoft Excel and imported
into the software R, and then the statistical results were obtained from R. A comparison
among water quality data from different water stations was performed. Data on the nutrient
yields used in statistical analysis are presented as the calculated average annual nutrient
yields.

2.3. Principal Component Analysis (PCA)

Principal component analysis (PCA) is the machine learning method that can transform
correlated variables into uncorrelated variables and evaluate the relative importance of
correlated features. PCA is also one of the dimensionality reduction techniques [29]. To
provide a comprehensive understanding involving all water quality parameters across
the entire MARB, PCA was applied. The mathematical objective of PCA is to find a new
set of orthogonal and uncorrelated variables or vectors {bi}, a linear combination of the
original variables that can maximize the variance of original data or equivalently solve the
constrained optimization problem

max
bi

bT
i Sbi

Subject to ‖ bi ‖2 = 1
(1)

where the index i is the label of new variables and S is covariance matrix 1
N ΣN

n=1xnxT
n where

xn is the original data matrix and n represents the number of water monitoring stations.
The solutions of vectors {bi} to the optimization problem are principal components, which
are the directions of maximal variances of data. Thus, the original high-dimensional data
can be analyzed in the lower-dimensional space spanned by vectors {bi}. The coefficients
of the linear combination of the original variables from which the principal components
(PCs) {bi} are constructed are called PCA loadings. The projections of original observations
onto the principal components {bi} are called “scores” [29]. Kaiser–Meyer–Olkin [30] and
Bartlett tests of sphericity [31] were used to evaluate the suitability of the data for PCA. All
mathematical and statistical calculations were performed using the software R.

2.4. t-Distributed Stochastic Neighbor Embedding (t-SNE)

t-distributed stochastic neighbor embedding (t-SNE) is one of the dimension reduction
machine learning techniques to visualize the structures of a high-dimensional dataset in a
low-dimensional space. For a given set of n high-dimensional observations {x1, x2, . . . , xn},
the method of t-SNE aims to find corresponding representative points {y1, y2, . . . , yn} in
low-dimensional space such that the statistical distance between the probability distribution
in a high dimension, i.e., [27].

pij =
exp
(
− ‖ xi − xj ‖2)/2σ2

∑k 6=l exp(− ‖ xk − xl ‖2)/2σ2 (2)

and the probability distribution in a low dimension, i.e.,

qij =
(1+ ‖ yi − yj ‖2)

−1

∑k 6=l (1+ ‖ yk − yl ‖2)−1 (3)

are minimized. The statistical distance is measured using Kullback–Leibler divergence [32]

KL = ∑i∑j pijlog

(
pij

qij

)
(4)
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2.5. Clustering Analysis (CA)

To understand the spatial structures of the distributions of nutrient yields across the
MARB, clustering analysis was conducted. K-means clustering analysis identifies the latent
behavior of a dataset by categorizing the observations into k groups or clusters on the basis
of similarities [33]. The mathematical objective of K-means clustering is to find

min
S

∑i=1
k∑x∈Si

‖ x− µi ‖2 (5)

where S is the k sets of {S1, S2, . . . , Sk}, x is a set of observations {x1, x2, . . . , xn}, and µi is the
mean of set Si. Hierarchical agglomerative clustering analysis is used to build a hierarchy
of groups or clusters using an appropriate linkage criterion that specifies the dissimilarity
of datasets as a function of the pairwise distances of observations in the datasets through a
“bottom-up” approach [34].

