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Abstract: Taiwan is located at the junction of plates in which the stratum is relatively unstable,
resulting in frequent earthquakes. Driftwood has always been regarded as a precious asset that
enables ecoscientists to track earthquakes. In the event of a typhoon or heavy rain, the surface water
flows to flush the woods from the hills to the coast. More specifically, a large rainfall or earthquake
may cause floods and collapses, and the trees in the forest will be washed down. Therefore, this
study used high-resolution images to build an image database of the new north coast of Taiwan, and
a deep learning approach is incorporated to classify the driftwoods. To improve the interpretation
of driftwood in the remote images, we initially import eight pieces of textured information which
are employed to the raw bands (B, G, R, and IR). The usage of spatial information image extraction
technology is incorporated into a deep learning analysis using two parallel approaches. The gener-
ative adversarial network (GAN) is used to analyze the color images alongside an ancillary image
with texture information. Most of the salt–pepper effects are produced by applying a high-resolution
thematic map, and an error matrix is generated to compare the differences between them. The
raw data (original R + G + B + IR) images, when analyzed using GAN, have about 70% overall
classification outcomes. Not all of the driftwood can be detected. By applying the texture information
to the parallel approach, the overall accuracy is enhanced to 78%, and about 80% of the driftwood
can be recognized.

Keywords: driftwood; image classification; generative adversarial network; texture information

1. Introduction

Driftwood has always been regarded as a precious natural asset in Taiwan. Taiwan
is located at the junction of plates, and the stratum is unstable with frequent earthquakes,
which have made the soil density soft and loose. Once a typhoon or heavy rain occur, the
huge rainfall displaces the trees on the hill to the seashore, which is called driftwood. In
other woods, the load on plants and soil, and the large increase in surface water flow, may
cause flooding and collapse, and the trees in the forest will be washed down as a result.
In fact, not all driftwood trees have economic value, such as juniper, cinnabar, and other
precious wood species. Generally, as long as the forest encounters natural collapse and
floods, every species of tree may become driftwood.

In the past, pixel-based classification has been widely used in image classification
applications. In our previous work, we have studied the application of machine learning
techniques and contributed to reducing the salt–pepper effect of investigating coastal
waste [1]. However, there are some interesting questions that arise on how to use deep
learning techniques for analysis. The current study plans to use two kinds of image data
material to demonstrate that the GAN classifier is a suitable material. Furthermore, an
effective classification approach (e.g., support vector machine) can be employed to attain
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the classification outcomes. The drawback of this sort of progress is the challenge of
successfully obtaining approximate classification results from one’s efforts. Unfortunately,
the salt–pepper effect is widely produced with this sort of analysis. On the other hand,
with the speedy development of deep learning algorithms, studies on the understanding
of digital images for different computer vision applications have drawn a great deal of
attention from scientists in recent years through applying various algorithms/networks
of performance and assessing the feasibility of massive amounts of data. Deep learning
usually applies on raw data samples (e.g., an RGB image) and removes the need for
domain features. However, pieces of driftwood are usually irregularly shaped within the
images, and detecting objects to make the classification work a success are quite difficult.
Object detection identifies and localizes specific objects within an image, while semantic
segmentation assigns a label to each pixel, effectively segmenting the image into different
regions. A basic question arises: how to determine the texture information necessary
for the deep learning (or picture-based classification) approach? That is, before feeding
images into a deep learning model, you can apply pre-processing techniques to enhance or
extract texture information. These pre-processed features may be useful for the inputs to
the deep learning model. Accordingly, the new approach of deep feature learning, which
automatically utilizes complex and high-level feature representations, has significantly
improved the performance of state-of-the-art methods across computer visions, such as
object detection or picture-based approaches. Meanwhile, a series of discriminative models
can be applied to the classification–learning process by learning the conditional probability
of the object similarity. More specifically, one of the most popular deep learning methods
used for object detection or identification is convolutional neural networks (CNN) for
feature extraction and image classification [2–7].

Meanwhile, the advanced generative models are focused on the data distribution to
laterally discover the underlying features from large amounts of data in an unsupervised
setting. One of the well-accepted uses of these deep learning methods for computer vision
fields is a technique called data augmentation. A fundamental question arises: why should
we consider using GAN as a classifier to perform the identification of driftwood in the
coastal area? There are a few reasons for managing data augmentation using GAN [4]:
(1) the best application for increasing model skill, (2) providing a regularizing effect, and
(3) reducing generalization errors. It successfully works by introducing new or artificial
examples to the input into the set of samples on which the model can be trained. These
techniques are new with regard to many applications of existing images in the training
dataset. More specifically, a successful generative model provides a general approach for
data augmentation in classification progress. In theoretical aspects, data augmentation is
a procedure of increasing the training set by creating modified copies of a dataset using
existing data, which is a simplified solution of generative modeling [8].

