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Abstract: The excessive excretion of nitrogen (N) by farm animals can pose severe environmental
risks. In this study, near-infrared reflectance (NIR) spectroscopy (NIRS) was used to explore the
feasibility of developing a real-time in situ monitoring tool for fecal N excretion in rabbits. A total
of 70 feed and 282 fecal samples from an in vivo digestibility experiment were used. Feed and fecal
NIR spectra were employed to develop chemometric models using modified partial least squares
(MPLS) for feed and feces, and artificial neural networks (ANN) for feces to predict dietary and
fecal N content and fecal N digestibility. Very good accuracy was achieved in predicting feed N
(R2

val = 0.96; standard error of prediction, SEP = 0.15) and fecal N (R2
val = 0.88; SEP = 0.44) content,

whereas N digestibility models from wet fecal spectra had a relatively low precision (R2
val = 0.70;

SEP = 0.018) with MPLS methodology. In contrast, ANNs yielded more robust prediction models for
fecal (R2

val = 0.98; SEP = 0.25) N content and N digestibility (R2
val = 0.91; SEP = 0.012) using wet feces.

In conclusion, NIRS calibration with ANNs can be a suitable tool for monitoring the environmental
load of N with high precision and accuracy.

Keywords: artificial neural networks; environment; fecal nitrogen excretion; near-infrared reflectance
spectroscopy; rabbits

1. Introduction

Fecal nitrogen (N) excretions from animal farms have significant and far-reaching
impacts on the environment. The vast amounts of fecal matter, which are rich in N
compounds, may be a major source of environmental damage, particularly in areas with
high animal density. When not properly managed, fecal N can leach into groundwater,
leading to nitrate contamination of drinking water sources, or other surface waters thereby
causing eutrophication, harmful algal blooms, and disruptions to aquatic ecosystems [1]. It
can also be a significant source of nitrous oxide emissions [2], which is a potent contributor
to global warming [3,4], and can release ammonia into the atmosphere, leading to air quality
concerns and potential health risks for both animals and nearby human populations [5].

Several studies have explored the dispersion and determinants of N excretions within
livestock chains [6–10]. Taken together, these works point to the fact that feed formulation
(and its associated impact on N utilization) is one of the key factors affecting N excretion
from animal farms. Formulating diets to improve N utilization is a crucial step to mitigate
N-related environmental pollution. Animals fed diets with high N digestibility convert a
larger proportion of N into useful protein for growth and reproduction, and this can result
in less N being excreted [8], thereby reducing the overall environmental load of N.

Having a rapid method to accurately estimate dietary N digestibility in the farms
would be advantageous [11] for monitoring the environmental load of N. Regardless of
the formulation, N digestibility can exhibit significant variability from farm to farm owing
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to a multitude of factors related to the animal itself (genetics, gender, and weight), to
management and housing conditions (temperature and stocking density), and to the diet
(ingredient and nutrient composition and physical form) [12]. The use of in vivo trials in
the determination of digestibility, or of feed tables that provide average digestible N values
for each feed ingredient, are not suitable for monitoring N digestibility in situ; the trials are
both time-consuming and costly, and the tables are not practically useful if the ingredient
composition of a compound feed is not known [13].

A recognized and frequently employed technique for the fast assessment of feed
digestibility is near-infrared reflectance spectroscopy (NIRS) [14,15]. Research conducted
in poultry [16,17], pigs [13,18–20], ruminants [21], and rabbits [11,22] revealed that NIRS
calibrations utilizing fecal spectra can effectively predict variations in N digestibility within
animals with variable levels of precision. The results of these studies should be handled
with care because (a) with minor exceptions [18,20], the quality of the prediction models
was based on the calibration and cross-validation statistics only, without carrying out
an independent validation and (b) prediction models were developed using the classical
multiple linear regression (partial least squares) methodology, which is not always the
most suitable option due to extrinsic and intrinsic deviations from the linearity that it
is traditionally assumed in NIRS [23]. Approaches based on artificial intelligence, such
as artificial neural networks (ANN) can be employed to process NIRS spectra [24] and
produce more reliable predictions because they address the frequently observed non-
linear relationships between absorption in the near-infrared spectral region and the target
analytical parameter [23]. The ANN models have been successfully used in several feedstuff
evaluation approaches in animal nutrition [24–27]. Nonetheless, the use of ANNs in the
development of models predicting nutrient digestibility using fecal spectra has not been
investigated until now. It must also be underlined that all the techniques developed up to
today have employed dried and finely ground fecal samples to minimize light scattering in
NIRS instruments.

