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Abstract: Air pollution can have a significant impact on stone materials used in monuments, build-
ings, and sculptures. Sulfur and nitrogen oxides are particularly harmful pollutants, especially in
carbonate stones. These oxides, reacting with moisture in the air, result in the formation of acids
able to erode the stone surface and gradually compromise its structural integrity. The acids can also
combine with airborne particulate matter, heavy metals, and salts, leading to the development of
black crusts. These not only have detrimental effects on the stone’s integrity but also affect the original
appearance of the surfaces, threatening the conservation of important monuments and buildings.
This review discusses the characteristics of black crusts and their relation to the environment and
stone materials.
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1. Introduction

The degradation of stone materials has been a subject of research for several decades [1],
as it is closely tied to the conservation of built cultural heritage. In fact, the comprehension
of the mechanisms and processes regulating this phenomenon is crucial for developing
effective and durable conservation strategies.

Stone decay can be caused by chemical, physical, and biological factors and often by
their combined action. Water plays a significant role as a weathering agent or co-agent. It
acts as a solvent able to solubilize specific components of stones, such as calcium carbonate
or gypsum, due to their inherent solubility in water. Additionally, water can transport
salts or pollutants onto the stone surface or within its porous structure, contributing to
physical processes and reactions that lead to degradation. Furthermore, water promotes
biological decay favoring the suitability of nutrients for microorganisms. This occurs when
it combines with compounds from the stone substrate (i.e., carbonatic ones) or with the
NOx pollutants from the atmosphere. Overall, degradation processes are influenced by
environmental factors, materials, design, construction procedures, and maintenance [2].
The first of these have a profound impact on stone decay processes, while factors such as
orientation and architectural details influence the extent to which moisture supply and
drying affect degradation [3].

It is important to point out that all stone materials are prone to these phenomena,
although certain human activities, such as pollutant emissions, can accelerate their develop-
ment. This review will focus on the processes at the stone–atmosphere interface relating to
air pollution, with particular emphasis on the blackening of architectural surfaces observed
in highly polluted urban environments. This phenomenon takes two forms. The first is
soiling, which involves the accumulation of dust on the surface, characterized by its black
color due to high carbon content. The second mechanism consists of a chemical alteration
of the surface, resulting in the formation of black crusts.
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2. Air Pollution and Stone

Since the industrial revolution, air pollution has had a deep impact on human health,
ecosystems, and stone materials. It is primarily caused by anthropic activities, particularly
combustion processes involving fossil fuels and wood, which release various inorganic
and organic gaseous and solid compounds into the air. It is widely acknowledged that the
primary compounds that negatively affect the integrity of stone materials are the oxides
that can react with water, leading to acid formation: carbon dioxide (CO2), nitrogen oxides
(NOx), and sulfur oxides (SOx) [4,5]. These acids react with stone, especially carbonate-
based materials such as marbles and limestones, resulting in deterioration.

Carbon dioxide (CO2) dissolves in water according to

CO2 + H2O↔ CO2·H2O (1)

CO2·H2O ↔ H+ + HCO−3 (2)

This indicates that a gain in atmospheric CO2 leads to higher CO2 concentrations in
water becoming chemically more acidic. Calcium carbonate, a common component of stone
materials, exhibits slight solubility in water that increases with dissolved CO2.

CaCO3 + CO2·H2O ↔ Ca(HCO3)2 (3)

According to Henry’s law, the amount of CO2 dissolved in water depends on the at-
mospheric CO2 concentration and the water temperature. Lower temperatures enhance dis-
solution. Therefore, in urban environments (where CO2 concentrations are typically higher)
and during winter (when lower temperatures prevail), carbonate dissolution reaches its
maximum. However, Equation (3) represents an equilibrium that can be shifted toward the
reagents through water evaporation or an increase in temperature, causing the reformation
of calcium carbonate. Actually, calcium carbonate dissolves and then precipitates in the
same or different locations. In both cases, the microstructure of the stone in the dissolved
areas undergoes significant changes, rendering the stone more susceptible to further degra-
dation. It is well established that the atmospheric CO2 concentration is raising according
to the Keeling curve [6], and the predicted concentration in 100 years is approximately
700 ppm (it is currently around 420 ppm). This increased effect can be considered relatively
modest if compared with the 2500 ppm reached by CO2 in indoor environments. Here,
the dissolution linked to CO2 can pose a threat, for example, if affecting the delicate and
valuable surfaces of wall paintings where calcium carbonate is commonly an important
component of the setting layers or pigments.