3. Results
3.1. Distributions of Nutrient Yields (TN, TP, and SI)

The distribution of the average annual yields of total nitrogen, total phosphorus,
and silica at thirty-three USGS water stations across the MARB are shown in boxplots in
Figures 2–4, respectively. As Figure 2 shows, there is a distinctly large nitrogen distribution
group consisting of sites PROV, WAPE, KEOS, and VALL, with median yields ranging from
2.12 tons/square kilometer to 2.17 tons/square kilometer, while the remaining 29 have
medians of around or less than 1.93 tons/square kilometer. Moreover, PROV, WAPE, and
KEOS in Iowa and VALL in Illinois are located in the upper MARB along the Mississippi
River. Iowa and Illinois are the heart of the Corn Belt, with the greatest amount of artificially
drained soil, the highest percentage of total land in agriculture (corn and soybean), and the
highest use of nitrogen fertilizers in the nation. From Figure 3, it can be seen that there is a
distinct phosphorus distribution group consisting of the sites LELA, LONG, and MELV,
which are located in the Lower Mississippi River Basin, with median yields ranging from
0.20 tons/square kilometer to 0.24 tons/square kilometer, while the remaining 30 have
medians of less than 0.19 tons/square kilometer. Furthermore, the sites LELA and LONG
are located in Mississippi, and MELV is in Louisiana. Mississippi produces more than
half of the country’s farm-raised catfish, while agriculture and poultry products are the
most important industries for Louisiana. This implies that these sites may be related to the
emissions of surrounding industrial point sources [35,36]. The silica yields presented in
Figure 4 show similar patterns in yield distribution as those of total phosphorus, presented
in Figure 2.
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3.2. PCA Results

In this study, PCA was conducted on eight nutrient yields for thirty-three USGS
monitoring stations across the MARB. First, the applicability of PCA was tested using the
Kaiser–Meyer–Olkin (KMO) and Barlett tests. These tests were used to verify the adequacy
of the sample and the independence of each variable, respectively. The calculated results
were KMO = 0.563 (>0.5) and the Barlett test’s significance (p < 0.001), indicating that the
data were suitable for PCA.

3.2.1. Correlation Matrix

The correlation coefficient matrix was obtained using the R software, as shown in
Table 2. From the table, it can be seen that OP, NH3, NO3-NO2, Si, DOC, TSS, TN, and TP
showed a strong positive correlation (r > 0.7), which indicated that the variables were not
independent and were suitable for PCA. TN, NO3-NO2, TP, and OP showed a significant
positive correlation (r = 0.80~0.99). Furthermore, a significant relationship between TP and
OP exists because OP is the principal form of dissolved P and contributes one-tenth to
one-third of TP [13]. In addition, the significant correlation between OP and Si suggests
that silicon availability may be related to phosphorus mobilization in soils [37].
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Table 2. Correlation coefficient matrix of eight parameters (note: bold typeface is used to show strong
correlation coefficients).

DOC NH3 NO3_NO2 OP SI TSS TN TP

DOC 1.00
NH3 0.68 1.00

NO3_NO2 0.31 0.42 1.00
OP 0.62 0.72 0.70 1.00
SI 0.68 0.57 0.69 0.77 1.00

TSS 0.35 0.55 0.23 0.52 0.40 1.00
TN 0.42 0.52 0.99 0.76 0.74 0.33 1.00
TP 0.79 0.77 0.39 0.80 0.70 0.73 0.51 1.00

3.2.2. Factor Loadings

Figure 5 is a scree plot that shows the eigenvalues or variances of each principal com-
ponent (PC). The scree plot provided suggestions for an appropriate number of principal
components chosen for study. It was observed that the slope became noticeably flatter after
the second component. The first two principal components were preserved, which explained
81.6% of the variances in the dataset. Table 3 presents the loadings of the eight variables
on PC1 and PC2. The first principal component (PC1), which explained 65.2% of the total
variance, contained the largest negative loadings of OP (−0.40) and the second-largest nega-
tive loadings of TP (−0.39). The factor loadings of PC1 indicated that it mainly explains the
phosphorus yielded primarily from manure, fertilizer, and municipal-point-source discharge
across the MARB. The results indicate that phosphorus pollution is a major latent factor that
influences water quality. The second principal component (PC2), explaining 16.4% of the total
variance, is mainly an explanation of the variations in nutrient yields of NO3-NO2 (−0.57),
TN (−0.47), and TSS (0.40). The factor loadings of PC2 implied that it explained the variation
in nitrogen yields and suspended sediment. Furthermore, from the loadings of PC2, the effect
of suspended sediment on the environment cannot be underestimated.
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Table 3. Loadings of eight variables in two principal components.

