
Citation: Moltedo, G.; Martuccio, G.;

Catalano, B.; Simbula, G.; Vignoli, L.

The Use of Tail as a Minimal-Invasive

Method to Detect a Large Set of

Biochemical Responses in the Italian

Wall Lizard Podarcis siculus

(Rafinesque, 1810). Environments

2023, 10, 148. https://doi.org/

10.3390/environments10090148

Academic Editor: Roberta Bettinetti

Received: 29 June 2023

Revised: 10 August 2023

Accepted: 15 August 2023

Published: 22 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

environments 

Article

The Use of Tail as a Minimal-Invasive Method to Detect a Large
Set of Biochemical Responses in the Italian Wall Lizard
Podarcis siculus (Rafinesque, 1810)
Ginevra Moltedo 1,* , Giacomo Martuccio 1, Barbara Catalano 1 , Giulia Simbula 2 and Leonardo Vignoli 2

1 Istituto Superiore per la Protezione e la Ricerca Ambientale—ISPRA, Via del Fosso di Fiorano 64,
00143 Rome, Italy; giacomo.martuccio@isprambiente.it (G.M.); barbara.catalano@isprambiente.it (B.C.)

2 Dipartimento di Scienze, Università Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy;
giulia.simbula@uniroma3.it (G.S.); leonardo.vignoli@uniroma3.it (L.V.)

* Correspondence: ginevra.moltedo@isprambiente.it; Tel.: +39-6-50073268

Abstract: Conventional methods to analyze biochemical processes related to contaminant toxicity
usually require the sacrifice of animals to collect tissues and organs. However, for ethical reasons and
especially for endangered species, non- or minimal-invasive methods should be preferred. Among
vertebrates, reptiles show a general decline worldwide and therefore the use of non- or minimal-
invasive methods to measure some biochemical processes in these animals are encouraged. It is well
known that most lizards use a common safety behavior implying the natural loss of tail in the case of
predation events. Therefore, if common analyses testing contaminant toxicity could be performed
in tail tissue, this method, not implying the sacrifice of the animals, could be considered as a good
minimal-invasive method. The aim of this study is to test on wild Italian wall lizard Podarcis siculus
the use of tail to detect a large set of biomarkers including oxidative stress (TOSCAROO, TOSCAOH,
CAT, tGSH, MDA), biotransformation processes (EROD, GSTs) and neurotoxicity (AChE, BChE). All
the biochemical responses, excluding EROD and MDA, resulted to be analytically detectable in tail
tissues of P. siculus, although the mean values obtained with this minimal-invasive method were
significantly lower than those obtained with invasive one.

Keywords: field study; reptiles; biomarker

1. Introduction

Biomarkers are usually considered as biochemical, physiological or histological indi-
cators of exposure to or effects of chemicals [1]. Moreover, biomarkers represent a useful
method for gaining insight into the mechanisms causing observed effects of chemical
compounds on whole-organism performance [2] and are widely used in environmental
monitoring programs. However, most of biomarkers commonly used in these assessments
require invasive methods, involving analysis in tissues and organs, such as liver and brain,
after animal sacrifice, e.g., [3–6]. Moreover, the blood cells, accompanied by plasma or
serum, are often used to assess animal health and a wide range of biomarkers [3]. Although
blood sampling is considered a non-lethal procedure, in some cases it was performed by
cardiac puncture, which could lead to death of the animal [7,8]. Instead of these methods,
non-invasive or non-destructive biomarker should be preferred beyond ethical consider-
ations in the cases where the number of animals available at a site is limited, the study
involves an endangered species, or sequential samples from the same individual may be
required for time course studies [3,9]. In the case of endangered vertebrate species, as in
the case of species of this study, authorizations and permissions for scientific purposes are
often required in a conservation framework. EU legislation regarding protection of animals
used for scientific purposes is strict, even more so for strictly protected species listed under
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Annex IV of the Habitat Directive [10,11]. Therefore, the implementation of less invasive
techniques is encouraged, especially in the case of protected and endangered species.

