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Abstract: The present work was aimed at investigating the possibility to produce bricks using volcanic
ash from the Etna volcano and with photoluminescent properties. The volcanic ash was analyzed
using X-ray diffractometry, scanning electron and energy dispersive X-ray microscopy. Mixtures
with 0%, 10% and 30% of volcanic ash were prepared and fired at 950 ◦C for 14 h. Their mechanical
properties, dynamic modulus of elasticity, drying linear retraction, capillary water absorption and
water absorption were measured. The obtained results show that increasing the percentage of volcanic
ash in the initial mixture results in a decrease in the measured dynamic modulus of elasticity, in
a greater dimensional stability and in a lower weight loss upon firing. Mechanical properties are
negatively affected by volcanic ash, with a compressive strength of 11 MPa obtained with mixtures
with 30% of it. A decrease in the absorption of water was also observed upon increasing the amount
of volcanic ash in the mixes. Brick surfaces with intense photoluminescent activity were obtained.
The produced bricks meet the criteria required by the for bricks that can be used in normal weathering
and absorption criteria for second-class brick.
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1. Introduction

Volcanic ash is abundant in Italy due to the eruptions of the Etna volcano in Sicily,
characterized by vigorous and frequent explosive activity. The fallout of volcanic ash
causes air and vehicular traffic problems; the clogging of drainage systems; considerable
damage to agriculture; and eye, skin and respiratory tract irritation [1–4]. Conventionally
it is classified as waste (code 200303 or code 170504 of the European Waste Catalogue), and
its disposal, which generally follows the open landfill route, is far from being an optimal
recovery practice and requires a massive amount of money, around 120 EUR/ton [5].

Furthermore, its actual management collides with the increasingly stricter environmen-
tal legislation that highly discourages the landfill disposal and forces us toward recovery
practices and the valorization of residues in the framework of the circular economy [6,7].

Volcanic ash forms during explosive volcanic activity because of nonmagmatic rock
fragments from the walls of the magma conduit and solidified fragments of erupted magma
thrown up into the atmosphere [8]. It is composed of fine-sized particles with mineralogy,
morphology and chemical properties strictly depending on both the magma configuration
and the eruption conditions [9]. It is characterized by a structure that ranges from nearly
amorphous to fully crystalline [10], a color from black to red and a porous or vesicular
microstructure [11]. Its composition is mainly dominated, in terms of oxides, by SiO2, CaO,
Fe2O3, MgO, K2O and Na2O, with a wide spectrum of proportions [12].

Volcanic ash has been investigated as a potential starting material for several applica-
tions, depending on its mineralogy, chemical composition and particle size distribution.
It has been proposed for environmental applications [11], as a partial replacement of
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cement [12], as an aggregate in lightweight concrete and cellular blocks [13], as a geopoly-
mer [14] and as a lunar soil simulant [15].

In recent years, emphasis was put on manufacturing bricks with an improved envi-
ronmental impact by identifying alternative preparation routes, such as hydrothermal and
microwave treatments [16–19] and recycling of wastes [20–22]. However, a limited number
of works in the literature have been found related to the use of volcanic ashes to produce
bricks or tiles.

Serra et al. [10] found that the addition of volcanic ash acts as a melting material.
Belfiore et al. [23] mixed trachybasaltic ashes from the Mount Etna volcano (20% vol.) and
clay (80% vol.) and fired them at 960 ◦C for about 60 h to produce ceramic tiles. Their
physical–mechanical properties resulted in being relatively comparable to those of the
reference product. In a recent study, Cultrone [24] used clay and 10–20% (by weight) of
volcanic ash from Etna, without sieving or crushing them, to produce brick fired at 800, 950
and 1100 ◦C for 3 h. He evidenced a reduction in the mechanical strength with respect to
the reference with the increasing ash content, but always within the limits of acceptability.
A partial or full melting at the higher firing temperatures, a good bonding of the ash
particles within the matrix and a perceivable change in color in ash containing bricks were
also observed.

In addition to the use of waste materials, another important frontier in the construction
sector is that of the preparation of new multifunctional materials. This is the case for
cement or ceramic with photocatalytic/piezoelectric properties [25–28]. In recent years,
construction products with photoluminescent properties have also been produced using
inactive Europium/Strontium aluminates, silicates and carbonates [29,30]. The luminescent
photo materials, if subjected to solar or artificial light, charge and then light up in the dark,
promoting new strategies for energy saving. They have been used to build roads, cycle
paths, etc.

The present research offers a further contribution to the evaluation of the effect of
partially replacing clay with volcanic ash to produce bricks, thus extending the actual
limited literature. Furthermore, the goal of the research was to find the best experimental
conditions for providing the prepared bricks with an effective and durable photolumines-
cent property. The final product, which combines an improved environmental impact with
an innovative functionality, while providing adequate mechanical properties, opens up
new markets and applications.

2. Materials and Methods
2.1. Materials

A commercial filtered and degassed clay, a volcanic ash, a photoluminescent powder
and a ceramic glaze were used to produce bricks. Bricks were manufactured by Keramos, a
local pottery in Rogliano, in the province of Cosenza.

• A commercial filtered and degassed clay, AFD-000055-Argilla Tornio, was purchased
from the Colorobbia Italia S.P.A., Vinci, Italy. It is the clay commonly used by the
potters for the manufacturing of their marketed products.

• Hydrochloric acid (ACS reagent 37%) and sodium hydroxide (reagent grade, ≥98%,
pellets (anhydrous)) were purchased from Sigma Aldrich, Milano, Italy.