Eigenvalues 5.22 1.31

Cumulative (%) 65.2 16.4
Principal Component(PC) PC1 PC2

DOC −0.33 0.28
NH3 −0.36 0.25

NO3-NO2 −0.32 −0.57
OP −0.40 −0.05
SI −0.37 −0.14

TSS −0.27 0.40
TN −0.36 −0.47
TP −0.39 0.35
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3.2.3. Factor Scores

A PCA biplot consisting of a score plot and a loading plot is shown in Figure 5.
In Figure 5, each point represents a USGS water monitoring station. The axes show
the principal components PC1 and PC2. The values on the axes represent the principal
component scores of each monitoring station. The vectors are the loading vectors, whose
components are in the magnitudes of the loadings in Table 3. From Figure 6, it can be seen
that all eight variables are positively correlated, which is consistent with the correlation
matrix and monitoring sites forming the groups based on annual yields. Furthermore, OP
and SI are strongly correlated, and TP, DOC, and NH3 are highly associated. From the
distribution of sites, it seemed that monitoring sites formed the groups based on similar
annual yields. Although Nebraska’s site, ELKH, and Indiana’s site, CANN, are geologically
separated, they formed a group for which their nutrient yields were negatively correlated
with PC1 and positively correlated with PC2, and the scores are very similar. Kansas’s
SEDG, Kentucky’s PADU, Iowa’s CLIN, and Minnesota’s HAST formed another group in
which nutrient yields were positively correlated with both PC1 and PC2. Nebraska’s THED,
Colorado’s DENV, and Missouri’s HERM formed a group with a positive association with
PC1 and a negative association with PC2. The similarity among the sites may be related to
similar percentages of cropland, geological features, urbanization, and precipitation [38].
In addition, from the relation between the site distribution and loading vectors, it can be
seen that Mississippi’s LELA is aligned with TP, which means that Mississippi’s LELA
has the largest TP yield, while Nebraska’s NICK has the largest TSS yield. The principal
component scores of each USGS gauging station are listed in Table 4.
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Table 4. Principal component scores.

USGS Monitoring Site PC1 PC2

CANN −0.88 0.71
HAZL −1.15 0.04
NEWH −1.96 −0.50
PADU 0.57 0.11
GRAN −0.46 0.26
SHIN 0.78 0.46
HAST 0.44 −0.32
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Table 4. Cont.

USGS Monitoring Site PC1 PC2

CLIN 0.31 −0.06
PROV −5.18 −4.35
WAPE −3.19 −1.34
KEOS −2.59 −1.36
VALL −2.68 −0.08
GRAF −0.51 −0.08
SIDN 2.49 −0.06

OMAH 2.53 −0.16
DENV 2.74 −0.38
KERS 1.98 −0.20
THED 1.28 −0.40
NICK −2.50 2.39
ELKH −1.30 0.92
LOUI 2.14 −0.09
DESO 2.16 −0.20
HERM 2.15 0.003
THEB 1.39 −0.07
FIFT 2.29 −0.33

SEDG 0.58 0.41
HARR 2.66 −0.22
LITT 2.32 −0.22
LELA −4.23 2.40
LONG −1.64 1.76
STFR 1.76 −0.18
BELL 1.55 −0.22
MELV −3.85 1.39

3.3. t-SNE Results

Figure 7 shows the results of applying t-SNE to the nutrient yields from 33 USGS
monitoring sites across the MARB. The high-dimensional probability distribution is the
Gaussian distribution, and the low-dimensional probability is Student’s t-distribution with
one degree of freedom. All the nutrient yields of the 33 stations were used to compute
the high-dimensional pairwise affinities pj|i. In implementation, the neighborhood graph
was constructed using a conventional value of the effective number of k = 5 (~

