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Abstract: In cold-climate regions, road salt is used as a deicer for winter road maintenance. The
applied road salt melts ice and snow on roads and can be washed off through storm sewer systems
into nearby urban streams, harming the freshwater ecosystem. Therefore, aiming to develop a precise
and accurate model to determine future chloride concentration in the Credit River in Ontario, Canada,
the present work makes use of a “Graph Neural Network”–“Sample and Aggregate” (GNN-SAGE).
The proposed GNN-SAGE is compared to other models, including a Deep Neural Network-based
transformer (DNN-Transformer) and a benchmarking persistence model for a 6 h forecasting horizon.
The proposed GNN-SAGE surpassed both the benchmarking persistence model and the DNN-
Transformer model, achieving RMSE and R2 values of 51.16 ppb and 0.88, respectively. Additionally,
a SHAP analysis provides insight into the variables that influence the model’s forecasting, showing
the impact of the spatiotemporal neighboring data from the network and the seasonality variables
on the model’s result. The GNN-SAGE model shows potential for use in the real-time forecasting of
water quality in urban streams, aiding in the development of regulatory policies to protect vulnerable
freshwater ecosystems in urban areas.

Keywords: pollution; Credit River; machine learning; graph neural networks; SHAP analysis

1. Introduction

In cold temperate regions of the globe, during winter, deicing substances are often used
on roads to improve drivability and road safety, reducing accidents by up to 87% [1–3]. Most
commonly, inorganic salts (NaCl, CaCl2, MgCl2, KCl) are the main tool for ice melting in
these regions [3,4]. Their use can be traced back to the United States at the end of the 1930s,
and since then, they have been adopted by other countries in the following decades [3,5]. As
urbanization has increased, motor vehicles have become more common as a transportation
option, leading to an exponential increase in salt usage for road safety improvement [5].
The United States and Canada disperse as much as 24.5 million and 8 million tons of road
salt (mainly NaCl), respectively [6–9]. While this has a positive impact on road safety
during winter, the usage of salt has been shown to have negative consequences, such as the
corrosion of automobiles and road infrastructure degradation [9–11].

A plethora of studies have shown that road-applied salt for ice melting is one major
anthropogenic sources of increased chloride (Cl−) concentration in soil and water bodies,
causing their salinization, more notably so in high urbanized regions, which can reach
chloride concentrations as high as 1344 mg/L [2,4,5,12]. The road salt enters the freshwater
ecosystems via highway runoff, resulting in high chloride concentrations [4,13]. The high

Environments 2023, 10, 157. https://doi.org/10.3390/environments10090157 https://www.mdpi.com/journal/environments

https://doi.org/10.3390/environments10090157
https://doi.org/10.3390/environments10090157
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/environments
https://www.mdpi.com
https://orcid.org/0000-0002-0436-2653
https://orcid.org/0000-0002-4366-366X
https://orcid.org/0000-0003-0454-2811
https://doi.org/10.3390/environments10090157
https://www.mdpi.com/journal/environments
https://www.mdpi.com/article/10.3390/environments10090157?type=check_update&version=1


Environments 2023, 10, 157 2 of 20

chloride concentration impairs the freshwater aquatic biota by reducing food availability
and decreasing biodiversity [2,14–17].

Many municipalities have installed real-time water quality monitoring stations to
accurately assess the environmental impacts of winter road maintenance and reduce road
salt application in salt-vulnerable areas. The implementation of low-impact development
with the physical modeling of enhanced roadside drainage systems was proposed in pre-
vious work as a viable approach to manage chloride concentration for salt-vulnerable
areas [18,19]. However, due to the large quantity of data collected at a high frequency,
real-time monitoring stations’ data are most efficiently analyzed by advanced deep learning
models, providing accurate water quality forecasts. When compared to physical-based
forecasting models, the data-driven paradigm, such as machine learning (ML) and deep
learning (DL) approaches, have been favored by scientists due to their simpler implementa-
tion, faster processing times, and inherent capacity to identify complex relationships in the
data [20–23].