• The volcanic ash (VA) was collected from the slopes of the Etna volcano (Sicily, Italy)
after the eruption in 2020.

• The commercial photoluminescent powder used in the present investigation (ZYYINI-
MYX-RAG-JM04576-03-FBA) was purchased from ZYYINI, Shenzhen, China

• A ceramic glaze purchased from the Colorobbia Italia S.P.A group was used to fix the
photoluminescent powder onto the surface of the specimens. Glaze generates, after
firing, a transparent, colorless and waterproofing thin glass coating on the surface of
the ceramic material.
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2.2. Methods

Clay, volcanic ash and bricks were analyzed using a Rigaku MiniFlex 600 X-ray
diffractometer (Rigaku Corporation, Tokyo, Japan) with CuKα radiation generated at 20 mA
and 40 KV. Powdered samples were scanned at 0.02 2θ step, at a rate of 1◦/min between
5◦–20◦ and 50◦ 2θ. Profex, a free and open-source software, was used to identify mineral
phases and implement the Rietveld refinement of the crystalline phases by matching to
those in the included COD database [31].

A Vanderkamp VK200 hardness tester (Varian, Inc., Weston Parkway Cary, US) was
used measure the crush strength of the volcanic ash, measured by testing 100 particles.

LOI550 and LOI950 were used to estimate the organic and inorganic carbon of clay [32].
A muffle furnace (model Hobevsal HD200) and a precision balance (model Mettler AC
100, 0.0001 g precision) were utilized in the campaign. LOI550 was measured by burning
4 samples of clay, 20 g each, after drying them at 105 ◦C to constant weight, at 550 ◦C for
4 h. It was calculated as follows:

LOI550 =
WS105 − WS550

WS105
× 100 (1)

where WS105 represents the dry weight of the sample after heating to 105 ◦C, and WS550 is
the dry weight of the sample after heating to 550 ◦C (both in g).

In the second step, the carbon dioxide evolved from carbonate is calculated as follows:

LOI950 =
WS550 − WS950

WS550
× 100 (2)

where WS550 represents the dry weight of the sample after heating at 550 ◦C, and WS950
represents the dry weight of the sample after heating at 950 ◦C for 3 h (both in g).

The thermal decomposition of the clay was investigated up to 730 ◦C also by means of
thermogravimetric (TG) and differential scanning calorimetry (DSC) analyses to evaluate
the different contributions to the measured LOI550. A Netzsch STA 409, static air, a heating
rate of at 10 ◦C/min from 35 ◦C up to 730 ◦C and around 15 mg of sample were used to
carry out the analyses.

The particles size distribution, on a volume basis, was measured using a Mastersizer
2000 (Malvern Panalytical Ltd. Malvern, UK)

Morphological characterization was carried out through scanning electron microscopy
(SEM) and energy dispersive X-ray (EDX), using a ZEISS crossbeam 350 instrument (ZEISS
group, Jena, Germany). EDX data were analyzed using APEX software. A SEM analysis of
bricks was carried out on polished cross-sections that were obtained by cutting pieces of
bricks mounted on a cold curing resin. Samples were sputtered with a thin C conductive
layer to reduce charging effects.

The amorphous content of VA was determined via the dissolution of volcanic ash
in NaOH, followed by HCl solution, according to standard ASTM C289 [26] and French
standard XP P18-594 [8,33,34]. VA firing following the same thermal treatment of the bricks
was also analyzed using X-ray diffractometry (XRD).

Four different mix compositions (reported in Table 1) were investigated. Each batch
had a total weight of 5 kg. The predetermined weights of air-dried clay, volcanic ash
and water were mixed and then shaped into specimens of 16 cm × 4 cm × 4 cm and
10 cm × 5 cm × 2 cm to carry out compression and bending tests and a capillary water
absorption test and produce photoluminescent tiles.

Once shaped, all the specimens were placed on supports and sundried in the open air
for 4 days. They were repeatedly rotated to favor the most homogeneous drying process
and to avoid any deformation and breakage. Drying was carried out before the firing stage
to allow for the loss of most of the water content of mix, thus preventing the swelling
or bloating of the samples caused by the expansion of entrapped water during the firing
step [35]. After drying, specimens were fired using an oven produced by the company
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ITALFORNI Pesaro S.r.l. (Pesaro, Italy) for 24 h. The temperature was gradually increased
in the first 10 h to reach 950 ◦C. The low heating rate of the firing process avoids the
formation of an impermeable vitrified outer skin that hinders the release of produced gases,
such as CO2, from the bulk of the brick [35]. The final temperature was held for 14 h. A
slow cooling was then carried out up to 250 ◦C, followed by a final faster cooling step up to
room temperature (≈25 ◦C)

The dimensional linear retraction (DLR) was calculated by Equation (3):

DLR =
Ls − Lq

Ls
× 100 (3)

where Ls is the initial length of the ceramic specimens, while Lq is the length after firing [36].
The dynamic modulus of elasticity (Ed, in GPa) of the specimens was calculated using

Equation (4):

Ed = v2 × ρ × (1 − νd)× (1 − 2νd)

(1 − 2νd)
(4)

where νd is the Poisson’s modulus (equal to 0.20), ρ is the specific mass at hardened state
(kg/m3) and v the velocity pulse (in m/s) measured using an Ultrasonic Digital Indicator
Tester [37].