The objective of the present study was to use near-infrared reflectance (NIR) spec-
troscopy (NIRS) to explore the feasibility of developing a real-time in situ monitoring
method for fecal N excretion using the rabbit as the animal model. Ideally, such a method
should be applicable in wet intact feces, which is challenging due to the presence of high
moisture and particles of different dimensions and colors in the fecal pellets. For this
purpose, we attempted to develop models to predict N digestibility using different physical
forms of feces (wet intact, dried intact, and finely ground fecal pellets) and linear (partial
least squares) and non-linear approaches (artificial neural networks). Subsequently, we
compared the performance of developed models in terms of accuracy and precision, given
their produced prediction values.

2. Materials and Methods
2.1. Digestibility Trial

In this study, all procedures were meticulously synchronized with the European
Reference Method [28]. Specifically, a total of forty-eight 35-day-old weaned Hyla male
rabbits were selected from a commercial breeding farm. The rabbits were individually
housed in galvanized wire-mesh digestibility cages (33 cm wide × 42 cm long × 40 cm high)
under controlled environmental conditions (temperature range 18–22 ◦C; humidity range
55–68%) at the Laboratory of Nutritional Physiology and Feeding.

The digestibility trial was carried out in two distinct phases. During Phase 1, six
experimental diets labeled A, B, C, D, E, and F were administered to six groups of rabbits,
each consisting of 8 rabbits, over a 21-day period, spanning from weaning to 56 days of age.
Diets A and F were the main experimental diets, formulated with high (>200 g/kg) and low
(150 g/kg) acid detergent fiber (ADF) contents, respectively (Table 1). Diets B, C, D, and E
were prepared by blending different proportions of diets A and F, i.e., diet B (80% A + 20% F),
diet C (60% A + 40% F), diet D (40% A + 60% F), and diet E (20% A + 80% F).
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Subsequently, in Phase 2, three additional experimental diets designated as G, H, and
I were formulated by adjusting the proportions of diets A and F, different from those used
in Phase 1, i.e., diet G (75% A + 25% F), diet H (50% A + 50% F), and diet I (25% A + 75% F).
These diets were provided to three groups of rabbits, each group comprising 16 rabbits,
for another 21-day period, from 57 to 77 days of age. During this phase, the rabbits were
reassigned to the diets based on their prior diet assignments in Phase 1. Rabbits that were
previously fed diets A and B in Phase 1 were now assigned to diet I in Phase 2, those fed
diets C and D in Phase 1 were allocated to diet H in Phase 2, and rabbits previously on
diets E and F in Phase 1 were now provided with diet G in Phase 2.

The dietary ADF content (as shown in Table 1) was deliberately manipulated because it
is known to have an adverse correlation with nutrient digestibility [29]. This manipulation
effectively allowed for changes in N digestibility.

Table 1. Ingredients (g/kg as fed) and chemical composition (g/kg dry matter) of the main (A and F)
experimental diets.

