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Abstract: Dissolved oxygen (DO) is a key indicator of water quality and the health of an aquatic ecosys-
tem. Aspiring to reach a more accurate forecasting approach for DO levels of natural streams, the
present work proposes new graph-based and transformer-based deep learning models. The models
were trained and validated using a network of real-time hydrometric and water quality monitoring
stations for the Credit River Watershed, Ontario, Canada, and the results were compared with both
benchmarking and state-of-the-art approaches. The proposed new Graph Neural Network Sample
and Aggregate (GNN-SAGE) model was the best-performing approach, reaching coefficient of deter-
mination (R2) and root mean squared error (RMSE) values of 97% and 0.34 mg/L, respectively, when
compared with benchmarking models. The findings from the Shapley additive explanations (SHAP)
indicated that the GNN-SAGE benefited from spatiotemporal information from the surrounding
stations, improving the model’s results. Furthermore, temperature has been found to be a major input
attribute for determining future DO levels. The results established that the proposed GNN-SAGE
model outperforms the accuracy of existing models for DO forecasting, with great potential for
real-time water quality management in urban watersheds.

Keywords: pollution; dissolved oxygen; Credit River; machine learning; graph neural networks;
SHAP analysis

1. Introduction

In the Anthropocene Era [1], the increasing urbanization of natural environments
close to rivers and lakes has negatively affected the health of the aquatic ecosystems [2,3].
Effluents, specifically urban stormwater runoff and combined sewer outflows, serve as
significant sources of pollutants that consume the oxygen in the water through chemical
and biological oxygen demands, disrupting the physical, chemical, and biological integrity
of the aquatic ecosystem [4,5]. Monitoring the river water quality is important to keep track
of the river’s health condition, helping develop management strategies aimed at the river’s
preservation and conservation [6]. One major indicator of the river’s water quality is the
dissolved oxygen (DO) concentration. The DO is highly variable in both time and space
within the stream network, under the constant influence of both groundwater discharge
and surface runoff to the stream [7,8]. Fluctuations on DO concentrations can be related to
adverse thermal impacts of stormwater runoff and eutrophication due to excessive growth
of aquatic plants, impairing aquatic habitat [9–12].

Given the major role of DO in maintaining the health of aquatic ecosystems, it is
crucial to forecast and monitor its level with high accuracy [13]. The DO levels can be
evaluated by different methods, such as chemical analysis, and by the employment of
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sensors. While accurate, chemical analysis, like iodometric titration, is difficult to per-
form and best suited for lab use. Polarography, an electrochemical-based sensor approach,
is widely used but requires regular maintenance and cannot continuously measure oxygen.
The fluorescence method, a sensor based on the optical properties of DO, offers quick and
sensitive measurements without oxygen depletion. Current studies aim to enhance materi-
als in electrochemical and optical sensors. Intelligent sensors now offer real-time, accurate
oxygen measurements through smart signal processing [14,15]. Accurate identification
of DO levels helps stakeholders’ decision-making and managerial actions, mitigating the
impacts of anthropogenic changes on the aquatic environment and aiding the development
of strategies to prevent further degradation of the environment.

In this context, machine learning, a subfield of artificial intelligence, has emerged as
a powerful tool for enhancing DO monitoring and prediction, providing insight into the
factors underlying future DO levels. This paradigm makes use of mathematical tools like
probability, optimization, linear algebra, vector calculus, analytic geometry, and matrix
decomposition, enabling the analysis of large quantities of information, as well as learning
intricate relationships in the data [16]. The principle of machine learning is to create an
algorithm that can identify the statistical structures that determine the rules of a dataset
through the results provided to it by training rather than being explicitly programmed.
In recent years, thanks to the progress in hardware development [17,18], this approach has
drawn attention from researchers due to its improved computational performance and
generalization capabilities when compared with numerical models. It can also identify
complex non-linear associations in the dataset without predefined algorithms to specifically
perform this task [19,20]. Despite their attested good performance, ML models may suffer
from low data quality, availability, and overfitting. They are also a black-box approach,
which hinders the interpretability of their results.

When used in time-series forecasting applications, the ML paradigm reached excellent
results in different knowledge fields [21–24], also showing improvements when using
past information, i.e., time lags [25–27]. Extensive literature can be found for hydrological
studies using ML tools, including studies of water quality and DO. A plethora of studies
have shown that different ML and hybrid ML models can forecast DO levels in distinct
locations [28–30]. In the context of urban rivers, the ML paradigm also proved to be a
valuable asset in DO estimation [6,31–33].