Different applications of ML models on water quality can be found in the literature.
In [24], experimental results pertaining to a Water quality index (WQI) estimation for the
Bhavani River, India, showed that the applied artificial neural network (ANN) configuration
outperformed their benchmarking models, providing superior accuracy and error values.
A similar result was found in another work [25], where ANN was employed for WQI
forecasting in Warta River, Poland. Their best-assessed ANN configuration used five
hidden neurons in a multilayer perceptron (MLP) structure, returning a root mean square
error (RMSE) value of 0.64, proving itself as an essential tool for surface water quality
determination. The application of the ML paradigm to groundwater level has been explored
in the literature [26]. In this paper, the authors proposed combining wavelet transform
(WT) with well-established stand-alone ML models, such as ANN, adaptative neuro-fuzzy
inference system (ANFIS), group method of data handling (GMDH), and a least squares
support vector machine (LSSVM) to determine groundwater level for the Zarand–Saveh
aquifer in Iran for up to 3 months in advance. The results showed that the best model
resulted from a combination of WT and LSSVM, achieving RMSE values of 0.05 m and
0.18 m for 1 month and 3 months in advance, outperforming the other assessed models
for the same forecasting horizons. In [27], several ML techniques were studied for the
application of irrigation water quality for the arid location of the Nfifikh and Cherrate
watersheds in Morocco to predict 10 different water quality indexes, including chloride.
The results proved that ML can efficiently forecast water quality, with the random forest
(RF) model being the most suitable model for chloride prediction in their study.

Future chloride concentration estimates can also benefit from the data-driven paradigm.
In [28], the authors propose a data-driven approach to determine future chloride levels
in Florida, USA, for groundwater supply. Their approach showed robust performance
when forecasting chloride, reaching RMSE and coefficient of determination (R2) values
of 28 mg/L and 0.90, respectively. Another data-driven model was implemented by the
authors of [21]. Their proposed methodology, real-time chloride forecasting in Grand River,
Canada, used an ensemble learning model combining multilayer perceptron MLP and
stepwise cluster analysis (SCA). The proposed MLP-SCA achieved good results regarding
RMSE (11.58 mg/L) and R2 (0.90). A regression tree-based ML model was suggested by
Poor and Ullman [29] for the determination of future levels of nitrate and chloride in
the Willamette River, USA. Their analysis increased the R2 values for chloride by 33%
when compared to the multiple linear regression model, achieving a final value of 0.75.
Their results proved that tree models could handle the complex nonlinearity within the
assessed data.

Overall, the data-driven approach shows great potential when applied to the hydrol-
ogy/environment research area. However, some authors believe there is a deficiency in
understanding the application of the deep learning paradigm for predicting chloride levels.
To address this problem, the present work proposes to use a cutting-edge approach combin-
ing graph theory and DL to assess future chloride concentrations based on spatiotemporal
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data for the Credit River located in Ontario, Canada. This work expects to contribute to the
field by carrying out the following tasks:

1. Building a state-of-the-art model for chloride concentration, allowing for more accu-
rate and precise results.

2. Conducting an analysis of the contribution of different time lags for the forecasted
chloride concentration.

3. Conducting an analysis of the importance of different input variables.

The remainder of this work is structure as follows: In Section 2, the methodology used
is presented, followed by Section 3, where the achieved results are shown. In Section 4, there
is a discussion of the results, and Section 5 closes the work and contains our conclusions.

2. Materials and Methods
2.1. Credit River: Characteristics and Dataset

The Credit River is located in Southern Ontario, Canada, just west of Toronto. Its
source is located in Orangeville, and the rivers flows until reaching Lake Ontario in a
90 km trajectory [30,31]. The Credit River has a total drainage area of 93,000 ha, and
its land composition is split as follows: 35% for agriculture, 27% for urban use, and
the remaining 38% comprises natural habitats. The area has an estimated population of
1 million people [32–34]. The river is important for environmental conservation due to its
rich aquatic biodiversity and its role as a vital water source for the local population [30,35].
A map showcasing the location of the Credit River watershed and its tributaries is presented
in Figure 1, where the red mark represents the reference station, i.e., where the chloride
concentration is being forecasted, namely “Credit River @ MGCC”, while the green marks
show the location of the neighboring stations that provide spatiotemporal data.

However, the highly urbanized Credit River watershed environment adds elevated
pollutant concentrations to the river, risking human and animal lives. The present work
proposes the use of a graph-based model called GNN-SAGE to estimate future pollu-
tant concentrations (mainly chloride) in the Credit River. Unlike traditional ML and DL
paradigms, graph-based models such as GNN-SAGE can process multi-spatiotemporal
data, satisfactorily identifying the underlying relationship between the input variables
and the target variable when used in forecasting applications [36,37]. Its ability to ex-
tract spatiotemporal information from data is critical in the current study due to chloride
concentration relying on both temporal and spatial features.