Diet A Diet F

Ingredients
Dehydrated alfalfa meal 420 180

Barley grain 250 350
Wheat bran 100 150

Sugar beet pulp 100 190
Sunflower meal, 280 g CP/kg 80 20
Soybean meal, 440 g CP/kg 20 80

Monocalcium phosphate 7 7
Arbocel ®1 6 5

Mineral + vitamin premix 2 5 5
Ultrafed ® (binder) 3 5 5

Sodium chloride 4 4
DL-Methionine, 990 g methionine/kg 2 2

L-Lysine HCl, 800 g lysine/kg 1 1
Calcium carbonate - 1

Analyzed chemical composition
Digestible energy 4, MJ 10.0 10.9

Nitrogen (N)/Crude protein (N × 6.25) 24.0/150 23.7/148
aNDF 5 345 303
ADF 5 215 153

1 Lignocellulose concentrate (J. Rettenmaier & Söhne GmBh + CO KG, Rosenburg, Germany). 2 Mineral and
vitamin mixture, provided per kg diet: vitamin A, 10,000 IU; vitamin D3, 1800 UI; vitamin E, 60 UI; vitamin K3,
2 mg; vitamin B1, 2 mg; vitamin B2, 6 mg; vitamin B6, 3 mg; vitamin B12, 0.02 mg; calcium pantothenate, 7 mg;
nicotinic acid, 30 mg; folic acid, 0.5 mg; biotine, 0.2 mg; choline chloride, 400 mg; I, 1.5 mg; Mn, 60 mg; Cu, 6 mg; Zn,
80 mg; Fe, 30 mg; Co, 0.35 mg; antioxidant, 0.250 mg; 300 mg Cycostat (60 mg robenidine/kg). 3 Contained > 950 g
palygorskite/kg. 4 From tabulated data [30]. 5 α-amylase-treated neutral detergent fiber; acid detergent fiber.

2.2. Chemical Analyses

Feed samples were collected from all groups at the onset of fecal collection, as recom-
mended by [28]. Feces were collected on a daily basis over a 4-day interval for each rabbit
and were subsequently pooled and preserved at −18 ◦C until analyzed.

Prior to chemical analyses, feces were subjected to a 48 h air oven drying process
(80 ◦C) to eliminate moisture. Following this, both feed and fecal samples were finely
ground through a 1 mm sieve. The analyses were carried out in accordance with methods
outlined by the Association of Official Agricultural Chemists [31]. The dry matter (DM;
7.007) content was determined by subjecting samples to a 105 ◦C air oven for 24 h. The
N content was determined using the Kjeldahl method (Kjeltec autoanalyser unit, Foss,
Hilleroed, Denmark), and the crude protein was calculated as N × 6.25. Fiber components,
namely aNDF and ADF, were determined [32], using the ANKOM220 filter bag system
(ANKOM Technology, Macedon, NY, USA), after preliminary treatment with a-amylase.
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2.3. NIRS Analysis and Modified Partial Least Squares

To construct the feed calibration dataset, we collected feed samples not only from
the digestibility trial but also from commercial units within the Greek region, totaling
70 feed samples. Out of these, 50 samples were randomly selected for calibration, while
the remaining 20 were reserved for validation. Regarding the feces derived from the
digestibility trial, the spectral database was also randomly split into two subsets. The
calibration set encompassed 190 samples, while the validation set comprised 92 samples.

Three different physical forms of fecal samples (i.e., wet intact, dried intact, and dried
ground to a particle size of 1 mm) were used, and each form was scanned in triplicate using
a NIR instrument (FOSS DS2500 monochromator, Foss Analytica, Hillerød, Denmark) in
reflectance mode, covering a wavelength range of 400–2500 nm with a step size of 2 and
0.5 nm. To optimize the calibration models, we applied spectral pretreatments, including
scattering correction, and enhancement of linearity between the reference analysis and
spectral response. The pretreatment methods included spectrum derivation, smoothing,
standard normal variates (SNV), and detrend, following the methods of [33].