Deep learning (DL) models represent an advanced approach that addresses the limi-
tations of traditional methods in predicting future DO concentrations. Dissolved oxygen
estimation is a spatiotemporal problem where recurrent neural networks and their varia-
tions are popular among researchers in this field. In [34], the authors used remote sensing
data to estimate future DO concentrations using prior DO information in the Rawal water-
shed in Pakistan. The best result for future DO estimation was returned by the bi-directional
long short-term memory (Bi-LSTM) paradigm, with an RMSE equal to 0.199 mg/L. Hybrid
configuration merging the LSTM and the convolutional neural network (CNN) paradigm
was evaluated in [35] to forecast short-term DO in Small Prespa Lake, Greece. Compared
with the standalone models and conventional ML paradigms such as decision trees (DTs)
and support vector machine (SVM), the hybrid configuration surpassed all of them, reach-
ing an RMSE of 0.518 mg/L. Other application using CEEMDAN together with DL models
was proposed in [36]. In their paper, the authors compared several DL models with real-
time forecasting of DO concentrations in Xin’anjiang River, China. They compared the
standalone DL approaches CNN, LSTM, the hybrid CNN–LSTM, and combinations of these
models with the CEEMDAN pre-processing. The authors discovered that the CEEMDAN–
CNN–LSTM hybrid configuration was able to provide the best outcomes for different
multi-step ahead forecasting for DO, with the best RMSE value of 0.26 mg/L for 4 h ahead
forecasting. Application of DL models in an urban river was investigated in [37]. In their
work, the authors implemented a recurrent neural network to forecast DO in Fanno Creek
in Oregon, USA, achieving excellent results for DO estimation for 1, 3, and 7 days ahead.
In recent years, graph neural network (GNN) models have been implemented to time-series
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forecasting within the DL field, reaching cutting-edge results [25,26,38]. However, little is
known about implementing such a paradigm in the water quality research area, with few
works addressing this subject [39–42].

As the present bibliographic review elucidates, ML applications in hydrological and en-
vironmental situations constitute a vast field of study. Aiming to deepen the understanding
of ML, specifically addressing the graph-based approaches, the present work aims to con-
tribute to filling the knowledge gap regarding these models when applied to DO forecasting.
To this end, historical data comprising the years 2016 to 2020 for Credit River, Ontario, were
collected and implemented to the Deep Neural Network Transformer (DNN-Transformer)
and the Graph Neural Network Sample and Aggregate (GNN-SAGE) to determine future
levels of DO on the river, a highly non-conservative substance. The present study aims to
contribute to the field by

1. Developing a cutting-edge model to predict DO concentration with elevated precision
and accuracy.

2. Verifying the temporal effect over the estimated DO concentration, a highly non-
conservative substance, by implementing different time lags for different predictive
models, namely XGBoost, DNN-Transformer, and the proposed GNN-SAGE.

3. Conducting a Shapley additive explanation (SHAP) analysis to assess the significance
of different input variables, allowing meaningful inputs over the models’ forecasting
and its functioning.

4. Enabling the development of a water quality forecasting system for urban rivers,
aiding the elaboration of risk management strategies and environmental policies.

2. Case Study

The Credit River is a major river in Southern Ontario, Canada, part of the Toronto
Greater Area [43] (Figure 1). Starting at Orangeville, the Credit River stretches for 90 km
before finally reaching Lake Ontario [44,45]. The river has a mainly rural configuration
in its upper and middle areas, having significant forest coverage [46]. As it approaches
Lake Ontario, the urbanization of the river’s area increases [6]. Urban development in the
river area, however, endangers aquatic life and the people who rely on the river, increasing
the risk of floods [44,47–49]. Table 1 compiles the Credit River’s watershed characteristics.
Figure 1 shows the location of the studied site in Ontario province.
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Figure 1. Location of the Credit River in Ontario Province. The points showcase the position of the 
measurement stations along the river’s course. The red point in the map represents the study station 
where the dissolved oxygen is predicted, namely “Credit River @ MGCC”, i.e., Mississauga Golf 
and Country Club. The green points are the used neighboring monitoring stations, which provide 
spatiotemporal information to the forecasting model. 

This study developed the forecasting models using historical data from 2016 to 2020. 
The data were made available by the Credit Valley Conservation Organization (data 
available at https://cvc.ca/real-timemonitoring/, accessed on 1 November 2023). The 
monitored data include weather attributes and physical–chemical information collected 
from stations throughout the river’s watershed (Figure 1). The dataset, originally with a 
temporal resolution of 15 min, was resampled to 1 h intervals using the moving average 
technique. This adjustment involved calculating the average value for each variable, 
except for precipitation, which was summed. These processed data were then used as 
input for the models under evaluation [6,50]. Table 2 shows the statistical description for 
DO data for all the monitoring stations and the reference station alone, in mg/L. Figure 2 
shows the measured DO levels at the reference station “Credit River @ MGCC”, for 
different time windows. After that, the data correlogram is presented in Figure 3, where 
the target attribute is the dissolved oxygen (first row and first column). 

Table 2. Statistical description for DO levels recorded by all the monitoring stations and the 
reference station. The values are in mg/L. 

All Monitoring Stations Study Station Credit River @ MGCC 
Minimum 0.9 5.6
Maximum 16.7 16.7

Mean 10.3 10.8
Standard deviation 2.2 2.2 

25% Quantile 8.9 8.9 
50% Quantile (median) 10.4 11.0 

75% Quantile 12.0 12.7 

Figure 1. Location of the Credit River in Ontario Province. The points showcase the position of the
measurement stations along the river’s course. The red point in the map represents the study station
where the dissolved oxygen is predicted, namely “Credit River @ MGCC”, i.e., Mississauga Golf
and Country Club. The green points are the used neighboring monitoring stations, which provide
spatiotemporal information to the forecasting model.
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Table 1. Characteristics of the Credit River watershed [43–46,50].