Nitrogen oxides (NOx) are primarily present in the atmosphere as nitric oxide (NO)
and nitrogen dioxide (NO2). The most significant mechanism for NO formation is described
by the Zeldovich reaction [7]:

O2 ↔ 2 O (4)

N2 + O ↔ NO + N (5)

O2 + N ↔ NO + O (6)

OH + N ↔ NO + H (7)

The first reaction (Equation (4)) takes place at a temperature above about 2200 K
(~1900 ◦C), and then the reactions (Equations (5)–(7)) follow. Hence, the formation of NO
requires a high temperature and local excess of oxygen; this occurs, for example, in internal
combustion engines.
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NO can be converted to NO2 by reacting with ozone:

NO + O3 ↔ NO2 + O2 (8)

Nitrogen dioxide can be further oxidized to dinitrogen pentoxide (N2O5), which reacts
with water to form nitric acid.

N2O5 + H2O → 2HNO3 (9)

This acid can react with calcium carbonate:

2HNO3 + CaCO3 → Ca(NO3)2 + H2O + CO2 (10)

Nitric acid corrodes the stone substrate, resulting in the production of calcium nitrate,
which is more soluble than carbonates. Unlike Equation (3), this reaction is irreversible,
and there is no re-precipitation of carbonates at the end of the process.

Sulfur dioxide (SO2) represents the most dangerous compound for the conservation of
stone materials. The main source of anthropogenic emissions is the combustion of fossil
fuels, such as coal and heavy fractions of mineral oil. The sulfur of SO2 can be oxidized
from S(IV) to S(VI) by means of several pathways involving O3, NO2, particulate matter,
and metals [8–10], leading to the formation of SO3 (sulfur trioxide), and H2SO4 (sulfuric
acid) once SO3 reacts with water. Sulfuric acid reacts with calcium carbonate producing
calcium sulfate:

H2SO4 + CaCO3 → CaSO4 + CO2 + H2O (11)

Calcium sulfate (usually in the hydrated form of gypsum CaSO4·2H2O) has a similar
solubility to that of calcium carbonate, so as CaSO4 precipitates, it creates a crust.

In recent decades, the trend of emissions of NOx and SO2 is decreasing, although in
some countries such as China and developing countries, the emissions are still high [11,12].
This means that in those areas the process described in Equation (11) is still crucial.

A component of the air pollutant is particulate matter (PM), which is a complex mixture
of extremely small particles and liquid droplets made up of acids, organic chemicals, metals,
and soil or dust particles. Sources of PM are both natural (e.g., volcanoes, dust storms, sea
spray) and anthropogenic, the latter including combustion in mechanical and industrial
processes and vehicle emissions [13].

All the above-mentioned pollutants can reach the surface of the stone by dry or wet de-
position. Dry deposition is a process in the absence of water in which gases and particulate
matter reach the surface, while wet deposition is the process whereby atmospheric gases
and PM mix with suspended water in the atmosphere and are then washed out through
rain or fog. Dry deposition is slower but more continuous with respect to wet deposition,
which is faster and also more “efficient”. In fact, it provides water to the surface as a solvent
and sometimes as a reactant, allowing the above-mentioned reactions with the substrate
(Equations (3), (10), and (11)) [14].