The sorptivity of bricks (S) was calculated by collecting the weight gain by unit area
(A) of four specimens for each mix at regular intervals of immersion (t) and plotting them
according to the following equation [38,39]:

A = a0 + St0.5 (5)

The absorption of water expressed as a percentage of the weight of the dry brick (Aw)
was calculated as follows [40,41]:

Aw =
m2 − m1

m1
× 100 (6)

where m1 = the mass of the dry brick, and m2 = the mass of the wet brick after the immersion.
The flexural strength was measured by applying a three-point bending test to ten

prismatic specimens with dimensions of 4 × 4 × 16 mm, according to UNI-EN 196-1 [37].
The compressive strength was then measured using the twenty prism-half specimens
generated from the bending test, according to UNI-EN 196-1 [42]. The selected geometry
is different from that proposed by the European standard EN 771-2, British Standard BS
3921:1985 and ASTM C62-13 for bricks [43–45].

Table 1. Composition of the mix.

Samples Dried Clay
(kg)

Volcanic Ash
(kg)

Volcanic Ash
(wt%) *

Water
(wt%) *

B 5 0.0 0.0 27
BVA10 4.5 0.5 10 24
BVA30 3.5 1.5 30 19
BVA50 2.5 2.5 50 -

* Refers to the total weight of the mixture (dry clay and volcanic ash).

The 10 cm × 5 cm × 2 cm fired specimens were used to test the photoluminescent properties.
To find the best experimental conditions for an effective photoluminescent surface

activation, two different application methods were used.
Method (A): A 2 wt% aqueous photoluminescent suspension was brushed on the

surface of the fired ceramic support (Figure 1a). The support was then soaked in the
ceramic glaze mixture (60 wt% of water and 40 wt% of glaze) for a couple of seconds and
then pulled up and left to drain to eliminate the excess of product (Figure 1b).
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Method (B): The photoluminescent powders, in percentage of 2 wt%, were added to the
ceramic glaze mixture. The fired ceramic supports were soaked in it for a couple of seconds and
then pulled up and left to drain to eliminate the excess of product.

Finally, all the glazed specimens functionalized with photoluminescent agents using
method (A) and (B), were fired again using an oven produced by the company ITALFORNI
Pesaro S.r.l. for 24 h. The temperature was gradually increased in the first 10 h to reach 950 ◦C.
The final temperature was held for 14 h. A slow cooling was then carried out up to 250 ◦C,
followed by a final faster cooling step up to room temperature (≈25 ◦C).

3. Results and Discussion

Figure 2 shows an XRD analysis of clay with the identified main crystalline phases, and
Table 2 reports their weight percentages as obtained by implementing the Rietveld method,
using Profex software. Calcite, muscovite, halloysite and albite are the most abundant minerals
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The measured LOI550 of clay was equal to 4.2 ± 0.2 wt%, whereas LOI950 resulted
in being equal to 8.4 ± 0.3 wt%. The thermogravimetry (TG) and differential scanning
calorimetry (DSC) analyses of the dried clay were used to evaluate the different contribu-
tions to the measured LOI550. The results are shown in Figure 3. The initial endothermic
peaks up to 180 ◦C in the DSC curve are associated with the loss of free and chemically
bonded water (mass loss is about 0.58 wt%). The endothermic peaks centered at about
505 ◦C and 590 ◦C are associated with the dehydroxylation of phyllosilicates (mass loss be-
tween 180 ◦C and 550 ◦C is about 3.2 wt%) [24]. The endothermic peak that starts at 700 ◦C
is produced by the decomposition of the carbonates. No exothermic peaks associated with
the combustion of organic matter were identified. It can be concluded that most of LOI550
arises from the water loss and dehydroxylation of clay components.

Table 2. Weight percentages of the mineral phases contained in clay.

Mineral wt% ESD

Orthoclase 3.83 0.38
Albite 11.29 0.59

Rhomboclase 4.29 0.52
Calcite 23.97 1.29

MgCalcite 3.18 0.59
Dolomite 4.92 0.29
Mullite21 3.55 0.41
Musc2m1 3.21 0.61

Muscovite2M1 1.64 0.39
Muscovitena037 5.52 0.92

Parago2m 1.88 0.38
Parago1m 4.42 0.59
Chamosite 5.35 0.30

ClinochloreIIb4 2.50 0.14
Halloysite7A 5.71 0.36
Halloysite10A 7.24 0.48

Quartz 4.50 1.12
Illite 2.99 0.65
Rwp 12.79
Rexp 7.21
Chi2 3.1468
GOF 1.7739
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Figure 3. TG (gray line) and DSC (red line) curves of clay.

Figure 4 shows the particle size distribution of as-received volcanic ash. It ranges
between 0.5 and 2.7 mm.
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The morphology and surface chemical composition of the volcanic ash were analyzed
by SEM-EDX (Figure 5 and Table 3). The high silicon and aluminum contents of VA are
consistent with their use for ceramic application. VA’s high content of iron discourages its
a priori use in the production of porcelain and white ceramics.
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Table 3. Composition in terms of oxides of spots as obtained by EDX analysis in Figure 5.

Oxide Spot A
(wt%)

Spot B
(wt%)

Na2O 7.7 6.0
MgO 4.9 5.8
Al2O3 16.6 14.7
SiO2 43.1 40.4
K2O 2.8 2.7
CaO 10.2 11.2
Fe O 12.3 16.8
TiO2 2.1 2.3

Volcanic ash is characterized by irregular and jagged particles containing cavities on
the surface and inside. They are referred to as vesicles, and they are produced by the
expansion of magmatic gas before the enclosing magma solidifies [9,46].

Before its use, the VA was crushed. Its new particles size distribution, on a volume
basis, is reported in Figure 6
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Crushed volcanic ash is characterized by a D(0.1) of 122.16 µm, a D(0.5) of 463.52 µm
and a D(0.9) of 881.644 µm.