Credit River Watershed Characteristics

Drainage area 93,000 ha
Credit River length 90 km

Altitude 190–521 m
Area used for agriculture 35%

Area used for urban settlement 27%
Area of natural habitats 38%

Estimated population within the watershed area 1 million people

This study developed the forecasting models using historical data from 2016 to 2020.
The data were made available by the Credit Valley Conservation Organization (data avail-
able at https://cvc.ca/real-timemonitoring/, accessed on 1 November 2023). The moni-
tored data include weather attributes and physical–chemical information collected from
stations throughout the river’s watershed (Figure 1). The dataset, originally with a temporal
resolution of 15 min, was resampled to 1 h intervals using the moving average technique.
This adjustment involved calculating the average value for each variable, except for precip-
itation, which was summed. These processed data were then used as input for the models
under evaluation [6,50]. Table 2 shows the statistical description for DO data for all the
monitoring stations and the reference station alone, in mg/L. Figure 2 shows the measured
DO levels at the reference station “Credit River @ MGCC”, for different time windows.
After that, the data correlogram is presented in Figure 3, where the target attribute is the
dissolved oxygen (first row and first column).

Table 2. Statistical description for DO levels recorded by all the monitoring stations and the reference
station. The values are in mg/L.

All Monitoring Stations Study Station Credit River @ MGCC

Minimum 0.9 5.6
Maximum 16.7 16.7

Mean 10.3 10.8
Standard deviation 2.2 2.2

25% Quantile 8.9 8.9
50% Quantile (median) 10.4 11.0

75% Quantile 12.0 12.7

In Figure 2, the variance in the DO levels is not visibly meaningful. Panel (a) shows
yearly variation in DO for the whole dataset, elucidating that the measured levels’ peaks
and valleys are well comprised within the maximum and minimum values described in
Table 2. Figure 2b elucidates that, for an annual measurement of DO, the temperature effect
dominates the behavior of the oxygen levels in the watershed, decreasing during the hotter
months of the year and returning to increase as the climate cools down. In Figure 2c, we
observe that the temperature still dominates the behavior of DO oscillations, albeit in a
time-scale variation ranging from 5 to 7 days. For the daily variance of DO levels presented
in Figure 2d, the solar irradiance now dominates the variations on the dissolved oxygen.
The data presented in Figure 2 allow us to conclude that the reference station complies
with the Canadian Council of Ministers of the Environment (CCME) for DO levels in the
freshwater for conservation of the aquatic life [51], indicating that the efforts on maintaining
the aquatic ecosystem are yielding positive results.

https://cvc.ca/real-timemonitoring/
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Figure 2. Dissolved oxygen measurement for (a) the whole dataset, (b) one year, (c) one month, and 
(d) two sequential days at the reference station “Credit River @ MGCC”.

Figure 2. Dissolved oxygen measurement for (a) the whole dataset, (b) one year, (c) one month, and
(d) two sequential days at the reference station “Credit River @ MGCC”.
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Figure 3. Correlation matrix for the Credit River variables used for dissolved oxygen concentration
forecasting using Pearson correlation coefficient [52]. The blue colors indicate positive correlation,
and the red colors show negative correlation.

In Figure 3, the used input data present a strong negative correlation between water
temperature and air temperature, an expected behavior for DO since higher temperatures
impair gas solubility in water [53–55]. We observe that positive correlation occurs between
the discharge variable and DO due to the discharge’s influence on the disturbance to the
water body, leading to oxygen transport throughout the river’s course. Similar behavior can
be noticed between DO and solar irradiation, given the occurrence of the photosynthesis,
which also increases oxygen levels on the river. The solar irradiance, albeit responsible to
define daily cycles within the river, has its effect as not immediate in this sense. In fact,
the exposure to sun light will affect the temperature in the river, which is related to the DO
levels in the watershed. This can be visualized in Figure 3, where the correlation between
solar irradiance and water temperature (0.31) is similar to that between solar irradiance
and air temperature (0.4), indicating a positive correlation between them.

The remaining precipitation and turbidity showed a very small correlation with the
dissolved oxygen attribute, indicating that they may not directly affect the DO levels in the
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water body. Also, the negative value of these variables indicates that they may reduce the
photosynthetic process by the aquatic flora [56,57].

It is important to note that the occurrence of high correlation values in different
input attributes does not necessarily positively impact the forecasting result. This may
introduce high variance into the predictive model due to collinearity, sometimes damaging
its performance [58,59]. However, incorporating input variables with low correlation
values into the forecasting model may be advantageous. These inputs may contain valuable
spatiotemporal information that can help reveal the connection between the input and
output parameters, ultimately improving the model’s predictions [50].

3. Methodology
3.1. Benchmarking Models

The achievements of the assessed models were evaluated against the results of
two benchmarking models: the persistence and eXtreme Gradient Boosting (XGBoost).
The persistence model is a simple benchmarking method widely used to evaluate any fore-
casting model. It simply states that the current value of the target variable is the same as
the previously measured one. This approach has good performance on forecasting values
in short time windows, but as the forecasting horizon increases, it can no longer capture
the complex non-linear behavior underneath the dataset nor external factors influencing
future values, quickly deteriorating its results [60,61].