√
33) nearest

neighbors [27]. Figure 7 shows the consistent clustering results of the Figure 5 PCA biplot,
in which the colors represent the labels of the monitoring sites. On the t-SNE map, the
sites are seemingly separated into six clusters, and Louisiana’s MELV, Mississippi’s LELA,
and Nebraska’s ELKH and NICK form a small, separate cluster. MELV and LELA are
located in the lower MARB, while ELKH and NICK are in the upper MARB beside the
Missouri River. The similarity in nutrient yields may be related to their major farming
industries. In addition, Illinois’s GRAN and VALL, Missouri’s HERM, Indiana’s NEWH,
HAZL, and CANN, Iowa’s WAPE and KEOS, and Kansas’s SEDG form a large cluster
in which SEDG is located in a mountain–prairie area in the west of the middle MARB,
while the rest of the sites are in the midwestern MARB and in the Corn Belt, with similar
agricultural activities [38]. Furthermore, Nebraska’s THED, OMAH, and LOUI, Kansas’s
DESO, Illinois’s THEB and GRAN, Montana’s SIDN, and Louisiana’s BELL and SIFR form
another large cluster. This similarity may be related to their similar geological locations; that
is, all these sites are distributed along the Missouri, Illinois, Ohio, and Mississippi rivers.
Moreover, t-SNE revealed the main dimension of variation within each class; that is, the
manifold comprises several distinct segments corresponding to different local structures,
and each segment exhibits a continuously, linearly two-dimensional manifold.
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Figure 7. Visualization of annual average nutrient yields from the 33 USGS monitoring stations
produced using t-SNE.

3.4. CA Results

K-means cluster analysis (KCA) and hierarchical cluster analysis (HCA) were per-
formed on the data, and the results are shown in Figures 8 and 9, respectively. In KCA, the
silhouette method was used to determine the optimal number of clusters by assessing the
mean similarity within the cluster and mean dissimilarity between clusters. The metric for
measuring the distance for the raw and centroid was Euclidean distance. From Figure 8, it
can be seen that the sites are divided into five clusters: two large clusters and three small
clusters. WAPE and KEOS, ELKH and CANN, and VALL and NEWH form the three small
clusters. HAZL, GRAN, GRAF, CLIN, HAST, PADU, and SEDG and THED, HERM, THEB,
STFR, BELL, SIDN, and SHIN form two large groups. In HCA, an agglomerative clustering
algorithm was adopted, and Ward’s method was used to assess the similarity between each
cluster by calculating the total sum of squared variations from the mean of a particular clus-
ter and the proportion of variation explained by a particular clustering of the observations.
As shown in Figure 9, HCA presented consistent results, as shown in PCA and KCA. In the
nutrient yields from the 33 monitoring sites, 10 pair groups emerged. These sites are either
located close to each other or along the same tributaries of the Mississippi River. Two large
group sets have consistent elements, as shown in KCA.
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Figure 9. Clustering annual average nutrient yields from the 33 USGS monitoring stations pro-
duced using hierarchical clustering analysis. Red, orange, and purple lines represent the heights of
formations of two, three, and four clusters, respectively.

4. Discussions

Louisiana’s MELV, Mississippi’s LELA, and Nebraska’s ELKH and NICK were found
constantly to be assigned into the cluster that indicates suspended sediment accumulation.
These sites have yields of DOC, NH3, NO3-NO2, OP, SI, TN, and TP around the mean
values. However, these sites have TSS yields 141% greater than the mean values. MELV is
located in Pointe Coupee Parish County, Louisiana. The parish’s economy is heavily reliant
on agriculture, with sugar cane being one of the main cash crops. In 2010, the center of
the population of Louisiana was located in Pointe Coupee Parish in the city of New Roads.
Over 30,000 acres of Pointe Coupee Parish drain into the False River, and dirt has built
up over time. LELA is located in Washington County, Mississippi. The Lake Washington
watershed is in Washington County, near the Mississippi River in the Mississippi Delta,
an area of the state that is very flat and has little to no relief for impairment caused by
sedimentation. NICK is in Maple Creek, near Nickerson, Nebraska. The base flow at
Maple Creek near Nickerson is shallow and slow, which leads to a buildup of sediment.
ELKH is located on the Elkhorn River in Waterloo, Nebraska. It was reported that both the
percentage of sand and the concentration of sand in the suspended sediment were much
higher for the Platte and Elkhorn Rivers than for streams in the Big Blue River and Nemaha
River basins. For Platte River at Louisville and for Elkhorn River at Waterloo, the measured
sediment discharges ranged from about 7 to 94 percent of the computed total sediment
discharge [39,40].