Figure 7 shows the XRD analysis of powdered VA with the identified main crystalline
phases, and Table 4 reports their weight percentages, as obtained by implementing the
Rietveld method, using Profex software. Albite, stishovite and augite are the most abundant
minerals. The broad hump between 18◦ and 40◦ (2θ) is attributed to the reactive amorphous
silica-rich phase [8].

The VA amorphous phase content, as determined according to the standard ASTM
C289 [26] and French Standard XP P18-594 [8,33], was equal to 24 wt% ± 1. This is
potentially significant, since the amorphous phase helps decrease the melting temperature
of VA, which is usually around 1100–1200 ◦C [8,36,47].

The VA showed a poor and highly dispersed crush strength. It resulted in being equal
to 15.5 N (Standard Deviation = 6.1 N).

To investigate the crystallization process that VA faces upon firing, 100 g of volcanic
ash was fired in an oven, using the same heating/cooling procedure used for bricks. An
X-ray diffractometric analysis was carried out on crushed and fired VA, and the results are
reported in Figure 8. In the inset of Figure 8, images of VA as is and after crushing and firing
are shown. The firing process promoted a change in color from black to brownish due to
the oxidation of Fe-containing phases [48,49]. The results were analyzed by implementing
the Rietveld method, using Profex software (Table 5). The main crystalline phases after
the thermal treatment in the furnace are silica, augite and magnetite. The XRD plot of the
fired sample showed an increase in the intensity and number of peaks that is related to the
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complexity of minerals formed during the thermal treatment through recrystallisation and
sintering, as also reported by Leonelli et al. [50].
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Figure 7. XRD pattern of Etna ash with identified crystalline phases.

Table 4. Mineral composition of VA.

Phase wt% ESD

Augite 13.27 0.87
Anorthite 4.99 0.79
Maghemite 0.64 0.24
Titanomaghemite 0.33 0.12
Muscovite2M1 7.16 0.91
Merrillite 4.91 0.90
Stishovite 13.57 0.59
Magnetite 0.03 0.07
Maghemite 0.64 0.24
Sanidine 0.16 0.33
Aragonite 3.33 0.50
Calcite 6.77 1.23
Quartz 1.00 0.41
Hematite 3.60 0.29
Anortk33 (Albite high_k_33) 39.43 1.57
Rwp 15.67
Rexp 10.39
Chi2 2.27
GOF 1.51
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Figure 8. XRD and fired volcanic ash. Insert: as is volcanic ash (A) and crushed and fired volcanic
ash (B).

Table 5. Mineral composition of fired VA.

Phase wt% ESD

Albite 1.916885 0.33499
Calcite 1.284127 0.204716
Clinochlore1A 1.600506 0.3536
Musc2m1 0.986358 0.279158
Siderite 2.140212 0.186105
FerrosiliteMg06Fe13Ca 1.637727 0.409432
Hematite 1.833138 0.178661
Magnetite 9.677479 0.725811
Augite 21.73711 1.712169
Maghemite 1.098022 0.428042
Titanomaghemite 1.507454 0.279158
Anorthoclase 5.601772 0.7072
Oligoclase 8.746953 0.949137
Silica 26.79917 4.466529
Cristobalite 6.885899 0.595537
Dolomite 3.666276 0.372211
Enstatite 2.493812 0.558316
Rwp 14.93
Rexp 9.96
Chi2 2.247
GOF 1.499

The commercial photoluminescent powder used in the present investigation (ZYYINI-
MYX-RAG-JM04576-03-FBA) is a white powder under the sunlight (Figure 9A). After
charging by exposure to a light source (sunlight, electric or UV light), it lights up in the
darkness (Figure 9B), without limit in recharges. The powder is made up of inactive Eu-
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ropium/Strontium aluminates, silicates and carbonates, as confirmed by elements detected
by SEM-EDX analysis (Table 6).
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Table 6. Elemental composition of photoluminescent powders as obtained by EDX analysis.

Element (wt%)

O 68.5
Mg 1.1
Al 7.8
Si 14.5
Sr 4.0
Ca 0.7
Na 2.5
Fe 1.0

The mixtures with 0%, 10% and 30% of volcanic ash after the addition of water were
molded, as represented in Figure 10a–c. The mix with 50 wt% of volcanic ash failed to
provide a workable and moldable mixture. Thus, it was excluded from the following
experimental campaign (Figure 10d). The behavior can be explained by the fact that
volcanic ash does not possess intrinsic plasticity, and in the fresh state, it mainly plays
the role of a nonplastic material or a temper providing support for the body [38]. The
maximum percentage of clay replacement is in accordance with the previously reported
literature [10,23,24]. Furthermore, the produced bricks show a texture that becomes coarser
with the increase in volcanic ash content.

After firing, the weight loss and dimensional changes of all the prepared specimens
were measured. Figure 11 shows the average length changes of the specimens after firing.