XGBoost is a tree-based ML model, improving the random forests approach. Based
on the bagging sampling, the XGBoost algorithm generates smaller tree models. It later
combines them into a unique bigger one, reducing the final variance and, therefore, the risk
of overfitting [62–64]. The XGBoost model performs remarkably well in handling missing
values in the dataset, and by being scalable to different applications [65], it is successfully
applied in various research fields [66–68].

3.2. DNN-Transformer Model

The evaluated DNN-Transformer model utilizes a deep learning technique that incor-
porates a self-attention mechanism. This enables the model to concentrate on important
features of the input information, improving its decision-making capabilities [69]. On its
original configuration [70], the transformer architecture determines how the data attend to
each one of its elements by implementing positional encoding together with multi-head
attention, later being processed by a feed-forward structure that will output the processed
data by the encoder. The generated information from the encoder is later used in the
decoder structure, where a multi-head structure will again process it before being fed into
another feed-forward internal model, which will output the transformer result.

For the present work, the transformer architecture was adapted so it can be applied to
a time-series forecasting model. The DNN-Transformer architecture used in the present
study is depicted in Figure 4.
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In Figure 4, the input data pass through two transformer structures. Then, their output
is processed by an average pooling layer, which connects to a dense layer. The dropout
layer [71] is then used to avoid overfitting by relying on an ensemble of different models
after the training phase, thus reducing the model’s variance [63,72]. Finally, the forecasted
value for dissolved oxygen is output by the DNN-Transformer model.

3.3. GNN-SAGE Model

The Graph Neural Network Sample and Aggregate (GNN-SAGE) is a cutting-edge
model that applies both graph theory and deep learning techniques. Unlike traditional
ML models, the graph neural network approach naturally considers graph-structured data,
retaining relevant spatiotemporal information ruling the behavior of input variables and
target variables, boosting time-series forecasting models [73,74]. For the SAGE paradigm,
the model can generalize unknown data by sampling a constant set of nodes, later ag-
gregating them using an aggregator function [75–77], achieving excellence in extracting
spatiotemporal information underneath the data [25,38]. The structure used in the present
work is depicted in Figure 5.
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Figure 5 feeds the input spatiotemporal data into the GNN-SAGE model. First, they
pass through a succession of graph convolutional layers, followed by the Leaky ReLU
function [78,79] and a subsequent dropout layer. After four convolution processes, the data
are fed to a dense layer containing 1024 inputs and 1024 outputs, followed again by the
Leaky ReLU activation function and a final dense layer containing 1024 inputs and 1 output.
Finally, future dissolved oxygen values are then generated by GNN-SAGE.

One key advantage of graph-based architectures, like GNN-SAGE, over traditional DL
approaches is their natural ability to process multi-spatiotemporal data from surrounding
monitoring stations. This enables them to effectively uncover the inherent connection
among input and target variables when implemented in predictive applications [50,73,74].
The capacity of GNN-SAGE to extract spatiotemporal information from the data is relevant
to this study, given that DO levels depend on the dataset’s temporal and spatial features.

Each model was developed using spatiotemporal data from the monitoring stations
and past information called time lags. In this work, the time lag consists of a subseries of
the original time series dataset, representing past information in hours, that is fed to the
model. That is, being xi the attribute value taken in the i-th hour, its time lag is defined as a
subgroup of the attribute x, where {xi−1, xi−2, . . ., xi−n} contains up to n time lags. The time
lag in this study has temporal resolution of 1 h to match the resampling mentioned in the
previous section.

For training and testing phases, the dataset comprising the years 2016 to 2020 was
split into the ratio 80/20. In this case, the data from 2016 to 2019 were used for training the
XGBoost, DNN-Transformer, and GNN-SAGE models, while the remaining year 2020 was
reserved for testing these models for a forecasting horizon of 6 h.
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3.4. SHAP Analysis

Despite the excellent results achieved by ML and DL models in recent studies, these
models still lack interpretability, posing as a major hindrance to a full understanding and
interpretation of how they work [80–82]. Aiming to solve this problem, the Shapley additive
explanation (SHAP) statistic was developed to be a valuable tool for better understanding
the black-box behavior of ML applications. This game-theory-based technique provides a
deeper understanding of ML models by examining the relationship among input attributes
and the resulting outcome. It does so by combining additive feature attribution in terms of
each input variable’s significance, correlation, and impact on the final prediction, resulting
in a better understanding of how complex models work [83].

3.5. Evaluation Metrics

The studied models were evaluated using different error metrics, commonly found in
the ML field for time-series applications. Error metrics are an important indicator about
the ML models’ performance and accuracy, allowing posterior comparison with their
peers [84]. The used metrics were RMSE, nRMSE, MAE, nMAE, MAPE, MBE, forecast skill,
and R2 [85,86].

4. Results
4.1. Evaluation of Different Time Lags over the Model’s Performance

The performances of the DNN-Transformer and GNN-SAGE approaches were com-
pared with the benchmarking ones for a different number of time lags. In this part, each
model was evaluated regarding the RMSE metric. The results are presented in Figure 6 for
the training set, analyzing time lags ranging from 1 h to 96 h of previous information.

Environments 2023, 10, x FOR PEER REVIEW 10 of 26 
 

 

 
Figure 6. Impact of different number of time lags for dissolved oxygen forecasting. 