Calibration models were developed using modified partial least squares regression
(MPLS) via the MPLS procedure of WINISI software (WINSI v4.10, Foss Analytica, Den-
mark), as detailed by [34]. The selection of the best calibration model was based on the
coefficient of determination of calibration (R2

cal) and the lowest standard error of cross-
validation (SECV) for a given number of latent variables (LV). For feed, the maximum
number of LV was limited to 7, while for feces, it was set at 13. Cross-validation techniques
were applied to prevent overfitting, with a leave-out-cross-validation method employed
for feed samples and grouping for fecal spectra, following the approach of [35]. Any
outliers were identified by a studentized t-test (using WINISI v4.10), which determined the
difference between the calibration estimated value and the actual reference value for any
sample. Outliers were excluded from the validation procedure.

Subsequently, the chosen calibration model was utilized to predict the content of
various parameters in both feeds and feces and the coefficient of digestibility of N. The
quality and applicability of the NIRS calibration model were assessed using several param-
eters, including the coefficient of determination of validation (R2

val), the standard error of
prediction (SEP), the bias (systematic error of linear regression), and the slope of the linear
fit of the predictions. Additionally, the residual prediction deviation (RPD) was calculated,
representing the ratio of the standard deviation of the validation dataset to the SEP. The
data (dietary and fecal N content and N digestibility) distribution was assessed by the
Kolmogorov–Smirnov test. The slope and bias of the regression statistics for the external
validation set were evaluated using a one-sample t-test to determine if they significantly
deviated from 1 and 0, respectively. Slope and bias values that do not statistically differ
from 1 and 0, respectively, indicate a strong correlation between the laboratory-analyzed
(reference) values and the predicted values obtained through NIRS. The data distribution,
slope, and bias were assessed using IBM SPSS Statistics 23.0 [36].

2.4. Artificial Neural Networks

Feed-forward propagation models utilizing artificial neural networks (ANN) were also
developed to predict fecal N content and N digestibility using the spectra of the 3 physical
forms (wet unground, dried unground, and dried ground to a particle size of 1 mm) of
fecal samples. Model development was carried out using MATLAB version 9.14.0 [37].

The architecture of the fully connected feed-forward neural network comprised three
layers. In the first layer, the input layer, the number of neurons equaled the variables,
specifically corresponding to the absorbances per wavelength for each sample. This re-
sulted in 1050 input neurons for a 2 nm spectral resolution and 4200 for a 0.5 nm spectral
resolution. To expedite the training process for each model, the scores from the spectra
were employed after being subjected to principal component analysis (PCA) [38], following
the preprocessing of NIR spectra involving a standard normal variate (SNV) transformation
detrend and the second derivative. Ultimately, 64 components were collected for each
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form of fecal sample and used in the input layer of the neural network. In the second
layer, referred to as the hidden layer, combinations of 1–300 neurons were tested. The
third layer is constituted of one output, representing the fecal N content and N digestibility.
Various non-linear activation functions were tested for the transfer to the hidden layer,
including the rectified linear unit (ReLU), the Tanh, the sigmoid activation functions, and a
linear function for the output layer. L-normalization was applied to mitigate overfitting by
maintaining low neural network weights.

The ANN model’s performance was optimized through adjustments to hyperpa-
rameters, with Bayesian structural optimization used to determine the most effective
combination of hyperparameters for enhanced predictive performance. Bayesian structural
optimization, guided by Bayes’ theorem, seeks hyperparameters that optimize the neural
network’s performance. Additionally, various numbers of iterations (ranging from 30 to
300) were tested to minimize the squared standard error.

Out of the 282 fecal samples collected, 67% (189) were allocated to the training group
and were subject to 19-group cross-validation, while the remaining 33% (93) were assigned
to the independent validation group. Model performance was assessed based on the
regression coefficient for the validation set (R2

val) and the standard error of prediction for
the validation results (SEP).