Many reptile species, about 21%, are classified as threatened by IUCN [12], and among
them, the Italian wall lizard Podarcis siculus (Rafinesque, 1810) belonging to the Lacertidae
family, is listed on Annex II of the Bern Convention and Appendix IV of the EU Habitats
Directive 92/43/CEE. It has a wide distribution in Europe, and it is quite abundant along
the Italian peninsula; its habitat includes open fields, walls and areas extending up to
1800 m; it has a reduced mobility and has an important role in the food chain working as
a link between invertebrates and higher predators. Most studies concerning biomarker
analyses on Podarcis spp. involve destructive methods [5,13–17], and few studies exist
involving non- or minimal-invasive ones. In general, most of non-destructive or minimal-
invasive methods used to measure biological alterations in organisms consist of collection
of blood by vein, saliva, urines, feces, part of tissue such as fur, skin, hair [3]. In recent
decades, increasing attention has been paid to the use of non- or minimal-invasive methods
for biomarkers in lizards. Some studies reported micronuclei frequency (MN) and comet
assay performed in blood samples collected from the caudal vein of lizards, i.e., [16,18];
in several studies, serum was used as a target tissue to analyze butyrylcholinesterase
(BChE) on Gallotia gallotia [19–22]; in other studies, BChE together with acetylcholinesterase
(AChE), superoxide dismutase (SOD) and glutathione-S-transferases (GSTs) were measured
in the tails of the spiny lizard Sceloporus spp. [23]. On the Italian wall lizard P. siculus,
beyond a study (previously mentioned) on MN in blood sample taken by subcaudal
vein [16,24], the suitability of saliva samples was evidenced as a non-invasive method to
measure some enzymatic activities such as GSTs, AChE and glutathione reductase (GR),
while [25] investigating some hematological parameters in white blood cells and antioxidant
biomarkers such as SOD, glutathione peroxidase (GPX), total glutathione content (tGSH)
and thiobarbituric acid reactive substances (TBARs) in the tail of this species. Nevertheless,
although collection of tail samples of this species represents a good minimal-invasive
method, only a small set of biomarkers was analyzed so far in this tissue. It is well known
that in many species of lizard, tails could be obtained after a “voluntary” loss (caudal
autotomy), as response to attempted predation [26]. The fracture typically happens just
ahead of the segment where the lizard is caught or at most no more than three fracture
planes anterior to it [27]; however, some lizards can also shed their tail without physical
contact between the tail and the external stimulus [28]. The autotomy capacity of P. siculus
was also attested by a previous study [29]. The detachment of the tail enables the lizard
to escape from a predator that has seized it by this appendage. Additionally, the tail may
serve as a distraction with spontaneous writhing or wriggling movements, diverting the
predator’s attention and facilitating the lizard’s escape [26].

Tail regeneration is a common adaptation among many lizard species, although not
all lizards possess this ability. Once the tail is detached, the lizard initiates a spontaneous
regenerative program. The time required for complete tail regeneration depends on factors
such as the lizard’s age, available nutrition and environmental factors [30]. The growth
rate for tail regeneration also varies according to environmental conditions and fluctuates
with daily temperature and different seasons. Additionally, the level of amputation plays
a role, with higher growth rates observed in proximal tail losses [31]. Different lizard
species exhibit varying rates of tail regeneration. For example, in P. siculus, the maximum
growth rate occurs between 2.5 and 3.5 weeks after amputation under summer conditions,
while in Anolis carolinensis, the growth rate is 1.5 mm per day from 14 to 28 days after
amputation at a constant 32 ◦C but drops to 0.15 mm per day at 21 ◦C from 28 to 45 days
after amputation [31]. On the other hand, in Teira dugesii, it regenerates rapidly, with a
maximum growth rate of 2.6 mm per day during the fifth week after autotomy and a 90%
recovery of the original tail length after 12 weeks [32].

The number of possible regenerations, although varying with species, seems unlim-
ited as long as the lizard is alive, but repeated autotomy can lead to reduced regeneration
rates due to the significant energy and resources required for the process [32]. The aim
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of this study is to assess the detectability in P. siculus of a large set of biomarkers, includ-
ing antioxidant biomarkers, biomarkers of neurotoxicity and of biotransformation, using
minimal-invasive methods involving analyses in tails. To achieve this aim, specimens of
wall lizard were collected from fields, and biomarkers were analyzed in different tissues
using the two methods: an “invasive method” using conventional target tissues/organs
(liver and brain) obtained after animal sacrifice and a “minimal-invasive” method using
tail and blood obtained by alive specimens. Moreover, BChE conventionally measured in
serum was measured in tails to test this tissue as an alternative minimal-invasive method.