The data show that increasing the percentage of volcanic ash in the initial mixture
results in greater dimensional stability after firing. Samples with 0%, 10% and 30% of
volcanic ash showed a dimensional percentage variation (DLR) equal to 5.9%, 4.1% and
2.9%, respectively, all in the range of the measured values in bricks [30,39]. Student’s
t-test was carried out to verify whether differences shown in the dimensional changes of
specimens at different VA contents are significant with respect to bricks produced using
only clay. The level of significance (α) was set to 0.05. The addition of VA showed a
significant statistical effect (p = 0.04) only when 30 wt% of VA was used. In general, for
solely clay bricks, the linear shrinkage is associated with the amount of glassy phase
produced during firing, because it enters and fills the porosity in the microstructure of
the ceramic; dehydroxylation of a few clay minerals (mainly 1:1 ones); decomposition
of carbonates; and collapse of the crystal structure of clay minerals [51]. Therefore, a
densification occurs that determines the matrix shrinkage and improves the mechanical
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and absorption properties of brick [52]. The decrease in the DLR with the increasing amount
of VA can be explained in terms of its lower contribution to the densification process; with
respect to clay, VA densification is the result of the recrystallisation, during the sintering, of
its low-melting-temperature glassy components. The weight loss of bricks after firing was
also measured, and the results are reported in Figure 12.
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Figure 10. Unfired specimens with percentage of volcanic ash: (a) B, (b) BVA10, (c) BVA30 and
(d) unbendable mixture with volcanic ash at 50% by weight.
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Figure 12. Weight loss (%) after firing specimens with different volcanic ash contents. The bars
display standard errors (SEs).

The bricks produced without volcanic ash showed a weight loss around 16 wt%, a
value that lies in the range of those reported in the scientific literature [35]. Moreover,
Figure 11 shows that the weight loss after firing decreased with the increasing the percent-
age of clay replacement with volcanic ash in the mixes. Student’s t-test was carried out to
verify whether differences shown in the weight loss of specimens at different VA contents
are significant with respect to bricks produced using only clay. The level of significance (α)
was set to 0.05. The replacement of clay with 10 wt% and 30 wt% of VA showed a highly
significant statistical effect (p < 0.001 in both the cases). Such a trend confirms that the
measured weight loss of bricks is mainly associated with the inorganic and carbonaceous
substances in clay being burnt off during the firing process and dehydroxylation reaction
in clay [53].

Figure 13 shows the flexural and compressive strength values of the produced specimens.
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Figure 13. Compressive and flexural strengths as a function of the percentage of volcanic ash. The
bars display standard errors (SEs).

The addition of volcanic ash even in a low percentage determines a degradation of me-
chanical properties. This is most likely linked to the existence of inconsistent points due to the
presence of volcanic ash fragments only partially melted and weakly joined to the clay matrix.
The addition of 10 wt% of volcanic ash reduced the compressive and flexural strength by 57%
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and 59%, respectively. The addition of 30 wt% of VA led to a further decline in mechanical
properties, with a decrease of around 66% for both the compressive and compressive strength.
Student’s t-test was carried out to verify whether differences shown in the weight loss of speci-
mens at different VA contents are significant with respect to bricks produced using only clay.
The level of significance (α) was set to 0.05. The replacement of clay with 10 wt% and 30 wt%
of VA showed a highly significant statistical effect on mechanical properties (p < 0.001 in both
cases) However, the obtained values of compressive strength are higher than those required
by the European Standard EN 771-2 [43] and the British Standard BS 3921:1985 [44], i.e., 5 MPa
and 5.2 MPa, respectively. Furthermore, all the tested mixes succeed in providing compressive
strengths higher than the minimum value required by ASTM C62-13 [45] for bricks used in
normal weathering, equal to 10.34 MPa. The prepared bricks with VA failed to exceed the limit
value of 17.23 MPa required by ASTM C62-13 [45] for their use in moderate weathering.

Our findings are also slightly lower than those obtained by Cultrone [24] at 950 ◦C,
with compressive strength values around 21.35 MPa with 10 wt% of VA. The texture,
mineralogy and dynamic modulus of elasticity of bricks were thus analyzed to explain the
obtained results.

In Figure 14, the SEM-EDX analyses of the cross-section of the B sample are reported. As
can be observed, sample B shows a dense microstructure. Isolated pores can be identified.
Minerals such as alkali feldspars (Figure 14A and Table 7), quartz (Figure 14B and Table 7) and
mica/illite (Figure 15C and Table 7) were identified.Environments 2023, 10, x FOR PEER REVIEW 17 of 29 
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Figure 14. (A–C) SEM and EDX analyses of B sample. EDX spectra (red measured, blue calculated)
have been obtained by analyzing the area in the red circled spots.

Table 7. Composition in terms of oxides of spots as obtained by EDX analysis in Figure 14.

Oxide Spot A
(wt%)

Spot B
(wt%)

Spot C
(wt%)

Na2O 1.08 - 6.8
MgO 27.85 - -
Al2O3 3.60 - 19.8
SiO2 0.09 1.9 64.1
K2O 51.78 98.1 9.3
CaO 1.47 - -
Fe O 1.64 -

Environments 2023, 10, x FOR PEER REVIEW 19 of 29 
 

 

 

 
Figure 15. XRD pattern of powdered B sample after firing. 

Table 8. Mineral composition of B bricks. 

Phase wt% ESD 
Goethite 1.08 0.23 
Augite 27.85 1.89 

Hematite 3.60 0.53 
Calcite 0.09 0.22 

Anorthoclase 51.78 3.11 
Stishovite 1.47 0.39 

Ferrihydrite 1.64 0.39 
Maghemite 3.00 0.50 

Quartz 8.00 1.07 
Stishovite 1.47 0.39 

Rwp 20.62  

Rexp 14.58  

Chi2 2.0001  

GOF 1.4143  

In Figure 16, the SEM-EDX analyses of the cross-section of the powdered BVA30 sam-
ple are reported. VA can be clearly identified, thus meaning that they only marginally 
melted. Furthermore, the cutting and polishing processes highlighted the poor bond be-
tween the clay matrix and VA particles as a clean cracking occurred at the edge of VA. 
Several cracks and voids are also visible in the VA. The present outcome differs from that 
of Cultrone et al. [24], who found that, at the same firing temperature, most of VA partially 
melted and bonded to the clay matrix. The cross-section of VA particles is characterized 
by several crystals embedded in the amorphous region. Figure 16A and Table 9 provides 
a local composition of the amorphous region, mainly consisting of the Si/Al/Fe domain. 
The compositions that were obtained by EDX analysis of the crystals analyzed in Figure 
16B, C and reported in Table 9 are congruent with those of clinopyroxene and plagioclase 
groups, respectively. The findings are supported by the results of XRD analysis carried 
out on fired VA. 