The dataset used for this study contains historical data concerning the Credit River
from 2016 to 2020. The historical data have a time resolution of 15 min. With the exception
of precipitation (which was summed), all the variables were resampled to 1 h intervals to
calculate the average value for each one of them before being fed to the assessed models.
The stations distributed along the river’s course measure values for the water’s physical-
chemical characteristics and weather attributes. Figure 2 shows the correlation between
each attribute in matrix form.

Figure 2 depicts the correlation matrix, with darker blue colors indicating highly
correlated attributes, and darker red showing a high negative correlation. Figure 2 shows
a strong positive correlation between chloride levels and water conductivity. Against
common sense, this may indicate a collinear relationship between these two attributes,
meaning that the conductivity information may be already provided to the model by the
chloride data, which can hamper the model’s performance by increasing its variance [38,39].
Air and water temperatures have a moderately negative correlation with chloride, while
dissolved oxygen has a positive correlation. Although the remaining attributes have a
weak correlation, these variables may add important information to the model due to the
movement of salt dissolved in the river, helping its modeling and, consequently, future
chloride concentrations, as suggested by the SHAP analysis presented in this work.
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Figure 1. Credit River watershed map. The red mark shows the location of the reference station, and
the green marks are the neighboring stations.

The dataset was split into two stages: training and validation. The training stage was
performed using data from 2016 to 2019, and the validation stage was conducted using
data from 2020, as shown in Figure 3. In the figure, the blank spaces represent gaps in the
historical data, which were not used in the training phase.

2.2. Benchmarking Model

The performances of the Deep Neural Network-based transformer (DNN-Transformer)
and the Graph Neural Network Sample and Aggregate (GNN-SAGE) paradigms were
evaluated using the benchmarking persistence model. Persistence is a simple forecasting
model used as a minimal benchmarking tool. It states that the following attribute mea-
surement is the same as the latest [40,41]. This approach can achieve good results for short
forecasting horizons. However, its performance deteriorates for further future horizons as
the model cannot track the influence of the dynamics of external factors impacting future
values [42,43].



Environments 2023, 10, 157 5 of 20

Figure 2. Correlation matrix for the measure attributes at Credit River.

Figure 3. Dataset split for the training and validation stages. The gaps in the image represent the lack
of data for the period.



Environments 2023, 10, 157 6 of 20

2.3. DNN-Transformer

In the original Transformer structure [44], the encoder embeds data to a context vector
using positional encoding and stacks a multi-head attention mechanism, determining
how the provided input attends to each other. The encoder output is then fed to the
decoder, which generates the most probable forthcoming word for NLP applications [44].
Transformer-based models have exhibited superior or comparative performance during
comparisons with recurrent neural networks when applied to different areas, such as
speech recognition [45], computer vision [46,47], and time series forecasting [48].

The present study adapted the transformer structure to the proposed regression prob-
lem of forecasting chloride concentration using the PyTorch and Scikit-Learn libraries
for Python [49,50] (the library’s documentation can be accessed at https://pytorch.org/
and https://scikit-learn.org/stable/, accessed on 28 August 2023). The applied architec-
ture for the transformer encoder and the DNN-Transformer architecture are presented in
Figures 4 and 5, respectively.

Figure 4. Transformer encoder architecture.

Figure 5. DNN-Transformer architecture.

Figure 4 shows that the transformer uses just the encoder structure for the present
study. There, the input data are normalized before being fed to the multi-head structure,
which is composed of 16 attention-heads, each one with a key dimension equal to 32. After
that, the processed data are again normalized with residual information from the original
input dataset and then passed to the feed-forward structure, composed of convolutional

https://pytorch.org/
https://scikit-learn.org/stable/
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layers activated by Leaky ReLu [51], using a 25% dropout. The DNN-Transformer structure,
depicted in Figure 5, is composed of two encoders followed by an average pooling layer.
A dense layer with 8192 neurons follows the model, which finally outputs the predicted
chloride concentration.