Calcium sulfate can be removed from the stone surfaces by washout, since it is more
soluble than calcium carbonate. However, such deposits can grow and embed PM (com-
monly blackish in color) in the areas protected from rain, creating black crusts. However,
the color of such degradation products can be grey or even white, depending on the con-
tent of the particulate matter. The term “black crust” is also included in the ICOMOS
Glossary [15], which describes this degradation form as “Generally coherent accumulation
of materials on the surface. A crust may include exogenic deposits in combination with
materials derived from the stone. A crust is frequently dark colored (black crust) but light
colors can also be found. Crusts may have a homogeneous thickness, and thus replicate
the stone surface, or have irregular thickness and disturb the reading of the stone surface
details” [15] (p. 42).
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3. The Study of Black Crusts
3.1. The Sampling Methodology

The choice of the points to sample is fundamental in the study of black crusts and in
the subsequent elaboration and interpretation of the data. All the information collected
can be useful to define the processes of growth of the black crusts. Firstly, it is necessary
to select suitable tools for sampling, generally stainless-steel lancets and small chisels.
The operations of sampling on built cultural heritage follow some precise criteria: the
material taken should be a sufficiently representative portion, preferably consisting both
of black crust and unaltered substrate, but without compromising the original aesthetic
aspect of the surface. It is crucial to select the position of the samples because it can
determine the enrichment of pollutants. In this regard, it is important to consider the
height of the sampling; the incline, morphology, and composition of the original substrate;
the exposure to the pollutant sources; and the environmental and climatic surrounding
conditions (e.g., temperature and exposure to agents such as sunlight, wind, and rainfall).
It is also valuable to reconstruct the history of the monuments with black crusts, identifying
past restoration interventions such as rebuilding, substitution of stone elements, or other
cleaning procedures. However, it is often difficult to recover this kind of information in the
cultural heritage field because of the absence in the past of “good practices” aimed at the
documentation (a sort of anamnesis) of all the interventions on the monuments over time.

3.2. Structure and Main Components

Macroscopically, black crusts can be classified as laminar (Figure 1) and/or dendritic
(Figure 2) [16]. The first type is described as parallel layers, black to dark grey in color, and
adherent to the stone; it does not change the morphology of the surface. It can cover large
portions and develops most commonly on vertical areas, which are sheltered from direct
rain wash. The dendritic type is also known as globular [17], ropey [18], framboidal [19,20],
or cauliflower-like [21] black crust. It develops on protected and sheltered parts of buildings,
where the dust is rarely swept away. The morphology of this crust type is highly variable;
its thickness ranges between a few millimeters and 2–3 cm.
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The formation of black crusts leads to a detachment of the degraded layer because
these newly formed materials have different properties from the substrate in terms of
texture and porosity. Then, the adhesion between them is compromised, which is why
black crusts are often observed together with detachments (usually blistering) (Figure 1)
and powdering as well.

The chemical fundamentals of the effects of pollutants on stone have been known
since the 1960s [22,23]. Moreover, several studies have assessed the ability of the stone
to absorb SO2 [24], and it has even been speculated that this process could have a signif-
icant effect in cleaning the surrounding air [25]. The studies, which specifically focused
on black crusts, began in the early 1980s [26–35]. In these studies, the black crusts on
carbonate-based stones from different cities were studied by collecting samples from de-
graded surfaces and were analyzed to understand their microstructure and composition.
For this purpose, several complementary techniques, such as optical microscopy, scanning
electron microscopy (SEM), energy-dispersive X-ray microanalysis (EDX), X-ray fluores-
cence (XRF), X-ray diffraction (XRD), infrared spectroscopy (FTIR), Raman spectroscopy,
and ion chromatography (IC), have been applied.

Specifically, ion chromatography analysis reveals the presence of sulfate ions ascribable
to gypsum since it is quite soluble in water. In many cases, significant amounts of nitrate
ions can be found as well. This provides evidence of the occurrence of Equation (9) in
which nitric acid from NOx reacts with carbonates, forming nitrate salts, which are soluble.
Regarding the composition from a mineralogical as well as geochemical point of view, the
black crusts commonly consist of gypsum, up to about 80% [36]. The other components are
particulate matter, mainly made of carbon, and other elements such as silicon, aluminum,
iron, and zinc (Figure 3). Calcite crystals, generally from the substrate, are also present.
Usually, a portion of altered substrate is visible between the substrate and the crust, the
so-called “front” of the sulfation process. This area favors the penetration of black crust
into the intergranular spaces, causing cracks. This weathering depends on the exposure of
the stone to pollution as well as on its porosity: the more porous the stone, the more the
penetration of the sulfate occurs.
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Figure 3. Schematization of a typical structure of black crust. (a) Cross section of a calcite-based stone
with a black crust superimposed together with the altered substrate. (b) Thin section of the black
crust. The figure is not to scale.