3. Results
3.1. Modified Partial Least Squares (MPLS) Methodology

Table 2 provides a statistical summary of the range, mean, coefficient of variation
(CV, %), and standard error of laboratory values for the dietary and fecal N content, as well
as for the N digestibility within the calibration and validation sets. It is evident from the
data that the measured values exhibited variation across all parameters, as indicated by the
range (21.07–29.49 and 21.07–41.18 g N/kg dry matter and 0.56–0.81, for dietary and fecal
N content and N digestibility, respectively) and the CV (6, 10, and 5.8% for dietary and fecal
N content and N digestibility, respectively), and they conformed to a normal distribution
according to the Kolmogorov–Smirnov test.

Table 2. Statistical overview of the dietary and fecal nitrogen content (N, g/kg dry matter) and
nitrogen digestibility (coefficient of total tract apparent digestibility, Nd).

Calibration Set 1 Validation Set 1

Mean ± SD Range
(Min–Max) CV, % Mean ± SD Range

(Min–Max) CV, % SEL

Dietary N 23.73 ± 1.42 21.07–29.49 6.0 23.6 ± 1.07 21.02–25.86 4.6 0.12
Fecal N 20.22 ± 2.05 21.07–41.18 10.1 20.00 ± 2.18 14.06–24.69 10.9 0.16

Nd 0.70 ± 0.040 0.56–0.81 5.8 0.70 ± 0.040 0.61–0.82 5.7 -
1 Calibration set consisted of 50 feed and 190 fecal samples; Validation set consisted of 20 feed and 92 fecal
samples; Mean ± SD, mean ± standard deviation of the fecal N content (as determined by laboratory analyses)
and the N digestibility (as determined by the in vivo digestibility trial); CV, coefficient of variation (calculated as
100 × SD/mean); SEL, standard error of laboratory analyses.

The statistical results of calibration, cross-validation, and external validation for the
dietary and fecal N content, and the N digestibility for different forms of the samples using
NIRS, are presented in Table 3. When using intact and ground feed pellets, the coefficient of
determination (R2

cal) for the N content was exceptionally high (0.93 and 0.96, respectively).
The fecal N content exhibited very good R2

cal values (0.89, 0.85, and 0.95 for the wet unground,
dried unground, and dried ground samples, respectively. On the other hand, the N digestibility
depended on the physical form of the samples (R2

cal values of 0.59, 0.72, and 0.86 for the
wet unground, dried unground, and dried ground samples, respectively). In terms of the
cross-validation statistics, the SECV values closely approximated the SEC for all parameters,
the difference between them remaining near 20% (apart from N content for intact pellets
where the difference between SEC and SECV was 50%).
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Table 3. Statistics of NIRS calibration, cross-validation, and external (independent) validation for
the prediction of dietary and fecal nitrogen (N) content and nitrogen digestibility (coefficient of total
tract apparent digestibility, Nd) using the modified partial least square (MPLS) for different physical
forms of feed and fecal samples.

Physical Form of
Samples

Calibration and Cross-Validation 1 Validation 2

SEC R2
cal SECV Mean ± SD SEP R2

val Bias Slope RPD

Intact feed pellets
Dietary N 0.18 0.93 0.27 23.58 ± 0.93 0.23 0.88 0.010 1.07 2.5

Ground feed pellets
Dietary N 0.13 0.96 0.15 23.39 ± 1.06 0.15 0.96 0.017 1.06 4.5

Wet unground feces
Fecal N 0.41 0.89 0.47 19.47 ± 2.048 0.44 0.88 3 −0.153 0.88 3.2

Nd 0.020 0.59 0.030 0.709 ± 0.029 0.018 0.70 0.002 0.94 2.3
Dried unground feces

Fecal N 0.46 0.85 0.52 20.13 ± 2.141 0.53 0.88 3 0.026 1.06 2.4
Nd 0.020 0.72 0.020 0.705 ± 0.034 0.017 0.81 0 1.004 2.4