2.4. GNN-SAGE

The GNN-SAGE was first proposed [52] as a general inductive framework for handling
large graph structures. In this approach, nodes are equally sampled around an area of
interest during the sampling phase. Afterward, the spatiotemporal information retrieved
from these nodes is aggregated by an aggregate operator [53]. This generates an embedding
vector representing the node of interest that is also able to generalize unknown data,
disregarding the graph’s topology and structure [41,52,54]. The GNN-SAGE model’s
structure enables it to capture complex spatiotemporal patterns between a node and its
neighbors, enhancing its forecasting performance compared to traditional ML and DL
methods. This results in cutting-edge outcomes when applied to various time series
problems [42,43]. The GNN-SAGE model was implemented using Pytorch and Scikit-Learn
for Python, and its structure in the context of this study is presented in Figure 6.

Figure 6. GNN-SAGE architecture.

As shown in Figure 6, the spatiotemporal data are fed to the first SAGE convolutional
layer using 10% Leaky ReLu as the activation layer and a 10% dropout rate. The convolution
process is repeated four times, identifying and extracting relevant structure patterns in the
data. After that, the processed data are passed to a sequence of two dense layers using 10%
Leaky ReLu, where the forecasted chloride concentration is finally output by the model.

2.5. SHAP Analysis

Shapley Additive Explanations (SHAP) is a way to provide insight into how ML
models work [55]. The SHAP analysis, based on game theory, calculated the contribution
of each input parameter used by the model for forecasting and was implemented into the
present work after the model had been trained using the SHAP library (the SHAP library
documentation can be read at https://shap.readthedocs.io/en/latest/, accessed on 28
August 2023) by evaluating the model for each situation where one of the independent
variables is not used. This way, SHAP can identify relationships among the input data,
identifying their influence, importance, and correlation over the model’s output [41–43,55].
The determination of the influence of each variable provides deeper insight into how the
model provides its results, being a viable option to explain the analyzed ML paradigm
locally. The employment of SHAP analysis by those with expertise in different knowledge
areas, such as pharmaceutical [56], engineering [57], and social sciences [58], renders it
a valuable tool for researchers. In Figure 7, we present a flow chart outlining the tasks
performed during our study.

https://shap.readthedocs.io/en/latest/
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Figure 7. Flow chart of the present study.

3. Results
3.1. Size of Time Window Effect

Figure 8 presents the results for the effect of different time window sizes, i.e., the
number of time lags applied as inputs on both the GNN-SAGE and DNN-Transformer
models. For this analysis, it was decided that only chloride information would be used.

Figure 8 shows the RMSE for different numbers of time lags for the proposed DNN-
Transformer and GNN-SAGE models. Increasing the time window size proved to be
beneficial for the graph-based model up to 12 h. Beyond that threshold, the results started
to deteriorate. For the DNN-Transformer, incorporating past information enhanced the
model’s performance for up to 18 h, where more time lag values started to harm the model’s
performance.

The GNN-SAGE and DNN-Transformer models outperformed persistence, yielding
improvements of 12.4% and 11.7%. For the graph-based approach, the best result was
obtained using 12 h of past data, reaching an RMSE value of 59.73 ppm, while the DNN-
Transformer needed 18 h to provide its best outcomes for an RMSE of 60.24 ppm. Compared
to the DNN-Transformer, the proposed GNN-SAGE improved its forecasting by 0.8% for
that situation. Based on the results presented in Figure 8, we used 12 time lags for all input
variables, including chloride concentrations, to determine future Cl− values.

3.2. Chloride Concentration for 6 h Ahead Forecasting Horizon

The impact of the input variables used on chloride forecasting was evaluated through
a step-by-step analysis for a 6 h ahead forecast horizon. At first, in order to forecast
future chloride concentrations, the model’s sole input was past chloride concentrations.
After each test, more input variables were introduced into the model. If the inclusion of
a variable improved the model’s performance, it was kept as an input; otherwise, it was
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discarded. This procedure was repeated until all the input variables described in Figure 2
were assessed, resulting in a selection of variables that only returned the best forecasting
values in terms of RMSE. The results for this test are shown in Figure 9, where the lighter
the color, the better the error achieved by the model.

Figure 8. Influence of different numbers of time lags in the models’ performance.

Figure 9. The effect of different input variables on the DNN-Transformer performance.
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In Figure 9, the best result was achieved when combining chloride and solar radiation,
resulting in an RMSE of 57.86 ppm. Adding more than two variables showed no improve-
ment over the transformer performance, indicating that the model could not extract the
spatiotemporal information from the additional inputs. Solar radiation, on the other hand,
appears capable of providing temporal information in terms of seasonality, both yearly
and daily, improving the model’s forecasting capacity. The results for forecasting chloride
concentrations 6 h in advance are presented in Figure 10.