The set of analyses of this study consists of biomarkers of the neuronal system, such
as AChE and BChE activities; biomarkers of antioxidant systems, such as catalase activity
(CAT), total antioxidant capability toward hydroxyl and peroxyl radicals (TOSCA HO.,
TOSCA ROO.), tGSH and the level of the lipid peroxidation product malondialdehyde
(MDA); biomarkers of the biotransformation system, such as ethoxyresorufin-o-deethylase
activity (EROD) and GSTs, involved in phase I and II of the process, respectively. The
selected biomarkers were chosen considering previous studies using minimal invasive
methods on Podarcis spp. and other lizard species [19,22–25], adding other biomarkers
usually analyzed with invasive methods on Podarcis spp. [5,15–17,33,34].

The detectability of these biochemical responses was tested in tail and in conventional
tissues (liver, brain, serum). Values obtained by conventional methods and using lizard tail
were compared.

2. Materials and Methods
2.1. Sampling Sites and Species

Wild lizards were collected in hazelnuts (pesticides free) in the same area of the
province of Viterbo, in Latium (central Italy), during summer 2018. A total of 31 specimens
of P. siculus were captured by noose or hand in field and transported in a bag in darkness
to the ISPRA laboratory, where they were maintained in a terrarium at room temperature.
Once in the laboratory, each animal was labelled, measured for snout-vent length (SVL,
0.01 cm), weighed (0.01 g) and left in the terrarium until they lost their tails after induction
by gently pinching the base of the tail [29]. Blood samples were obtained from subcaudal
vein. Following this collection, all captured animals were euthanized through cervical
dislocation and dissected to retrieve brain and liver. The number of animals sacrificed was
defined according to the Italian Ministry of Environment authorization (MATTM Protocol
n. 0013659 of 21 June 2018).

2.2. Biochemical Analyses

Samples of liver, brain and tail were immediately treated with liquid nitrogen and
stored at −80 ◦C in suitable tubes. Blood samples were withdrawn by subcaudal vein using
a sterile insulin syringe, previously heparin-initiated, and stored at 4 ◦C until analysis.
Frozen tissue of liver, brain and tail were thawed on ice. Samples for AChE, GSTs, EROD,
CAT), total antioxidant capability (TOSC) were homogenized (1:10 ratio w/v for liver and
brain, 1:5 ratio for tail) in 0.1 M Tris-HCl buffer (pH 7.6) 0.25 M sucrose and 1 mM EDTA and
centrifuged at 10,000× g for 20 min at 4 ◦C [5]. Those for tGSH analysis were homogenized
1:5 (w/v) in 5% sulfosalicylic acid and 4 mM EDTA, let to deproteinize on ice for 45 min and
centrifuged at 37,000× g for 15 min at 4 ◦C; those for MDA were homogenized 1:5 (w/v) in
20 mM Tris–HCl buffer (pH 7.4) and centrifuged at 3000× g for 20 min. Each cellular extract
(fraction S10, S37, S3) was frozen at −80 ◦C until analysis. The blood samples for BChE
analysis were immediately centrifuged at 10,000× g for 10 min at 4 ◦C to retrieve the serum.
The enzymatic activities (except BChE) were measured according to procedure reported
in [16,17]. AChE activity was assessed using spectrophotometric analysis by [35] method,
lightly modified; CAT activity was quantified by spectrophotometry as in [36], modified
according to [37]; TOSC assays for peroxyl radicals (ROO·) and hydroxyl radicals (HO·)
were performed using the gas chromatographic method of [38]; tGSH was assessed accord-
ing to the enzymatic method of [39]; levels of MDA were evaluated spectrophotometrically
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by [40] method; GSTs activities were determined spectrophotometrically by [41] method,
slightly modified according to [37]; the inducibility of cytochrome P450 was measured
in terms of EROD activity according to [42] method; serum BChE activity was quanti-
fied colorimetrically according to [35] with adjustments to optimize assay conditions [21].
Before the substrate (butyrylthiocholine iodide) at a concentration of 2 mM was added,
samples were preincubated for 3 min with 5,5-dithiobis-2-nitrobenzoic acid (0.3 mM final
concentration) in 25 mM Tris-HCl, 1 mM CaCl2 (pH 7.6). The reaction was monitored at
25 ◦C, over a 3 min period at 410 nm. The activity was expressed as nmol/min/mg prot.