Dried ground
Fecal N 0.28 0.95 0.30 19.22 ± 1.888 0.35 0.92 −0.02 1.02 3.9

Nd 0.014 0.86 0.017 0.710 ± 0.034 0.017 0.85 0.071 0.962 2.7

1 SEC, standard error of calibration; R2
cal, coefficient of determination of calibration; SECV, standard error of

cross-validation. 2 Mean ± SD, mean ± standard deviation of the predicted fecal N content (g/kg dry matter) and
the predicted N digestibility (coefficient of total tract apparent digestibility, Nd); SEP, standard error of prediction;
R2

val, coefficient of determination of validation; Bias, the systematic error of the linear regression; Slope, slope of
the linear fit of the predictions; RPD, residual prediction deviation (calculated as the ratio of standard deviation of
validation set/SEP). 3 After removing 1 outlier identified by a studentized t-test performed in WINISI v4.10.

To assess the predictive capability of the developed equations, statistical metrics
such as SEP, R2

val, slope, and bias were employed. For dietary N content, the equations
demonstrated a robust regression coefficient, with R2

val values of 0.88 and 0.96 for the intact
and ground pellets, respectively. The model for N digestibility exhibited acceptable to good
predictive power, with the R2

val value depending on the physical form of the feces (R2
val

values of 0.70, 0.81, and 0.85 for the wet unground, dried unground, and dried ground
samples, respectively). SEP values for all parameters aligned closely with SECV values
and did not exceed twice the SEC values. The regression statistics, slope, and bias, for
the external validation set, displayed no significant deviation from 1 and 0, respectively,
indicating a strong correlation between laboratory and predicted values for all parameters.

3.2. Artificial Neural Network (ANN) Methodology

The results from the ANN models developed for the prediction of fecal N content and
N digestibility for the different physical forms of feces are presented in Table 4.

Table 4. Statistics of the feed–forward models predicting fecal nitrogen (N) content and N digestibility
(Nd) for different physical forms of samples using an artificial neural network.

Physical Form of Samples
Calibration and Cross-Validation 1 Validation 2

Activation
Function 3SECV R2

CV SEP R2
val

Wet unground feces
Fecal N 0.237 0.988 0.246 0.984 Tanh

Nd 0.010 0.923 0.012 0.914 Tanh
Dried unground feces

Fecal N 0.170 0.995 0.177 0.994 ReLU
Nd 0.009 0.941 0.011 0.932 Tanh

Dried ground feces
Fecal N 0.176 0.961 0.190 0.968 ReLU

Nd 0.009 0.948 0.010 0.943 Sigmoid
1 Training dataset: SEC, standard error of calibration; R2

CV, coefficient of determination of cross-validation during
calibration (data from training); SECV, standard error of cross-validation. 2 Test dataset: SEP, standard error of
prediction; R2

val, coefficient of determination of validation. 3 Best non-linear function selected after optimization.
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For wet unground feces, the best model (i.e., with the highest R2
val and the lowest SEP

values) for N digestibility was developed with the use of one neuron in the hidden layer
and of a non-linear Tanh activation function. For dried unground feces, 168 neurons in
the hidden layer and the use of a non-linear Tanh (tangent hyperbolic) activation function
were required to achieve an optimum model. Finally, an optimum model for N digestibility
when using dried ground feces was achieved with 23 neurons in the hidden layer and the
use of a non-linear sigmoid activation function. The residual plot with reference to the
predicted values for N digestibility according to the physical form of fecal samples is given
in Figure 1.
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4. Discussion

Near-infrared reflectance (NIR) spectroscopy has been acknowledged as a valuable
technique for successfully evaluating feed and fecal composition and nutrient digestibility
in cattle [39,40], pigs [13,18,20], and poultry [41]. However, in rabbits there have been rela-
tively few studies to determine digestibility by NIRS, possibly due to the limited variation
in feed composition observed in this species [42], and consequently, the small variation
in nutrient digestibility. In this study, our primary focus was on predicting the nitrogen
(N) digestibility using NIRS fecal spectra. Fecal N content was also predicted but relying
solely on such parameters to develop a tool to assess N excretion into the environment is
impractical, given the challenges of determining fecal excretion in commercial settings. The
N digestibility on the other hand, using NIR spectra of feces, when combined with dietary
N content and total feed intake, which can be readily estimated in practical situations,
enables monitoring of the environmental N load.