Diffraction Angle [degrees 2theta]

In
te

ns
ity

 [c
ou

nt
s]

5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00

0

200

400

600

800

1000

I observed
I calculated
I difference
Background

Goethite
Augite
Hematite

Anorthoclase
Quartz
Stishovite
Ferrihydrite
Maghemite
Quartz
Quartz

Figure 15. XRD pattern of powdered B sample after firing.

The XRD pattern of the powdered B specimens, the main crystalline phases and their
weight percentages as obtained by implementing the Rietveld method, using Profex software,
are reported in Figure 15 and Table 8. Augite, anorthoclase, quartz and hematite are the most
abundant minerals in B bricks, thus confirming the EDX findings. Anorthoclase belongs to the
group of alkali feldspars. Bearing in mind the mineralogical composition of the used clay, it is
likely that it was produced by the reaction of clinochlore with illite/mica, calcite and quartz
upon firing up to 950 ◦C [54].
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Table 8. Mineral composition of B bricks.

Phase wt% ESD

Goethite 1.08 0.23
Augite 27.85 1.89

Hematite 3.60 0.53
Calcite 0.09 0.22

Anorthoclase 51.78 3.11
Stishovite 1.47 0.39

Ferrihydrite 1.64 0.39
Maghemite 3.00 0.50

Quartz 8.00 1.07
Stishovite 1.47 0.39

Rwp 20.62
Rexp 14.58
Chi2 2.0001
GOF 1.4143

In Figure 16, the SEM-EDX analyses of the cross-section of the powdered BVA30 sample
are reported. VA can be clearly identified, thus meaning that they only marginally melted.
Furthermore, the cutting and polishing processes highlighted the poor bond between the clay
matrix and VA particles as a clean cracking occurred at the edge of VA. Several cracks and voids
are also visible in the VA. The present outcome differs from that of Cultrone et al. [24], who
found that, at the same firing temperature, most of VA partially melted and bonded to the clay
matrix. The cross-section of VA particles is characterized by several crystals embedded in the
amorphous region. Figure 16A and Table 9 provides a local composition of the amorphous
region, mainly consisting of the Si/Al/Fe domain. The compositions that were obtained by
EDX analysis of the crystals analyzed in Figure 16B,C and reported in Table 9 are congruent
with those of clinopyroxene and plagioclase groups, respectively. The findings are supported by
the results of XRD analysis carried out on fired VA.Environments 2023, 10, x FOR PEER REVIEW 20 of 29 
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Figure 16. (A–C) SEM and EDX analyses of BVA30 sample. EDX spectra (red measured, blue cal-
culated) have been obtained by analyzing the area in the red circled spots. 
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calculated) have been obtained by analyzing the area in the red circled spots.

Table 9. Composition in terms of oxides of spots as obtained by EDX analysis in Figure 16.

Oxide Spot A
(wt%)

Spot B
(wt%)

Spot C
(wt%)

Na2O 3.0 1.3 5.6
MgO 6.1 13.8 -
Al2O3 16.5 4.8 29.8
SiO2 48.8 47.3 49.9
P2O5 0.5 - 9.3

Cl 0.2 - -
K2O 4.0 - 0.5
CaO 9.1 23.6 13.2
TiO2 2.2 1.7 -
FeO 9.6 7.5 1.0

The XRD pattern of the powdered BVA30 specimens, the main crystalline phases and
their weight percentages, as obtained by implementing the Rietveld method, using Profex
5.2 software, are reported in Figure 17 and Table 10. Augite, albite high_k_33 and stishovite
are the most abundant minerals in BVA30 bricks. Interestingly, muscovite and calcite are
still present, meaning that decomposition/reaction of those phases is slowed by VA. Similar
behavior was found by Cultrone et al. [24]. A reasonable explanation is that VA, which
was found to melt only marginally in the tested operative condition, is an obstacle to the
diffusion of CO2. As a consequence, its partial pression increases and prevents the further
decomposition of CaCO3 particles [55].

Figure 18 report the results obtained on the absorption of water as a function of time
tested on B, BVA10 and BVA30 samples.

Three samples were tested for each system, and the results obtained represent an
average of the values obtained.

Table 11 summarizes sorptivity as obtained by experimental data fitted using Equation (1)
and water absorption values.

Interestingly, as shown in Figure 17 and reported in Table 11, the addition of volcanic
ash lowers the sorptivity values and hinders the absorption of water. Similar findings were
reported by Cultrone [24], and they were related to the fact that volcanic ash altered the
pore size distribution toward larger dimensions, thus not favoring the capillary absorption
of water, and lowered the degree of interconnection between the pores. However, sorptivity
and water absorption are greater in BVA30 than in BVA10. In this case, the abovementioned
effect can be partially hindered by the further deterioration of the mechanical properties of
the bricks. The percentage of absorbed water in the produced bricks with VA meets the
second-class brick water absorption criteria (<20%) according to ASTM C20-00 [56]. As
expected, a strong correlation is observed between the compressive strength and the dy-
namic elastic modulus values (Table 12), with the measured dynamic modulus of elasticity
decreasing by 24% and 39% with the addition of 10 wt% and 30 wt% of VA, respectively.
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Figure 17. XRD pattern for powdered BVA30 sample after firing.