Figure 6 illustrates the evaluated models’ performance using different time lags by 
using only dissolved oxygen as the input parameter. All the models can surpass the 
persistence and XGBoost benchmarking for the assessed time lag values, presenting 
similar behavior: a steep decrease in the RMSE value, followed by convergence after 20 
time lags. The deep learning paradigms, DNN-Transformers, and GNN-SAGE benefited 
more as time lags increased. Both XGBoost and DNN-Transformers presented more stable 
outcomes when compared with GNN-SAGE, which demonstrated a small variation in its 
results. 

For the evaluated models, the best results were achieved by DNN-Transformers for 
48 time lags (RMSE = 0.38 mg/L). The proposed GNN-SAGE approach was the second 
best-performing model, reaching the optimal RMSE value of 0.39 for 72 time lags, a 
comparable value for DNN-Transformer. The DNN-Transformer model improved 
dissolved oxygen forecasting by 72% compared with the persistence model and by 17% in 
comparison with XGBoost. For GNN-SAGE, the improvements were 71% and 15%, when 
compared with the persistence and XGBoost models, respectively. Finally, using the 
results depicted in Figure 6, we implemented 72 time lags for the input attributes, i.e., data 
from up to the previous 72 h for the variables displayed in Figure 3, including dissolved 
oxygen concentrations, to determine future DO levels using GNN-SAGE, while DNN-
Transformer was implemented using 48 time lags. 

4.2. Results of Dissolved Oxygen for 6 h Ahead 
To determine the optimal configuration for forecasting dissolved oxygen levels, 

various input variables were tested. Using a step-by-step approach [50] for the considered 
parameters, the models’ results were initially evaluated using just past dissolved oxygen 
information. Additional input parameters were then added to the models, and the 

Figure 6. Impact of different number of time lags for dissolved oxygen forecasting.



Environments 2023, 10, 217 10 of 24

Figure 6 illustrates the evaluated models’ performance using different time lags by
using only dissolved oxygen as the input parameter. All the models can surpass the
persistence and XGBoost benchmarking for the assessed time lag values, presenting similar
behavior: a steep decrease in the RMSE value, followed by convergence after 20 time lags.
The deep learning paradigms, DNN-Transformers, and GNN-SAGE benefited more as time
lags increased. Both XGBoost and DNN-Transformers presented more stable outcomes
when compared with GNN-SAGE, which demonstrated a small variation in its results.

For the evaluated models, the best results were achieved by DNN-Transformers for
48 time lags (RMSE = 0.38 mg/L). The proposed GNN-SAGE approach was the second best-
performing model, reaching the optimal RMSE value of 0.39 for 72 time lags, a comparable
value for DNN-Transformer. The DNN-Transformer model improved dissolved oxygen
forecasting by 72% compared with the persistence model and by 17% in comparison with
XGBoost. For GNN-SAGE, the improvements were 71% and 15%, when compared with
the persistence and XGBoost models, respectively. Finally, using the results depicted
in Figure 6, we implemented 72 time lags for the input attributes, i.e., data from up to
the previous 72 h for the variables displayed in Figure 3, including dissolved oxygen
concentrations, to determine future DO levels using GNN-SAGE, while DNN-Transformer
was implemented using 48 time lags.

4.2. Results of Dissolved Oxygen for 6 h Ahead

To determine the optimal configuration for forecasting dissolved oxygen levels, var-
ious input variables were tested. Using a step-by-step approach [50] for the considered
parameters, the models’ results were initially evaluated using just past dissolved oxygen
information. Additional input parameters were then added to the models, and the resulting
forecasts were analyzed. If the addition of an attribute did not improve the model’s fore-
casting performance, leading to a greater error than previous configurations, that attribute
was removed. This process was repeated for all models until all attributes depicted in
Figure 3 were assessed, considering a 6 h forecasting horizon. The results are presented in
Figure 7.

Figure 7 presents the different forecasting performances for each evaluated model.
In Figure 7a, it is possible to observe that the XGBoost approach reached improved predic-
tive results as more input variables were added. Its best configuration was set as using
dissolved oxygen, air temperature, precipitation, and water temperature, achieving an
RMSE value of 0.37 mg/L. Interestingly, the DL transformer-based model’s best configura-
tion reached the same error value as XGBoost. Analyzing Figure 7b, using only dissolved
oxygen as an input attribute, DNN-Transformer achieved an RMSE outcome of 0.37 mg/L.
The model did not need to use any exogenous variables to achieve its best result. Con-
trarywise, the last panel indicates that GNN-SAGE also benefited from increased input
parameters. In fact, it was the best-performing model, reaching an RMSE of 0.34 mg/L
when fed with dissolved oxygen, air temperature, precipitation, and water temperature.
Interestingly, despite the high correlation depicted in Figure 3 between air and water
temperature, the further addition of the latter proved beneficial for the XGBoost and GNN-
SAGE models alike, increasing their performance by a tiny margin. The graph-based model
enhanced its DO forecasting performance by 8% when compared with both XGBoost and
DNN-Transformer.