4.1. MPLS Methodology

The equations devised to predict the dietary N content yielded excellent results for
both intact and ground feed pellets, with the accuracy being higher for the ground than
the intact feed pellets, as indicated by the metrics in the calibration and validation sets
(high R2

cal, R2
val, and RPD values). Similar results were obtained when the N content

and the N digestibility were predicted using the NIR spectra of feces presented in three
different physical forms: wet intact fecal pellets with a moisture content of 50–55%, dried
unground, and dried ground to 1mm (both with a moisture content of approximately
5%). The prediction equations for the N content and digestibility in wet intact feces were
quite good and acceptable, respectively, but improved further when using dried unground
and dried ground feces, as suggested by the increase in R2

cal, R2
val, and RPD values.

The difference in the prediction accuracy between the intact and ground samples can be
attributed to light scattering due to the physical form of the sample. Unground samples
have a physical heterogeneity (larger void space between pellets, numerous particles of
variable sizes and colors) compared to the more homogeneous dried ground samples. This
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is an issue that likely induced deviations from linearity [23], which could not be explained
and modeled accurately when using the linear calibration methodology in NIRS.

Variable prediction accuracy for dietary and fecal N content [11,43] and N digestibility
has been reported in previous works with rabbits [11,22,43]. However, a direct and detailed
comparison with our data cannot be performed because of the different approaches and
interpretations. The previous works were carried out only with dried ground samples;
some used feed [43] or fecal spectra [11] only, whilst others concatenated feed and fecal
spectra [22]. A common point between these studies, in contrast to our work, is that they
excluded the visible region of spectra from the calibration, which may contain physical evi-
dence that likely maximizes the quantity of information related to digestive processes [18].
In addition, they did not perform an independent validation test; instead, they relied on the
cross-validation results, with only one exception [43]. It must be noted that cross-validation
does not account for a real test on an independent dataset and could lead to an overly
optimistic evaluation of the results [13].

Overall, when using the linear approach in the present study, all calibrations to
estimate dietary and fecal N (using intact or ground samples) were of adequate accuracy,
as they had R2 values higher than 0.8, SECV values close to SEC values, and generally, RPD
values higher than 3, as recommended by [44] to be considered suitable for routine analysis.
It is worth noting, however, that the determination of these thresholds lacks a statistical
basis and interpretations may vary among authors, as highlighted by other works [45].
On the other hand, the accuracy of the models developed for N digestibility was strongly
affected by the physical form of the sample, indicating that the prediction of more complex
parameters in untreated fecal samples needs alternative calibration approaches to produce
more robust models applicable in commercial settings.

4.2. Artificial Neural Network (ANN) Methodology

To obtain a deeper insight into the need for alternative calibration methods for complex
parameters, like N digestibility, we studied the use of ANNs. The primary objective of
ANN processing in numerous applications is to discover models that can offer more precise
and accurate predictions for output variables. By comparing the actual output values
with the predicted ones, we can understand how well the ANN models behave based
on the input parameters [24]. The ANN models developed in this study demonstrated
remarkable accuracy in predicting fecal N content and N digestibility, irrespective of the
physical form of fecal pellets. In the validation dataset, which tested the robustness of
the prediction model (and was not used during the training process), the R2

val values for
the fecal N content were above 0.96 for all physical forms. In the same dataset, the R2

val
values for N digestibility were 0.91, 0.93, and 0.94 for wet intact, dried intact, and dried
ground feces, respectively. Furthermore, the fecal N content and N digestibility models,
after training, exhibited relatively consistent statistical performance across both the training
and validation subsets. This indicates that the models were effectively trained without
overfitting, and they demonstrate robust generalization capabilities, making them suitable
for the analysis of entirely new datasets [24,46]. The excellent fit of the model to the data
can also be seen in the residual plot (Figure 1), where residuals are randomly scattered
around the zero line without showing any distinct pattern.