By optical microscopy, SEM-EDX, XRD, and FTIR, it was possible to identify, in many
case studies, the presence of calcium oxalates together with black crusts [37,38]. The oc-
currence and the formation of calcium oxalate are debated but are generally considered
to be due to the partial oxidation of organic carbon [39,40]. This could come from or-
ganic protective products applied during previous restoration work, from the activity of
microorganisms colonies, or from pollutants [41,42].

The presence of black crusts was also observed on substrates with relatively low
calcium content, such as granite, tuff, andesite, and trachyte [43–45]. In these rocks, calcium
is released from minerals, such as plagioclase, if they undergo weathering, such as acid
leaching. In some cases, the lack of a significant intrinsic calcium and sulfur source for
the formation of the gypsum crusts suggests an external source of calcium ions, e.g.,
pollution, mortars, and neighboring carbonate stones [45–49]. Other authors suggested
that Ca2+ may come from the hydrolysis processes of plagioclase mineral grains under acid
environments [50].

3.3. Analysis of Metals

Another aspect that has been widely investigated by several researchers is the content
of metals, including both major and trace metals. Those metals with a concentration of
about 1 percent in weight as an order of magnitude can be analyzed by EDX, while more
sensitive equipment is required for traces. For these reasons, starting from the first decade
of this century, the inductively coupled plasma mass spectrometry (ICP-MS) technique has
been applied for the study of black crusts, in particular the laser ablation ICP-MS [51]. The
latter allows one to perform spot analysis on a ~60 × 60 square micron area and measure
the content of many metals, and elements in general, with a concentration of about a few
parts per million (ppm).

Firstly, it is important to determine the origin of the metals to determine their role
in and contribution to the formation of the black crust: endogenous (from the stone) or
exogenous (from the environment).

This assessment can be achieved by evaluating the enrichment factor (EF) for each
detected element, namely the ratio between the concentration of the element in the crust
and the concentration of the element in the unaltered substrate (Equation (12)).

EF =
CCrust

CSubstrate
(12)
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If the EF is significantly higher than 1, it is reasonable to suppose that the element
comes from the environment and is usually identified as a pollutant; otherwise, the element
is ascribable to the substrate. The analysis of metals in the black crusts has allowed
the evaluation in many case studies of the source of the pollutants of the surrounding
environment.

Metals such as Pb, Zn, Fe, and Cu are usually found in the crust at concentrations
between 100 and 3000 ppm, while the concentrations of As, Cd, Cr, Ni, Sb, Sn, and V are
usually lower than 100 ppm [52–54].

Table 1 shows the concentrations (expressed as mean values) of trace metals within
black crusts taken from some of the most representative European monuments exposed
to urban pollution sources (e.g., vehicular traffic, domestic heat, industrial activity) and
analyzed by LA-ICPMS. It is worth clarifying that the conditions of the sampling can
influence the concentrations of the metals. Their contribution to the crust can be affected
by different factors: the height of the sampling, incline of the surface, direct or indirect
exposure to the pollutant sources, age and thickness of the crust, past restoration works,
and climatic conditions linked, for example, to wind circulation or the intensity of rainfall.

Table 1 collects the data of black crusts from heterogeneous contexts: the host rocks,
for example, change from the German or Padua trachyte to the various typologies of
the limestones of Venetian, London, St. Eustache, and St. Mechelen monuments to the
marbles of St. Cosimato and Naples monuments; the building ages are different and
consequently the time of accumulation of the deposits; and the surrounding environmental
conditions change too. Nevertheless, it is possible to observe general similarities such as
the predominant content of Pb and Zn in almost all the monuments analyzed, reflecting
the widespread use of leaded petrol until the 1990s.