The models XGBoost, DNN-Transformer, and GNN-SAGE can be evaluated by ana-
lyzing Figures 8–10, which contain a scatter plot and marginal distributions for the real
measured dissolved oxygen and the predicted values by the models, in mg/L.
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Figures 8–10 present very similar results for the three evaluated models. They have
well-aligned scatter points with the regression line, and very similar data distribution,
as indicated by the histograms. However, the GNN-SAGE model has superior performance
over the tree-based and transformer-based approaches, reaching an excellent coefficient of
determination of 97.6%. Figures 11–13 show the model’s results over 30 days, displayed
on the x-axis, comparing them with real measured data for dissolved oxygen in mg/L,
displayed on the y-axis.
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In Figures 11–13, comparing the evaluated models’ results for the same assessed
period, we can observe that the graph-based structure has a superior performance in
identifying the peak concentrations of dissolved oxygen, without any lagging in its re-
sults. Comparing XGBoost with GNN-SAGE, we notice that the graph-based approach
has superior performance in identifying DO peaks, closely following their shape with a
marginal overestimation. Comparing the transformer-based and GNN-SAGE models, we
can notice that the DNN-Transformer model tends to maintain the historical behavior of
the DO, as seen in the fifth peak from right to left in Figure 12. This is an expected behavior
from the transformer approach since it determines the most likely outcome based on the
previous sequential data [70]. Contrariwise, GNN-SAGE can aggregate the influence of the
spatiotemporal relationships of the input parameters, deeming it sensitive to changes in
the DO concentration and thus identifying the peaks within the assessed period, as seen in
the same fifth peak from right to left in Figure 13.

5. Discussion of the Results
5.1. Analysis of the Results of Dissolved Oxygen for 6 h Ahead

When applied to the proposed scenario, the graph-based model GNN-SAGE pre-
sented the best performance, providing cutting-edge results for DO forecasting, a highly
non-conservative substance, for 6 h ahead forecasting. By using dissolved oxygen, air
temperature, precipitation, and water temperature as input attributes, the proposed GNN-
SAGE model showed that, when compared with XGBoost and DNN-Transformer, the graph
structure can better model and analyze the DO levels. GNN-SAGE can satisfactorily extract
spatiotemporal data from the study station and its surroundings, substantially improving
the DO forecasting results, reaching R2 of 97.6% and RMSE of 0.34 mg/L, representing
improved DO forecasting by 8% compared with both XGBoost and DNN-Transformer
RMSE. The superior performance of GNN-SAGE for hydrological applications has been
attested in previous studies [38,50].

The proposed model also showed better tracking of DO peaks for 4 weeks, as pre-
sented in Figures 8–10. In contrast to the transformer-based approach, the GNN-SAGE
model proved to be more sensitive to the spatiotemporal attributes, being able to adapt
its forecasting to the current DO concentrations, while DNN-Transformer posed a much
more rigid paradigm, tending to maintain the data trend for different DO measurements
during the same assessed period, leading to a significant difference between the forecasted
and real measured DO. The capacity of GNN-SAGE to adapt to the input spatiotemporal
information from the monitoring stations reveals its potential to be used as a real-time
monitoring tool for water quality forecasting.

Figures 11–13 show that the assessed models tend to slightly overestimate the DO
values for a 6 h ahead time window. This behavior is well known in the ML community.
It occurs when the forecasting parameter is too far into the future, leading to a disconnec-
tion between the input dataset and the output result. This results in average predicted
outcomes [25]. Such difference can also be explained by the lack of sufficient spatiotempo-
ral data provided to the forecasting models under scrutiny, resulting in lagged results as
observed in Figures 11–13 [38,87–89].

In addition to these factors, discrepancies between predicted and measured DO values
can also be caused by abiotic and biotic factors composing the geochemical environment of
the river. Salinity, atmospheric pressure, turbulence, and other geochemical parameters
can impact the accuracy of the predictions. Similarly, biotic factors, like photosynthesis
and respiration rates of the aquatic flora, can also contribute to the observed discrepancies.
The inclusion of these parameters as inputs to the GNN-SAGE approach can improve the
model’s performance and reduce the difference between the forecasted and real DO values.

Forecasted values greater than the actual DO values can prevent proper decision-
making by managers responsible for keeping the watershed’s water quality in accordance
with regulatory requirements, leading to a deficit in DO. In this sense, the proposed GNN-
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SAGE model was the best-performing assessed model, returning the least overestimation
on DO levels 6 h ahead, achieving the lowest MAPE value of 2.22%.

5.2. Analysis of Results of the SHAP Analysis

Figure 14 shows the results of the SHAP analysis for the 6 h forecasting horizon,
where the attributes are arranged in a descending manner from the variable with the
most influence on the one with the least influence when used to determine future DO
concentrations. The rightmost bar is a scale for the feature value based on the correlation
between the variable and the forecasted attribute, indicating that an elevated correlation
also has an elevated value. SHAP values greater than zero indicate that positive attribute
values positively contribute to DO forecasting, while negative values negatively influence
the model’s prediction.

Environments 2023, 10, x FOR PEER REVIEW 19 of 26 
 

 

 
Figure 14. Results from the SHAP analysis for predicting DO concentrations 6 h ahead using GNN-
SAGE model. 