2.3. Statistical Analyses

Results from analyses using invasive methods were compared with those using mini-
mal invasive methods. All biochemical data were tested for normal distribution (Shapiro
Wilk test) and homogeneity of variances (Cochran C test). When these assumptions were
met, the parametric t-test was performed, whereas, when data did not follow a normal
distribution, the nonparametric Mann–Whitney U test was carried out. All data were
processed using the software package “Statistica® v. 12” [43] with a 0.05 p-level.

3. Results

Overall, 31 lizards were captured (ratio male:female = 1.3), with a mean weight of
7.75 ± 2.18 g and a mean length (SVL) of 8.90 ± 0.51 cm.

The mean values of biochemical responses analyzed in tails and serum (minimal
invasive method) or liver and brain (invasive method) of lizards are reported in Table 1.
Comparisons between biomarker values recorded in tail and those analyzed in tissues
collected using invasive methods are reported in Figure 1.

Minimal-invasive methods employing lizard tails allowed the detection of enzymes
activities related to neurotoxicity such as AChE, as well as enzymes and molecules associ-
ated with the antioxidant system such as CAT, TOSCA HO, TOSC ROO, tGSH or in the
biotransformation system such as GSTs; however, EROD and MDA were not detected in
tail tissue. When the values of biomarkers measured by the minimal-invasive method
were compared with the values obtained with invasive methods, the former always had a
significantly lower result (p < 0.05). BChE was detectable both in serum and in tail (both
minimal-invasive methods), with a significantly higher value in serum than in tail.

Table 1. Comparison of biomarker results between tail and other tissues: u.m. = unit of mea-
sure; Tis. = tissue; n= number of replicates; s.d.= standard deviation; Min = minimum value;
Max = maximum value; M–W U test = Mann–Whitney U test. B = brain; L = liver; S = serum;
T = tail; Stat. test = statistical test.

Analysis (u.m.) Tis. n Mean s.d. Min Max Tis. n Mean s.d. Min Max p-Level

AChE
(nmol/min/mg prot) B 31 26.32 6.74 13.92 36.92 T 30 31.55 9.18 16.09 49.05 0.014

CAT
(µmol/min/mg prot) L 21 76.67 19.87 35.75 104.22 T 21 11.98 3.23 7.97 18.44 0.000

tGSH
(µmol/g) L 10 2.91 0.88 1.48 3.80 T 10 0.25 0.04 0.20 0.31 0.000

MDA
(nmol/g) L 8 94.73 8.00 85.52 108.72 T n.d.

TOSCA HO
(GSHeq/g tis.) L 12 1779.24 397.10 1226.61 2512.47 T 12 465.54 134.78 303.54 730.19 0.000

TOSCA ROO
(GSHeq/g tis.) L 29 868.82 265.14 460.37 1504.58 T 30 212.66 61.04 115.73 407.52 0.000

GSTs
(nmol/min/mg prot) L 31 635.56 250.05 236.46 1264.67 T 30 39.29 10.24 22.79 64.94 0.000

EROD
(pmol/min/mg prot) L 24 14.20 7.98 6.70 35.73 T n.d.

BChE
(nmol/min/mg prot) S 28 202.82 56.51 93.74 325.45 T 17 25.88 10.19 13.84 45.12 0.000
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Figure 1. Comparison of biomarker analyses in different tissues of P. siculus. Mean value (and stan-
dard deviation/error) of biochemical responses. (a) Analysis of AChE in brain and tail. (b) Analysis
of BChE in serum and tail. (c) Analysis of CAT in liver and tail. (d) Analysis of tGSH in liver and tail.
(e,f) Analysis of TOSCA HO and TOSCA ROO in liver and tail.