In addition, some metals, or a group of them, can be considered as proof of a certain
pollution source. For example, the presence of Pb, Zn, V, Cr, Cu, Sb, As, and Ni can be
attributed to the combustion of fossil fuels [55] and particles released from the friction and
wear of the mechanical parts of vehicles [56] and the wear of the asphalt [57]. Cu and Sb
are related to the emissions from brake pads and to other friction parts [58,59]. As, Cu, Ni,
Cr, and V may be associated with the use of heavy oil fractions, and Pb can be attributed
mainly to leaded gasoline, which was used until the end of the 1990s [60]. LA-ICPMS
allows the evaluation of the spatial variation in the metals’ concentrations within the crust
and punctual analyses from the outermost part of the crust to the unaltered substrate.
Thanks to this, it was possible to observe that in many cases the amount of Pb was higher
closer to the substrate than in the outer portions of the black crust [52,54]. This could
be because Pb emissions dropped in the 1990s, so the inner layers represent the oldest
deposits. Another reasonable explanation is the differential geochemical mobility of the
elements under certain environmental conditions [61] and the strong affinity of Pb with
calcite, especially in the black crusts on carbonatic substrates.
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Table 1. Concentration in ppm of heavy metals in the black crusts sampled on several European monuments.

Sampling Country As Ba Cd Cr Cu Mn Ni Pb Sb Sn V Zn Ref
Tower of London England 57.2 4.4 41.2 185.6 275.0 56.5 807.6 20.2 38.2 116.8 384.1 [52]

Mechelen Cathedral Belgium 35.6 0.2 58.6 182.2 120.9 29.7 1721.3 10.1 9.7 320.2 3436.8 [53]
St. Eustache Paris France 58.1 12.2 15.0 89.4 68.4 33.2 813.3 17.0 165.7 66.8 451.8 [53]
Seville Cathedral Spain 85.5 15.3 213.7 125.1 255.0 18.4 378.2 8.7 819.3 43.5 226.7 [54]

La Galea Fortress, Getxo,
Basque Country Spain 16.3 110.7 0.3 20.3 19.0 74.0 10.0 299.3 2.0 6.7 19.0 184.7 [21]

Altenberg Cathedral Germany 28.0 890.0 12.0 [45]
Cologne Cathedral Germany 365.0 1849.0 37.0 [45]
Xanten Cathedral Germany 50.0 1944.0 16.0 [45]

Corner Palace in Venice Italy 125.4 4.2 54.2 98.3 327.9 49.5 2613.1 41.7 31.1 106.4 712.5 [53]
Fontana di Trevi Rome Italy 58.2 620.3 49.3 122.8 26.8 557.3 34.0 45.4 103.9 337.0 [62]

Monza Cathedral Italy 240.0 2415.5 72.0 2567.5 217.0 221.0 9009.0 399.5 546.5 302.5 2047.0 [31]
Historical center of Naples Italy 21.5 532.2 0.9 16.4 89.8 7.9 1395.1 9.6 22.9 628.0 [34]
Historical center of Venice Italy 170.2 836.2 8.1 65.2 160.8 179.9 696.5 40.7 604.0 98.6 1848.2 [35]

St. Cosimato Cloister, Rome Italy 34.5 772.9 2.6 21.3 60.1 248.5 9.2 598.4 7.1 25.3 56.1 210.7 [51]
Cemetery Pessago con

Bornago (Milan) Italy 44.8 202.7 19.0 55.1 64.6 250.1 13.0 2821.2 62.0 222.7 123.5 414.2 [51]