Figure 14 elucidates that using past DO data, i.e., “dissO2-Lag19”, “dissO2-Lag1”, 
“dissO2-Lag43”, and “dissO2-Lag18”, from the reference station “Credit River @ MGCC” 
provides the most significant amount of spatiotemporal data for the model’s forecasting. 
After that, water and air temperatures are other important factors contributing to the 
model’s DO predictions. For these variables, verifying the relevant influence of 
spatiotemporal data from the neighboring stations, such as “Hillsburgh” and “Erin”, is 
important, indicating that the model benefits from their information. 

The relevant influence of the temperature attribute over the model’s result was 
expected. Figure 3 depicts the elevated correlation between dissolved oxygen and 
temperature, as elevated temperatures directly affect the oxygen solubility on the water, 
also contributing to the photosynthesis process and consequent oxygen concentration on 
the watershed. The importance of the temperature in future estimations of DO has also 
been studied and verified in previous works [28,42,90], attesting its significant 
contribution to forecasting models. 

The findings from the SHAP analysis provide better insight into the workings of the 
GNN-SAGE model, showing that it can satisfactorily capture the relationship between the 
input variables from the study station and its neighboring locations. The spatiotemporal 
data retrieved from the dataset by the model improved its forecasting capability, with the 
past DO and temperature data having a relevant influence. 
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SAGE model.

Figure 14 elucidates that using past DO data, i.e., “dissO2-Lag19”, “dissO2-Lag1”,
“dissO2-Lag43”, and “dissO2-Lag18”, from the reference station “Credit River @ MGCC”
provides the most significant amount of spatiotemporal data for the model’s forecasting. Af-
ter that, water and air temperatures are other important factors contributing to the model’s
DO predictions. For these variables, verifying the relevant influence of spatiotemporal data
from the neighboring stations, such as “Hillsburgh” and “Erin”, is important, indicating
that the model benefits from their information.
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The relevant influence of the temperature attribute over the model’s result was ex-
pected. Figure 3 depicts the elevated correlation between dissolved oxygen and temper-
ature, as elevated temperatures directly affect the oxygen solubility on the water, also
contributing to the photosynthesis process and consequent oxygen concentration on the
watershed. The importance of the temperature in future estimations of DO has also been
studied and verified in previous works [28,42,90], attesting its significant contribution to
forecasting models.

The findings from the SHAP analysis provide better insight into the workings of the
GNN-SAGE model, showing that it can satisfactorily capture the relationship between the
input variables from the study station and its neighboring locations. The spatiotemporal
data retrieved from the dataset by the model improved its forecasting capability, with the
past DO and temperature data having a relevant influence.

5.3. Analysis of the Comparison between the GNN-SAGE Results and Literature-Found Values

In order to understand where the proposed GNN-SAGE approach stands among the
current forecasting models, the results yielded by the graph-based model in the current
study were compared with the ones found in the literature. Nonetheless, such compar-
ison may not provide a truthful picture between the compared models, meaning that
their results are inherent to their specific methodologies, input data, geographic location,
and application. Yet, a comparison is still a viable approach to determine how well models
can perform when compared with their peers. To facilitate the comparison between the
proposed GNN-SAGE with the results from the literature, the following Table 3 compiles
the results for different metrics for this model when applied to a 6 h forecasting horizon,
and Table 4 presents the results from the literature. For further information on the applied
metrics, we recommend reference [85].

Table 3. Values of the error metrics for a 6 h forecasting horizon using GNN-SAGE paradigm.

Metric Value

RMSE 0.34 mg/L
nRMSE 3.17%
MAE 0.23 mg/L

nMAE 2.14%
MAPE 2.22%
MBE 0.01 mg/L

Forecast skill 74.30%
R2 97.63%

Table 4. Values for dissolved oxygen concentrations forecasting found in the literature.

Model Metric Value Author

Delft3D RMSE
1.18 mg/L

Oliveira et al.
[7]

Delft3D

MAE
1.03 mg/L

MAPE
15.9%

Curbani et al.
[91]

Prophet

RMSE
0.71 mg/L

MAE
0.55 mg/L

Kogekar et al.
[92]

LSSVM-BA

RMSE
Mean value 0.79 mg/L

MAE
Mean value 0.94 mg/L

Yaseen et al.
[93]
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Table 4. Cont.

Model Metric Value Author

Bi-LSTM

RMSE
0.2 mg/L

MAE
0.15 mg/L

Ahmed et al.
[34]

CEEMDAN–CNN–LSTM

RMSE
0.26 mg/L for 4 h forecasting horizon
0.28 mg/L for 8 h forecasting horizon
0.31 mg/L for 12 h forecasting horizon
0.34 mg/L for 16 h forecasting horizon
0.39 mg/L for 20 h forecasting horizon
0.48 mg/L for 24 h forecasting horizon

(Average RMSE of 0.34 mg/L)
MAPE

2.55% for 4 h forecasting horizon
2.79% for 8 h forecasting horizon
3.00% for 12 h forecasting horizon
3.30% for 16 h forecasting horizon
3.65% for 20 h forecasting horizon
4.56% for 24 h forecasting horizon

(Average MAPE of 3.31%)

Sha et al.
[36]

In references [7,92], DO was modeled by the physical approach of Delft3D for rivers
located in Portugal and Brazil, respectively. From the comparison between the GNN-
SAGE results and those using a physics-based approach, it can be concluded that the graph
model provides superior results considering RMSE and MAPE, substantially improving DO
forecasting. Also, the MAPE comparison allows us to conclude that GNN-SAGE provides
more accurate estimates for DO than the model used in [91]. Furthermore, it is worth
noting that GNN-SAGE, a graph-based model, can inherently process multi-spatiotemporal
information contained in the input dataset, without requiring explicit programming and/or
feature preprocessing. Another advantage of the GNN-SAGE paradigm is its simpler
implementation: differently from the Delft3D model, which models the DO levels by
the finite difference method and thus requires the domain to be defined by a mesh grid,
GNN-SAGE uses only the inputs presented in Figure 2.