4. Discussion

The aim of this study was to assess the detectability of a large set (N = 9) of conventional
biochemical responses related to oxidative stress, neurotoxicity and biotransformation
processes in tail of the Italian wall lizard P. siculus, as a minimal-invasive method.
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This study demonstrated that biochemical responses such as AChE, GSTs, CAT, TOSCA
HO and ROO and tGSH, usually measured in tissues of P. siculus obtained with invasive
methods (liver and brain), are also detectable in tail (minimal-invasive method), although
with different range of values. BChE was detectable with both tested minimal-invasive
methods (i.e., blood serum from subcaudal vein and tail) with different range of values. On
the contrary, biochemical responses such as EROD and MDA, usually measured in liver,
were not detectable in the tail. The detectability of CAT activity, glutathione level and the
total antioxidant capability signal (TOSC ROO and HO assay) confirms the presence of the
antioxidant system to counteract the excess of free radicals in the case of oxidative stress
in the cells of tail of P. siculus, in agreement with results of [25] on SOD, GPX and tGSH.
In general, organisms require an antioxidant system, consisting of both enzymatic and
nonenzymatic components, to maintain a balance in the concentration of oxidative species.
However, when the antioxidant system is unable to regulate the levels of pro-oxidant
substances, oxidative stress levels may increase. Among the environmental factors the
ultraviolet radiation is an important oxidative stressor for reptiles which, as ectotherms,
spend extended periods basking in the sunlight to regulate their body temperature, mak-
ing them more susceptible to damage from solar radiation [44]. This is just only one of
several reasons why the presence of the antioxidant system is fundamental in lizard tissue,
including the skin of lizard tail. Then, the absence of MDA in the tail of lizards of this study
could suggest that product of lipid peroxidation (related to oxidative stress) is not present
in this tissue, even if enzymatic and nonenzymatic compounds of the antioxidant system
are present. However, the study by [25] performing the TBAR analyses in lizard tails, a
less specific analysis of peroxidation products, suggested that other peroxidation products,
excluded MDA, could be present in this tissue. Indeed, MDA is just one of several end
products produced during the decomposition of lipid peroxidation products [45]. The
absence of EROD activity signal in the tails is likely to be related to the main location of
cytochrome p450, the endoplasmic reticulum membrane of liver cells, where the metabolic
activities occur. Therefore, this result is what we expected to find. Instead, the presence
of GSTs activity in the tail, as already found in other lizard such as Sceloporus spp. [23],
suggests their crucial role in the tail. Indeed, GSTs are key phase II detoxification enzymes
primarily located in the cytosol. Besides their role in catalyzing the conjugation of elec-
trophilic substrates with glutathione (GSH), these enzymes are also involved in various
other functions. They can decrease lipid hydroperoxides by means of their Se-independent
glutathione-peroxidase activities and can also detoxify LPO end products, having a crucial
role in protecting against oxidative damage and peroxidative products of DNA [46,47].

Another interesting result is that both “B” esterases such as AChE and BChE, are also
detectable in lizard tails, demonstrating the presence of these enzymes in the peripheral
nervous system (tail) as well as in the central nervous one and blood, respectively. Our
findings on the Italian wall lizards agree with what was found for other vertebrates.
Most of studies on vertebrates are on humans and rats and demonstrate that these two
groups of enzymes are usually found in a diverse range of tissues including brain, liver,
muscle and blood. AChE is generally thought to be present at its highest amounts in
nervous tissue, while BChE in liver and serum [48]. Indeed, BChEs are synthesized and
released into blood by the liver, but they can also be present in adipose tissue, small
intestine and smooth muscle human cells [49]. Our results demonstrate the presence
of these enzymes in muscle of tail, beyond in serum, of the Italian wall lizards, with
the highest values in blood as expected. The two cholinesterases (AChE and BChE) are
probably located at the neuromuscular junction of lizard muscular cells, as well as for other
vertebrates [50]. Indeed, the physiological role of AChE in the neuromuscular junction
is well known; in nicotinic cholinergic synapses, it is believed that AChE terminates
impulse transmission by rapid hydrolysis of the neurotransmitter acetylcholine [50]. On the
contrary, the precise physiological role of BChE at the neuromuscular junction still remains
unclear. The currently prevailing hypothesis suggests that BChE acts as a poison scavenger,
protecting AChE from inactivation [51]; it is thought to have a shielding function by
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sequestering circulating organophosphorus compounds, thereby reducing their toxic effect
on brain AChE [22]. Moreover, it is proposed to have a role in growth and development
and to function as a scavenger of cholinergic toxins in addition to serving as an auxiliary
element in synaptic transmission [52]. Therefore, BChE may have a natural physiological
support function, with a backup role when AChE activity is compromised or absent [53].

In conclusion, performing biomarker analyses in tail of the lizard P. siculus, together
with blood from subcaudal vein, is an effective minimal-invasive method allowing for the
detection of a large set of biochemical responses related to oxidative stress (CAT, GSTs,
TOSCA, tGSH) and neurotoxicity (AChE, BChE), which could potentially be employed
to assess the effects of the exposure to environmental contaminants. Moreover, since the
organisms in this study were collected from pesticide-free hazelnuts (possibly serving as
good control sites), the results could be valuable in establishing the baseline levels of these
biochemical responses in the tail of P. siculus.
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