To assess the performance of the developed models, the R2 value serves as a standard
criterion to evaluate the “accuracy” of a particular model based on its predictions, while
the SEP (or RMSEP) is commonly employed to gauge the “precision” of a model through
residual analysis. Consequently, it is advisable to use a combination of these criteria to
draw conclusions and compare the overall performance of the models. In the case of
modeling the fecal N content and N digestibility based on the fecal chemical analysis and
the coefficient of total tract apparent digestibility derived from in vivo trials, respectively,
both R2 and SEP indicated superior accuracy and precision in the predictions performed by
the ANN model compared to the MPLS model. Specifically, the R2

val values for the fecal N
content increased by 12%, 13%, and 4% for wet intact, dried intact, and dried ground feces,
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respectively, while the SEP increased by approximately 50%. The superiority of the ANN
model was more pronounced for N digestibility; the R2

val values increased by 30%, 15%,
and 10% for wet intact, dried intact, and dried ground feces, respectively, while the SEP
showed a general reduction of 50% or more. This result indicates that, indeed, fecal N and N
digestibility are better predicted by non-linear models. In numerous applications involving
NIR spectroscopic measurements, it is important to acknowledge that the relationship that
needs to be established is not always linear. The deviations from linearity can be attributed
to well-known extrinsic factors (such as the breakdown of the Lambert–Beer law at elevated
analyte concentrations, non-linear detector responses, and light scattering) and/or to non-
linear aspects intrinsic to the parameter under consideration [23,47]. Deviations such as
light scattering in intact (unground) samples that were used in the present study (this was
discussed in the previous section) require the use of special non-linearity adjustment tools,
such as ANNs [47,48]. Hence, based on our results, an ANN played an important role in
the development of robust models for the fecal N content and N digestibility predictions,
when using wet intact feces spectra.

The bibliographic review on the use of ANNs to develop digestibility prediction
models did not return any results. The works that have been published as of today mainly
concern the prediction of the chemical composition and nutritive value of intact feeds,
where ANN models are compared with the models developed with the classical method
using the PLS algorithm [24,49,50]. These studies, similar to ours, proved that an ANN was
statistically superior to MPLS in building prediction models. In the present study, ANNs
were applied for the first time in the development of digestibility prediction models using
the spectral data of wet intact feces.

The precision and accuracy of the ANN models for N digestibility may allow NIRS
as a rapid tool to monitor fecal N excretion in commercial settings. A simple collection of
fresh fecal pellets (e.g., by using a plastic net under cages) followed by immediate scanning
in the NIR instrument can give real-time, precise, and very valuable information about
N digestibility without the need for separate, time-consuming, and costly trials. This
information can be subsequently used to adjust diets (change ingredient composition or, for
example, decide on the use of dietary supplements that increase N digestibility) in order to
minimize the impact of excreted N on the environment. Additionally, N digestibility can
be combined with feed intake data to provide accurate estimations of the fecal N excretion
from the farm.

5. Conclusions

The aim of this research was to investigate the feasibility of NIRS in monitoring N
digestibility and, subsequently, estimating fecal N excretion with precision in rabbits. The
concept was tested using wet intact fecal pellets to develop a simple and rapid method-
ology that would be applicable in situ. Linear (MPLS) and non-linear (ANN) calibration
methodologies were used for this purpose. ANNs had superior performance over MPLS
regression for N digestibility, particularly in wet intact feces. The key factor appeared
to be the heterogeneity of the intact fecal samples, which is one of the main sources of
non-linearity. Regarding the practical use of the models, the improvement obtained in
SEP values makes NIR technology combined with the ANN method an important tool for
monitoring fecal N excretion accurately in rabbit farms.
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