In reference [92], the authors implemented the Prophet ML model. The Prophet was
developed and made available by Facebook’s Core Data Science group [94] and is a cumu-
lative approach that excels in analyzing and forecasting non-linear data trends [95]. Their
work implemented the Prophet for a DO forecasting task for a river in India. Comparing
the GNN-SAGE results with those in [92], the proposed model clearly provides superior
results over a simpler ML model implementation such as the Prophet. The superiority of
GNN-SAGE is expected in this scenario, once it can process and identify seasonality and
spatial information from the dataset, while the Prophet may handle temporal data only.
From this comparison, we can conclude that spatial data play a major role in determining
future DO levels by incorporating relevant data for the model’s prediction, as stated in the
SHAP analysis results in Figure 13.

In work [93], the authors proposed a hybrid model called the Least Square Support
Vector Machine-Bat Algorithm (LSSVM-BA) for monthly DO estimation in the USA. Their
results for the best-performing LSSVM-BA for monthly DO predictions were, on average,
0.79 mg/L and 0.94 mg/L for RMSE and MAE metrics, respectively. When directly compar-
ing these results with those of GNN-SAGE, the graph-based model surpassed the results
found in the literature with a significant difference on both metrics, again proving to be a su-
perior approach to this task. In studies [34,36], different DL paradigms were implemented
for DO forecasting. Interestingly, among the results found in the literature in Table 2, the DL
models were the best-performing ones, offering significant improvement for DO estimation
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over both physical and traditional ML approaches, achieving error values within the same
order of magnitude. In work [34], Bi-LSTM was implemented to model future DO levels
in Pakistan using remote sensing data up to three time steps ahead. The study [36] used
a hybrid model consisting of CNN–LSTM and CEEMDAN for predicting DO in China
up to 24 h ahead. The CNN–LSTM hybrid configuration is well known for its ability
to process spatial and temporal data through its convolutional and recurrent structures,
respectively. Both papers reached similar results for DO forecasting regarding the RMSE
metric. However, comparison with GNN-SAGE proved that the proposed paradigm in this
work can surpass the results for the DL models by a significant margin, providing more
accurate and precise DO forecasting.

6. Conclusions

In this study, a new GNN-SAGE deep learning model for forecasting DO levels in
natural streams was developed using a network of real-time water quality monitoring
stations in an urban watershed. The accuracy of the model forecasts for a forecasting
horizon of 6 h was compared with the popular, XGBoost and DNN-Transformer models.
The best-performing GNN-SAGE configuration was obtained using 72 h time-lag and input
parameters dissolved oxygen, air temperature, precipitation, and water temperature from
the reference station “Credit River @ MGCC” and its neighboring ones.

The results show that the proposed new GNN-SAGE can gather influence from the
provided network of real-time hydrometric and water quality monitoring stations and is
able to more accurately forecast changes in DO levels. This leads to an improvement of
8% in the RMSE metric when compared with both XGBoost and DNN-Transformer, and it
reaches an R2 value above 97%. The SHAP analysis outcomes elucidated the importance of
spatial data coming from the neighboring stations.

By comparing the GNN-SAGE results with those found in the literature, it was possible
to attest the superior performance of the graph-based model, which surpassed every
assessed model in Table 4 with a significant margin for both RMSE and R2 values. These
findings made the GNN-SAGE model a valuable DO forecasting tool, offering precise and
cutting-edge predictions in urban river watersheds.

For future applications of the proposed GNN-SAGE model, other hydrological pa-
rameters can be assessed using this approach and directly determine the water quality
index. Furthermore, more spatial information can be added to future implementations of
GNN-SAGE, aiming to reduce its geographical bias once it was modeled and validated for
only one location. To this end, spatiotemporal data from different rivers can be added to
the model, enhancing its generalization and broadening its geographic application. Future
works can also investigate the performance of the proposed GNN-SAGE when applied
to estuary regions. Given the significant spatial extent of estuaries, the graph model is
anticipated to be highly adaptable for water quality monitoring in these areas. The imple-
mentation of a graph-based model to assess water quality on estuaries is a promising topic
worth to be further explored.

Developing a precise and accurate model to forecast real-time hydrological parameters
is relevant in the current socio-economic–environmental scenario. Technologies like GNN-
SAGE have the potential to enhance the creation of new legislation regarding the protection
and sustainable use of watersheds, as well as to support stakeholders in their decision-
making and risk management strategies. These actions can mitigate further damage from
human actions over the aquatic environment when used as a real-time forecasting tool.
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