Figure 10. Scatter plot with the forecasted and measured chloride concentrations for 6 h in advance
(obtained using the DNN-Transformer).

Figure 10 presents a scatter plot for the transformer model and the marginal dis-
tributions for the actual and forecasted concentration values. The graph shows good
agreement between the measured and actual chloride values, as evidenced the clustered
points around the regression line, which reached a coefficient of determination of 82%,
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and by both marginal distributions having similar distributions. The DNN-Transformer
model reached an RMSE value of 57.86 ppm and an MBE of −1.97 ppm, suggesting a slight
underestimation of the forecasted values.

The results regarding the variable testing for the proposed GNN-SAGE model are
presented in Figure 11.

Figure 11. The effect of different input variables on the GNN-SAGE performance.

As shown in Figure 11, the model’s forecasting ability improved with the inclusion
of additional variables. For this case, the best solution was reached using chloride, water
temperature, precipitation, flow, and solar radiation, resulting in an RMSE of 51.16 ppm.

The decrease in the DNN-Transformer model’s performance can be explained by the
fact that it could not identify and extract the spatiotemporal information underlying the
dataset. This ultimately prevented the model’s generalization of the problem, returning
inferior results than the GNN-SAGE. The proposed model, however, could extract and
identify the spatiotemporal relationship between input and output variables, improving
its generalization and, consequently, its forecasting due to its better understanding of the
graph-structured data [37], as verified in previous studies [41–43]. Figure 12 shows a scatter
plot for the GNN-SAGE model.

Figure 12 demonstrates that the forecasted and actual data are in good agreement once
more. Compared to the deep learning transformer approach, the proposed SAGE model
could cluster the points even closer to the regression line, with a more similar marginal
distribution of its data and an improved coefficient of determination of 88%. The graph-
based paradigm had RMSE and MBE errors of 51.16 ppm and −0.64 ppm, respectively.
Compared to the RMSE errors of persistence and the DNN-Transformer, the GNN-SAGE
model increased forecasting by 25% and 12%, respectively. These findings show that the
GNN-SAGE model can produce more accurate and precise results than the benchmarking
models. The superior results for the graph model can be seen in Figures 13 and 14.
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Figure 12. Scatter plot with the forecasted and measured chloride concentrations for 6 h in advance
(both obtained using GNN-SAGE).

The continuous line in Figure 13 represents the observed chloride values, while the
dashed line represents the predicted values. It is possible to visualize that both the DNN-
Transformer and the proposed SAGE models can adequately identify the peaks during
the assessed period. However, the GNN-SAGE provides more accurate results. While
analyzing the period between 15 February 2020 and 1 March 2020, GNN-SAGE closely
followed the concentration peak, providing results near to the actual observed chloride
concentration values and surpassing the transformer’s performance for the same period.
Figure 14 presents a closer look at the assessed period.
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Figure 13. Comparison between forecasted and real values for (a) DNN-TRANSFORMER and
(b) GNN-SAGE models for the whole validation dataset.

Figure 14 shows model performance forecasting the chloride concentration at a range
narrower than in Figure 13. From this, it is easier to verify that the SAGE model was better
at identifying the concentration peaks, as seen for the dates of the 11 and 13 of February
2020. The proposed model reduced the lag between the actual and forecasted values.
This lag is known in the literature and can be attributed to the need for more spatiotem-
poral data for extended time windows as the leading forecasting time increases [59–61].
However, the proposed model reduced this gap when applied to different time series
forecasting problems, providing more accurate and reliable predictions in longer-horizon
forecasts [42,43].
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Figure 14. Same as Figure 13 for a narrower range, comprising the period from 1 February 2020 to
15 February 2020 for the (a) DNN-Transformer and (b) GNN-SAGE models.

3.3. SHAP Analysis Results

The results of the SHAP analysis are presented in Figure 15. The results are organized
in descending order, where the closer to the top, the more important the attribute is for
the forecasted value. The rightmost bar in the figure represents the correlation between
the variable and the output value. A higher correlation indicates a higher feature value.
Furthermore, negative SHAP values indicate that the attribute had a negative influence
over the forecasting and vice versa.