Illinois’s GRAN and VALL, Missouri’s HERM, Indiana’s NEWH, HAZL, and CANN,
Iowa’s WAPE and KEOS, and Kansas’s SEDG form a large cluster indicating stretches of
river with similar nutrient yields. Except for SEDG, all the other sites and their respective
river locations comprise GRAN and CANN along the Ohio River, VALL along the Illinois
River, HERM along the Missouri River, NEWH along the Wabash River, HAZL along
the White River, WAPE along the Iowa River, and KEOS along the Des Moines River.
The Wabash and White rivers are tributaries of the Ohio River, and the Ohio, Iowa, and
Des Moines rivers are tributaries of the Mississippi River. It is important to notice that
in this cluster, although SEDG is located in a mountain–prairie area, SEDG is located in
Sedgwick County, which is the second-most-populous county in Kansas, with the presence
of economic and industrial activities.

Nebraska’s THED, OMAH, and LOUI, Kansas’s DESO, Illinois’s THEB and GRAN,
Montana’s SIDN, and Louisiana’s BELL and SIFR form another large cluster. This similarity
may be related to their geological distribution and similar agricultural activities. DESO
is located downstream of OMAH and LOUI. In addition, all these sites are distributed
either along the Mississippi River or along its tributaries, indicating that nutrient yields
are similar among these stretches of rivers [20]. THED is located along the Dismal River,
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OMAH along the Missouri River, LOUI along the Platte River, GRAN along the Ohio River,
SIDN along the Yellowstone River, and THEB, BELL, and SIFR along the Mississippi River.
The Yellowstone River is a tributary of the Missouri River and is considered the principal
tributary of upper Missouri. The Platte River is a major river in the state of Nebraska and
is also a tributary of the Missouri River. The Missouri River enters the Mississippi River
north of St. Louis, Missouri. The Ohio River is a tributary of the Mississippi River and is
located at the boundary of the midwestern and southern United States. The Ohio River
enters the Mississippi River at the southern tip of Illinois.

5. Conclusions

In this study, the PCA, t-SNE, and CA methods were used to study the structures
in the distribution of nutrient yields from the MARB to the Gulf of Mexico. This study
analyzed the spatial characteristics of nutrient yields during 1996–2020 across the MARB.
The PCA method was used to extract the most significant indicator parameters affecting
the distribution of nutrient yields and to identify the possible pollution sources across
the MARB. The temporal and spatial structures in the distribution of nutrient yields were
visualized using the PCA, t-SNE, and CA methods. Eight nutrient yields were reduced to
two important principal components using PCA, explaining 81.6% of the total variance of
the original data set. PC1 (65.2%) represented orthophosphate- and silica-related nutrient
yields, and PC2 (16.4%) represented nitrate–nitrite- and total-suspended-sediment-related
nutrient yields. The management of nitrogen yields in the upper MARB and phosphorus
yields in the lower MARB should be strengthened. With the effective treatment of industrial-
point-source pollution, the impact of agricultural, rural non-point sources on tributary
rivers and in stream channel erosion has gradually become prominent. However, sediment
in the soil and stream bed cannot be ignored. This study comprehensively identified and
visualized the structures and similarities in high-dimensional datasets on the distribution
of nutrient yields across the MARB. The results of this study could arouse more rational
attention to drive the improvement in the delicate management of nutrient loads from the
MARB to the Gulf of Mexico. This study proved that the integration of dimension reduction
techniques such as PCA and t-SNE with classification techniques such as CA in machine
learning is an effective tool with which to identify and visualize the structures in high-
dimensional datasets on nutrient yields and to provide a comprehensive understanding of
the correlations of the distribution of nutrient loads across the MARB. Future works should
consider more parameters, such as electrical conductivity, dissolved oxygen, the use of
the landscape, hydrology, climate, and pH, to study variations in the temporal and spatial
correlations of nutrient yield distribution.
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