Renaissance city walls of Padua Italy 47.8 8.7 68.9 489.8 46.4 6738.2 17.8 38.7 143.1 4171.3 [44]
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Since the contents of the metals in the black crusts reflect the presence of such metals
in the air, chiefly referring to the past, some researchers have hypothesized that black
crusts themselves can be considered as passive samplers of past air quality [21,52]. In
this regard, the fingerprints of the elements inside the crust and the air measured in the
last 20–30 years were compared. The results indicate a good correlation between the two
datasets, suggesting that the concentrations of the metals in the crusts reflect those of the
surrounding air. Figure 4 compares the metal contents measured in black crusts from
Seville Cathedral and in particulate matter. The coherence of the concentrations is evident,
especially for the older monitoring campaign.
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3.4. Particulate Matter and Organic Fraction

Carbon-based compounds are a mixture of many components that researchers deter-
mine by evaluating the following parameters: total carbon (TC), carbonate carbon (CC),
organic carbon (OC), and elemental carbon (EC). These are measured by means of CHN
(carbon, hydrogen, nitrogen) and TOC (total organic carbon) analyzer equipment, following
a specific workflow [63].

TC is the total amount of carbon in all forms within the crust, while CC is the fraction
of carbon related mainly to the substrate. EC is the black carbon, which gives the dark color
to the crust. It is emitted in urban environments by combustion processes, such as traffic
and biomass burning [64], and it is the main cause of the soiling of monument surfaces [65].
OC is emitted by combustion processes, but it can have a primary (directly emitted) or
secondary origin (in this case, it forms in the atmosphere because of different kinds of
reactions starting from the volatile organic precursors), also known as VOC, volatile organic
compounds.

The EC parameter has been measured in several case studies and is usually between
0.1 and 3%, while values of OC up to about 7% have been observed [62,63,66]. An important
component of the OC fraction is polycyclic aromatic hydrocarbons (PAHs), a group of
organic compounds that are formed from the incomplete combustion of fossil fuels, wood,
and other organic matter. They are composed of multiple fused aromatic rings and have a
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characteristic planar structure. PAHs are persistent environmental pollutants and can be
found in black crusts and stone [67,68]; these molecules can be extracted from the matrix
and then analyzed by high-performance liquid chromatography (HPLC) [69]. The amount
of PAHs found in black crust can be up to 20 ppm [70]. Three processes can generate
polycyclic aromatic compounds: (a) combustion at high temperature [71], (b) release of
petroliferous products, and (c) degradation of organic matter [72,73]. The fingerprinting of
the amounts of different PAHs can provide information on their source. Combustion-type
sources are characterized by a wide range of PAHs, while petroleum and organic sources
produce lighter PAH molecules. All studies have suggested that the combustion source is
the predominant one [69–73].

4. Intervention Strategies

The data collected in this document clearly explain how products of degradation such
as black crusts are closely connected to the increase in pollution rates in large cities, making
the issue of built heritage conservation ever more urgent.

There are currently two approaches that can be adopted: a longer-term and larger-scale
one with the implementation of national and international green policies aimed at reducing
emissions into the atmosphere; and a short-term and local-scale one, removing the crusts
from monuments by suitable cleaning procedures and developing durable conservative
strategies.

In the first case, the institutions could promote more sustainable lifestyles by encour-
aging citizens to take public transport and limiting the use of private cars, or they could
reduce the vehicular traffic around the monuments. In addition, they could encourage
the productive sectors to adopt green and circular strategies to significantly decrease the
emissions into the atmosphere, improving the quality of the air.

On the other hand, the cooperation of more experts such as restorers, conservators,
physicists, chemists, and geologists provides various intervention strategies to mitigate the
damage produced by black crusts.

Different cleaning methods have been developed considering the morphology and
thickness of the crust, the texture and state of conservation of the stone substrate, and the
requirements necessary to preserve the aesthetic and structural integrity of the monument:
the treatments should not cause color changes in the original substrate, the loss of material,
or secondary products such as salts. Obviously, the cleaning procedure must therefore be
gentle, gradual, selective, environmentally friendly, and economically affordable [74].

The physical (e.g., rubbing, abrasives) and chemical (e.g., solvents) methods are
considered traditional and to carry some risks such as excessive aggressiveness and the
inability to distinguish the crust to be removed from the original substrate. On the other
hand, in recent decades new techniques have been experimented such as laser and biological
cleaning [75–78].