In Figure 15, it is possible to state that data from the reference station “Credit River
@ MGCC” make a major contribution to the determination of the chloride concentration.
Figure 15 also shows that the top three most influential variables for the model’s forecasting
are the chloride concentrations from the reference station. Moreover, the SHAP results
show that neighboring stations contribute to the model’s output. These stations provided
important information regarding water temperature, which is the fourth most influential
attribute; solar radiation, which may provide seasonality information; and flow. This
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states the importance of spatiotemporal information coming from the surroundings of the
reference station in improving the model’s forecasting [41–43,62].

Figure 15. SHAP analysis results for forecasting using the GNN-SAGE model.

4. Discussion

The GNN-SAGE model proposed in this research has proven to be a reliable tool for
estimating future chloride concentrations in the Credit River. Based on graph theory and
deep learning, its structure can satisfactorily identify and extract complex spatiotemporal
dependencies in data collected from the neighboring stations. Its superior performance
for time series applications has been well documented in the literature, where this ap-
proach consistently produces state-of-the-art results with respect to forecasting [42,43].
The same behavior was observed in the present work, where the GNN-SAGE paradigm
outperformed both persistence and DNN-Transformer models, achieving RMSE and R2

values of 51.16 ppb and 0.88, a substantial improvement over the other assessed models.
The GNN-SAGE approach also reduced the lag between the forecasted and actual

measured chloride concentrations, a common phenomenon in time series forecasting as
larger forecasting windows require more data [59–61]. The narrowing of this prediction
gap is fundamental for providing more accurate and precise future chloride concentra-
tions, allowing for better decision-making and policy development by stakeholders and
environmental agencies.

The SHAP analysis we conducted provided an insightful examination of the GNN-
SAGE model. Its results showed that the forecasting of Cl− depends on local and neigh-
boring concentration ion levels. The SHAP analysis also depicts water temperature and
solar radiation as other essential variables in chloride forecasting, showcasing the seasonal
behavior of chloride.

We compared the results of chloride forecasting found in the literature with those
obtained using GNN-SAGE. However, it is important to note that directly comparing
different predictive models can be challenging. Each study has its own methodology and
unique characteristics, making it difficult to draw direct comparisons between the models.
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Furthermore, since WQI forecasting using machine learning has been much more frequently
explored than direct chloride prediction, not as many works are available for comparison
using this approach. Table 1 compiles metric values for the proposed GNN-SAGE model,
and the results found in the literature are presented in Table 2.

Table 1. Summary of performance metrics for forecasting using the GNN-SAGE model for a time
window that is 6 h ahead.

Metric 6 h Ahead

RMSE (m) 51.16 ppb
R2 0.88

MBE −0.64 ppb
Forecast Skill 0.24

Table 2. Literature values for chloride prediction.

Model Metric Value Author

SCA-MLP RMSE (R2)
11.58 mg/L (0.90) for 1 h forecasting horizon

Zhang et al.
[21]

FOS RMSE (R2)
28.00 mg/L (0.90)

El-Jaat et al.
[28]

Regression tree R2

0.85
Poor and Ullman

[29]

Multiple regression analysis R2

0.64
Poor et al.

[63]

Integrated catchment for
Cl− simulation (INCA-Cl)

R2

0.45 average for monthly simulated Cl−

concentration

Jin et al.
[64]

In [21], chloride concentration was estimated for a 1 h forecasting horizon for the
Grand River, Ontario, Canada. The authors of this study proposed an ML model combining
multiple-layer perceptron with stepwise cluster analysis for this task. Their approach
is based on ensemble learning, which has been proven to boost time series forecasting
results [22]. When comparing the GNN-SAGE model to their results, it is evident that the
graph-based approach delivers better error values for a longer horizon (51.16 ppb) but
has a slightly lower R2 value of 0.88. This indicates that GNN-SAGE can provide more
accurate results than traditional approaches such as SCA-MLP. Another ML learning model
is proposed in [29], where the authors employed the regression tree paradigm to estimate
future chloride concentrations in the Willamette River watershed in the USA. This work is
an improvement over the author’s previous study [63], where they first proposed chloride
forecasting using multiple regression analysis. Comparing both studies, the tree-based
model outperformed the former approach, increasing R2 from 0.64 to 0.85. The proposed
GNN-SAGE architecture surpasses the results found in both studies, providing a superior
coefficient of determination of 0.88, meaning an improvement of 3.5% over the regression
tree forecasting was achieved. In [28], a data-driven approach was used to evaluate future
chloride concentrations in Deltona, Florida. Unlike the other studies mentioned, the authors
proposed estimating Cl− concentration for groundwater supply. The used model resulted
in an RMSE of 28.00 mg/L and R2 of 0.90. Similarly to the results found in [21], GNN-SAGE
once again reduced the RMSE error for the chloride estimation, also exhibiting a slightly
reduced coefficient of determination. Again, this suggests the superior performance of the
GNN-SAGE over this data-driven approach for chloride forecasting.