Table 10. Mineral composition of BVA30 bricks.

Phase wt% ESD

Augite 13.27 0.87
Anorthite 4.99 0.79
Maghemite 0.64 0.24
Titanomaghemite 0.33 0.12
Muscovite2M1 7.16 0.91
Merrillite 4.91 0.90
Stishovite 13.57 0.59
Magnetite 0.03 0.07
Maghemite 0.64 0.24
Sanidine 0.16 0.33
Aragonite 3.33 0.50
Calcite 6.77 1.23
Quartz 1.00 0.41
Hematite 3.60 0.29
anortk33 (Albite high_k_33) 39.43 1.57
Rwp 15.67
Rexp 10.39
Chi2 2.27
GOF 1.51
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Figure 18. Water absorption versus time for samples obtained from systems containing (a) B,
(b) BVA10 and (c) BVA30. The bars display standard errors (SE).

Table 11. Sorptivity and water absorption of samples obtained with different amounts of volcanic ash.

Sample S
(kg/m2min0.5)

a0
(kg/m2)

Average 24-h Water
Absorption (%)

B 1.87 −0.612 16.05
BVA10 1.28 −0.95 13.52
BVA30 1.82 −0.67535 14.86

Table 12. Apparent density and dynamic modulus of elasticity of bricks.

Sample Density
(g/cm3)

Dynamic Modulus of Elasticity
(GPa)

B 1.89 25.9
BVA10 1.85 19.6
BVA30 1.80 15.85
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The apparent density of the bricks (Table 12) slightly decreases with the addition of
volcanic ash, but all the values are in the range established for good-quality brick [57].

Two protocols that were described in the methods’ section were then carried out on
some of the prepared bricks for each composition, with the aim of providing them with
photoluminescent activity, thus increasing their suitability as decorative elements. Figure 19
shows the images of the fired specimens containing different percentages of volcanic ash
and subjected to photoluminescent surface activation.
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Figure 19. Samples upon exposure to sunlight for 3 min after photoluminescent activation with
methods (a,b).

The two methods, although possessing different levels of efficiency, both proved to be
appropriate for conferring photoluminescent activity on ceramic supports. In fact, despite
having reached very high temperatures during firing, they maintain their photolumines-
cence properties.

Method (a) is more effective in providing the photoluminescent effect, as it creates
a more intense and uniform brightness. It allows the water-dispersed photoluminescent
powder to better impregnate the surface of the bricks, thus producing thicker and more
adherend layers that are not affected by successive dip-coating in glaze. In contrast, the
ceramic glaze mixture does not favor the dispersion of photoluminescent powder, as several
spots are clearly visible on the bricks in the dark after exposure to sunlight. The presence of
bright lines also suggests that photoluminescent powders are prone to be drained with the
excess of glaze. It is well known that luminescent photo materials are inclined to hydrolyze
and deteriorate [58]. Thus, it is crucial to enhance water resistance. The glaze used to fix
the photoluminescent powder onto the surface of the specimens generates, after firing,
a transparent, colorless and waterproof thin glass coating on the surface of the ceramic
material, thus increasing the durability of the photoluminescent materials.
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4. Conclusions

The main findings of the experimental campaign can be summarized as follows:

• The Etna volcanic ash contains inorganic glasses, albite, stishovite, augite–albite, and
anorthite. The high content of iron excludes their use in the production of porcelain
Upon firing at 950 ◦C, an increase in the intensity and number of peaks of the crystalline
phases was observed and ascribed to minerals formed during the thermal treatment
through recrystallisation and sintering.

• Workable and moldable mixtures were prepared by adding up to 30 wt% of VA. The
mix with 50 wt% of volcanic ash failed to provide satisfactory fresh properties.

• Weight loss after firing decreases with the increasing of the percentage of clay replace-
ment with volcanic ash, whereas dimensional stability increases. Embedded volcanic
ash particles are clearly visible in the microstructure of bricks. It can be assumed that,
at the used firing temperature, VA mainly plays the role of nonplastics or temper,
providing support for the body.

• Increasing the percentage of VA results in a significant decrease in the mechanical
properties up to 66% at the highest replacement percentage. This is due to the presence
of volcanic ash particles only partially melted and not firmly joined to the clay matrix,
as also confirmed by values of the dynamic elastic modulus and SEM analysis. How-
ever, measured the values are higher than those required by the European standard
EN 771-2 [43], British Standard BS 3921:1985 [44] and ASTM C62-13 [45] for bricks that
can be used in normal weathering.

• The addition of volcanic ash lowers the sorptivity values by up to 10 wt% and hinders
the absorption of water of bricks. The produced bricks with VA meet the second-class
brick water absorption criteria according to ASTM C20-00 [56].

• A procedure to provide surface of bricks with intense photoluminescent properties,
ensuring uniform brightness, was identified.

Based on the present results, the authors suggest that an increase in the mechanical
properties of bricks with VA can be achieved by firing them at higher temperatures, thus
promoting a more extensive melting and sintering of VA particles.

Author Contributions: Conceptualization, S.C. and P.D.L.; methodology, S.C. and P.D.L.; validation,
S.C. and P.G.; formal analysis, F.C.; investigation, P.G; data curation, S.C.; writing—review and
editing, S.C. and P.D.L.; supervision, P.D.L., S.C., and F.C. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Barone, G.; De Giudici, G.; Gimeno, D.; Lanzafame, G.; Podda, F.; Cannas, C.; Giuffrida, A.; Barchitta, M.; Agodi, A.; Mazzoleni, P.