Laser cleaning is less invasive than the conventional methods, easier to control, and
can distinguish the soiling from the substratum; however, the procedure can produce color
changes, and there can be problems in distinguishing the crust on polychrome substrates.

Biological cleaning is part of a new philosophy that is spreading in the field of the
restoration and conservation of cultural heritage, namely, implementing the use of green
products such as essential oils [79] or exploiting natural processes relating, for example, to
bacterial metabolic activity.

In this regard, the use of sulfate-reducing bacteria (SRB) was identified for the removal
of sulfates (such as black crusts) from stone substrates. The SRB can reduce sulfates to H2S
in anaerobic conditions and dissociate gypsum into Ca2+ and SO4

2− ions. Hence, the Ca2+

ions react with CO2 to form new calcite (bio-precipitation), in this way also improving the
microstructure of the substrate [76].

Finally, recently, nanoparticles were widely tested for preventive restoration and con-
servation aims. The most recent studies focused on materials able to inhibit the deposition
of pollutants and soiling particles on the monuments and consequently also the inception
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of degradation processes such as the formation of black crusts. One of the most investigated
and applied materials is nanotitanium dioxide coatings because of the self-cleaning and
biocidal properties of the titania [80,81].

5. Conclusions

Black crusts are an important degradation form that stone materials suffer in highly
polluted urban environments. They have attracted the interest of chemists, physicists,
geologists, and conservators, whose efforts have been focused on understanding their
structure from the macroscopic to microscopic scale, their composition, their effects on
stone materials, and the influence of the environment on their features. Thus, this pa-
per demonstrated the complexity of the topic but also the efficacy of a multidisciplinary
approach.

All the information collected has important scientific value and also numerous applica-
tive implications. Complementary analytical techniques have been applied to determine
the composition of the crusts. Moreover, the data are useful for stone conservators in the
planning of the most suitable strategies to preserve the original substrate and to inhibit the
deposition of further pollutants on the surface, as suggested by the different methods of
cleaning and conservation reported in this paper, e.g., from the conventional physical and
chemical ones to the more advanced laser cleaning and biocleaning.

Furthermore, the results achieved regarding the mechanism of the development of
the crusts are socially relevant. They can be important for all the stakeholders involved in
the management of built heritage to promote policies aimed at its valorization and, more
generally, at environmental safeguarding, e.g., reducing the emission of greenhouse gases
produced by anthropic activities. In fact, the development of gradually more detailed
studies has allowed us to determine the kind and, above all, the source of particulate matter
and organic fraction (e.g., VOC, EC, OC, TC). This could be crucial to support more incisive
intervention policies to improve air quality and consequently people’s and monuments’
health.

In addition, the research outcomes have established some correlations between black
crusts and the surrounding air pollution, leading to them being considered as a “record”
and also a “passive sampler” of past pollution patterns. However, in this case, there is not
yet a well-defined procedure to obtain accurate and unambiguous information. Despite the
large literature on this topic, some issues still have to be addressed, as specified below.

One process that is still unclear is the oxidation of sulfur dioxide to sulfur trioxide:
Does it take place before the pollution reaches the stone, or is it catalyzed by other pollutants
on the surface of the stone? Is the oxidation catalyzed by other air pollutants, such as
O3, NOx, metals, or soot? It has been shown that bacteria could play a role; however, the
mechanisms are still not well understood.

Lastly, an important question about the future: what will be the impact of the foreseen
pollution patterns on the formation of black crusts and, more generally, on the integrity
of stone? If the emissions of SOx, NOx, and particulate matter lower over time, then the
formation of black crusts could be a less critical issue in the future. However, an increase in
global temperatures and carbon dioxide concentrations in the atmosphere as well as the
intensification of extreme meteorological events are expected. Thus, the effects of these
new environmental conditions on the conservation of built heritage are not clear.

If the climate changes, it is reasonable that a new equilibrium between materials and
the environment will be achieved, so that the paradigm “air pollution—conservation of
built heritage” will switch to “climate change—conservation of built heritage”.
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