The Integrated catchment for Cl− simulation (INCA-Cl) is a physical-based model
for determining future chloride concentrations with daily temporal resolution. It is a
dynamic, mass-balance approach that aims to verify the temporal changes in the river’s
flow path [65]. In [64], INCA-Cl was also used to predict chloride concentrations in Ethiopia.
In their work, the physical model reached an average R2 value of 0.45 for monthly Cl−
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concentration, indicating inferior performance when compared to the GNN-SAGE result of
0.88. Additionally, it is important to note that one of the main advantages of using ML and
DL paradigms over physical-based approaches is its simpler implementation. The INCA-Cl
model, for example, needs simulated data for hydrological and soil modeling, as well as
a geographical information system file to delineate the watershed sub-catchments before
running the model [64–66]. On the other hand, the GNN-SAGE model only requires the
measured parameters, as depicted in Figure 2. Also, the INCA-Cl model is not suitable for
real-time chloride monitoring due to its daily temporal resolution. In contrast, the GNN-
SAGE model can perform intra-hour forecasting, providing instantaneous and punctual
values, which is more sophisticated than globally integrated values over time.

By using spatiotemporal information, the GNN-SAGE enhances the concept of tem-
poral auto-regression to a spatiotemporal paradigm, using the measuring station data
that have an effect over the target parameter (chloride). Our results show that the GNN-
SAGE model is able to properly forecast extreme events for chloride concentration for the
assessed forecasting horizon of 6 h. When compared with previous works found in the
literature, the proposed GNN-SAGE model offers superior performance for determining
future chloride values. Considering both RMSE and R2 metrics, GNN-SAGE was able to
overcome traditional ML applications such as MLP, regression trees, and data-driven FOS.
For the physical-based INCA-Cl, GNN-SAGE offers a simpler implementing approach and
is able to provide intra-hour predictions for chloride concentrations with real-time chloride
monitoring applications. Overall, the GNN-SAGE model has been shown to be a superior
approach for chloride forecasting.

5. Conclusions

Our developed GNN-SAGE model was used to predict chloride concentrations. Our
GNN-SAGE model was trained with historical data from 2016 to 2020 collected from
stations distributed along the Credit River course. The model was subsequently tested
using different data inputs. The best configuration for the proposed graph model was
reached using past chloride concentration data, water temperature data, precipitation data,
flow data, and solar radiation data, together with a time lag of 12 h, as input variables.

To assess the proposed model, the DNN-Transformer and the benchmarking persis-
tence models were also evaluated for chloride forecasting. When compared to the other
two models for a 6 h forecasting horizon, the GNN-SAGE model outperformed expectation
both in terms of RMSE and R2 evaluation metrics, achieving values of 51.16 ppb and 0.88,
respectively. A SHAP analysis was also conducted for this study to gain better insight into
the model’s forecasting. The results of our SHAP analysis provided an understanding of
how spatiotemporal data from neighboring stations majorly affect the GNN-SAGE results.
The SHAP analysis indicated that seasonality plays an important part in chloride estimation
and that flow, water temperature, and solar radiation are also relevant attributes.

A comparison of the GNN-SAGE model with results from the literature revealed that
it delivers state-of-the-art performance for estimating chloride levels, achieving superior
RMSE values and comparable R2 values. This comparison deems the proposed GNN-SAGE
as a reliable tool for chloride forecasting, providing accurate and precise estimations of Cl−

up to 6 h in advance.
Future works may address some of the model’s limitations, such as its geographical

limitations. To overcome this hindrance, the model can be trained and validated in differ-
ent rivers with different watershed sizes and hydrological structures. Also, the model’s
performance can be verified on further forecasting horizons, which would give further
insight into the model’s functioning and allow for different decision-making strategies
regarding chloride pollution.

The accurate predictions provided by the GNN-SAGE model show potential for real-
time water quality management, aiding in developing regulatory guidelines for adaptive
road salt management plans to better protect vulnerable aquatic freshwater ecosystems in
urban streams from extreme events.
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