Surface reactivity of Etna volcanic ash and evaluation of health risks. Sci. Total Environ. 2021, 761, 143248. [CrossRef] [PubMed]
2. Tesone, A.I.; Lasagni Vitar, R.M.; Tau, J.; Maglione, G.A.; Llesuy, S.; Tasat, D.R.; Berra, A. Volcanic ash from Puyehue-Cord on

Caulle volcanic complex and Calbuco promote a differential response of pro-inflammatory and oxidative stress mediator son
human conjunctival epithelial cells. Environ. Res. 2018, 167, 87–97. [CrossRef] [PubMed]

3. Barsotti, S.; Andronico, D.; Neri, A.; Del Carlo, P.; Baxter, P.J.; Aspinall, W.P.; Hincks, T. Quantitative assessment of volcanic
ash hazards for heath and infrastructure at Mt. Etna (Italy) by numerical simulation. J. Volcanol. Geoth. Res. 2010, 192, 85–96.
[CrossRef]

4. Horwell, C.J.; Baxter, P.J. The respiratory health hazards of volcanic ash: A review for volcanic risk mitigation. Bull. Volcanol.
2006, 69, 1–24. [CrossRef]

https://doi.org/10.1016/j.scitotenv.2020.143248
https://www.ncbi.nlm.nih.gov/pubmed/33183826
https://doi.org/10.1016/j.envres.2018.07.013
https://www.ncbi.nlm.nih.gov/pubmed/30014900
https://doi.org/10.1016/j.jvolgeores.2010.02.011
https://doi.org/10.1007/s00445-006-0052-y


Environments 2023, 10, 172 22 of 23

5. Gagliano, E.; Sgroi, M.; Falciglia, P.P.; Belviso, C.; Cavalcante, F.; Lettino, A.; Vagliasindi, F.G.A.; Roccaro, P. Removal of ammonium
from wastewater by zeolite synthetized from volcanic ash: Batch and column tests. J. Environ. Chem. Eng. 2022, 10, 107539.
[CrossRef]

6. Milios, L. Advancing to a Circular Economy: Three essential ingredients for a comprehensive policy mix. Sustain. Sci. 2017, 13,
861–878. [CrossRef] [PubMed]

7. Candamano, S.; Tassone, F.; Iacobini, I.; Crea, F.; De Fazio, P. The Properties and Durability of Self-Leveling and Thixotropic
Mortars with Recycled Sand. Appl. Sci. 2022, 12, 2732. [CrossRef]

8. Djon Li Ndjock, B.I.; Baenla, J.; Mbah, J.B.B.; Elimbi, A.; Cyr, M. Amorphous phase of volcanic ash and microstructure of cement
product obtained from phosphoric acid activation. SN Appl. Sci. 2020, 2, 1–10. [CrossRef]

9. Latif, D.O.; Rifa’i, A.; Suryolelono, K.B. Chemical characteristics of volcanic ash in Indonesia for soil stabilization: Morphology
and mineral content. GEOMATE J. 2016, 11, 2606–2610. [CrossRef]

10. Serra, M.F.; Conconi, M.S.; Suarez, G.; Aglietti, E.F.; Rendtorff, N.M. Volcanic ash as flux in clay based triaxial ceramic materials,
effect of the firing temperature in phases and mechanical properties. Ceram. Int. 2015, 41, 6169–6177. [CrossRef]

11. Alemayehu, E.; Lennartz, B. Virgin volcanic rocks: Kinetics and equilibrium studies for the adsorption of cadmium from water.
J. Hazard. Mater. 2009, 169, 395–401. [CrossRef] [PubMed]

12. Siddique, R. Effect of volcanic ash on the properties of cement paste and mortar. Resources. Conserv. Recycl. 2011, 56, 66–70.
[CrossRef]

13. Lemougna, P.N.; Wang, K.; Tang, Q.; Nzeukou, A.N.; Billong, N.; Melo, U.C.; Cui, X. Review on the use of volcanic ashes for
engineering applications. Res. Conserv. Recy. 2018, 137, 177–190. [CrossRef]

14. Djon Li Ndjock, B.I.; Elimbi, A.; Cyr, M. Rational utilization of volcanic ashes based on factors affecting their alkaline activation.
J. Non-Cryst. Solids 2017, 463, 31–39. [CrossRef]

15. Liu, Y.; Taylor, L.A. Characterization of lunar dust and a synopsis of available lunar simulants. Planet. Space Sci. 2011, 59,
1769–1783. [CrossRef]

16. Shichalin, O.O.; Papynov, E.K.; Nepomnyushchaya, V.A.; Ivanets, A.I.; Belov, A.A.; Dran’kov, A.N.; Yarusova, S.B.; Buravlev, I.Y.;
Tarabanova, A.E.; Fedorets, A.N.; et al. Hydrothermal synthesis and spark plasma sintering of NaY zeolite as solid-state matrices
for cesium-137 immobilization. J. Eur. Ceram. Soc. 2022, 42, 3004–3014. [CrossRef]

17. Yarusova, S.B.; Shichalin, O.O.; Belov, A.A.; Azon, S.A.; Buravlev, I.Y.; Golub, A.V.; Mayorov, V.Y.; Gerasimenko, A.V.;
Papynov, E.K.; Ivanets, A.I.; et al. Synthesis of amorphous KAlSi3O8 for cesium radionuclide immobilization into solid matrices
using spark plasma sintering technique. Ceram. Int. 2022, 48, 3808–3817. [CrossRef]
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