The generative adversarial network has been one of the significant recent develop-
ments in the domain of unsupervised deep generative models [8]. The basic idea for GANs
is that they consist of two neural networks working against each other in a sort of competi-
tion. (a) First, there is the generator. The generator network takes random noise merged
into inputs and generates some fake data samples. Initially, the generator produces random
and meaningless outputs. (b) Second there, is the discriminator: The discriminator network
takes real data samples from the training dataset and fake data samples from the generator
as input into account. Its task is to distinguish between real and fake data. At the beginning
of training, the discriminator is not good at distinguishing the real and fake samples. That
is, the generator model will generate plausible examples for suitable training. Figure 1
illustrates the architecture of a typical GAN. In this figure, the discriminator will train the
real data (the image of driftwood) from the training set and the fake data generated by the
generator. The system will learn to distinguish between the two categories and improve
its ability to correctly classify them. The generator will input a series of random noise as
input and generates fake data. Hence, the generated data are then fed to the discriminator.
The generator’s objective is to create data that fool the discriminator into thinking it is real.
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After some epochs, it becomes better at generating data that are more similar to the real
data.
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The conventional generative models use different forms of probability density func-
tion to approximate the distribution [9]. However, it cannot perform well on complex
distributions. Those models may include the infinite Gaussian mixture models (GMM) [10],
the hidden naive Bayes model (NBM) [10], and the hidden Markov models (HMM) [11].
An auto-encoder has a structure similar to multi-layer perceptron (MLP) which has the
primary difference when using an unsupervised data for the number of neurons in the
output layer is equal to the number of inputs [12]. In addition, a variation auto-encoder
(VAE) learns the basic probability distribution and generates a new sample for Bayesian
inference by maximizing the lower bound of the log-likelihood. In contrast, generative
adversarial networks learn data distributions through the adversarial training process by
the game theory instead of maximizing the likelihood. Therefore, the GAN approach has
several advantages over VAE-based models: (1) the capability to learn and simulate the
complex data distributions and (2) the ability to efficiently create brilliant and vividly.

The goal of this study is to identify the driftwood of the study area through image data
by the GAN approach. Then, the parallel data also use the texture information to improve
the classification outcomes. Due to the driftwood having an irregular shape, it should need
some texture information to reinforce the content of data to reach a better classification
performance. The data and methods of GAN will be introduced in the following section.

2. Data Collection and Methods
2.1. Data

The first type of image to use is the original image (B, G, R, and IR) taken from the UAV
(Unmanned Aerial Vehicle) with 20 cm× 20 cm image resolution. The entire area consists of
5975 × 2075 pixels. The second type of image used requires applying the gray image with
optimized texture. We adopted the texture information listed in Table 1. Figure 2 presents
the study steps for analysis. We selected 134 training samples for the following categories:
driftwood, grass, rock, gravel, tree, road, and seawater, respectively. In addition, we also
take 58 testing samples for the above categories. This ratio is designed to satisfy the ratio of
7 to 3 of training/testing for most of the classification theory. We used ADAM (Adaptive
Moment Estimation [13], which is a popular optimization algorithm used in training deep
learning models) and SGD (stochastic gradient descent, which is an iterative optimization
algorithm that aims to minimize a given loss function by updating the parameters of model
by using the gradients of the loss with respect to those parameters) as the optimizer for
showing the difference as the iteration of computation [14]. Then, RELU (Rectified Linear
Unit is a simple effective non-linear function that introduces non-linearity into the neural
network) is used as an activating function for the network’s internal transformation of
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deep learning. In pixel-based image classification, the texture information is an essential
material for improving the accuracy outcomes. Hence, we employed four valuable texture
indicators in Table 1, referring to Wan and Lei [1]. The texture image contains spatial
distribution-related information which can successfully increase image classification. In
some cases, the appropriate selection of texture images can increase classification accuracy.
The following four types of texture information are used: (1) Homogeneity, (2) Contrast, (3)
Dissimilarity, and (4) Entropy.

Table 1. Texture indices for ancillary information of GAN.

Texture Indices Formula

Homogeneity
N
∑

i=0

N
∑

j=0

1
1+(i−j)2 Cij(d, θ)

Contrast ∑i=0,j=0 |i− j|2 p(i, j)

Dissimilarity
n
∑

i=0

n
∑

j=0
Cij|i− j|

Entropy
n
∑

i=0

n
∑

j=0
CijlogCij

where i and j represent the number with respect to the ith row and jth column, respectively. p(i,j) is the gray level
defined by first specifying a displacement vector. Cij is the value of R, G, and B where d is the distance and θ is the
angle.

In the study, the image fusion of the gray level of pixels in texture information follows
the following equation of Open CV [15]:

Cij = 0.299 R + 0.587 G + 0.114 B (1)
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Figure 2. Study plan. Note: acc is Accuracy, RESNET50 is RESNET with 50 epochs of iteration.

The entire study contains four parts. The first part discusses the background of the
GAN and classifies the driftwood in the coastal area that may face the problem. The second
part introduces the data we obtained and the format of it. The third part presents how
the GAN operates for this study plan. The last part shows the results for the classification
prediction of GAN.
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2.2. Methods

Generative Adversarial Networks (GANs) are generally considered as an unsuper-
vised learning model. It was introduced by Ian J. Goodfellow in 2014 [2,3]. GANs are
the ideal of a basic system of two rival neural network models. They contend with each
other and are able to simulate a series of variations within a dataset to analyze them. The
generative network can create candidates while the discriminative network is used to
evaluate them. The contest operates in terms of data distribution. The generative network
learns the implicit mapping rules from a latent space to a data distribution to operate the
discriminative network, which can distinguish candidates produced by the generator from
the true data distribution. The generative network’s training objective is to “fool” the
discriminator network by producing novel candidates that the discriminator thinks are not
synthesized.

Generative Adversarial Networks (GANs) can be divided into three parts:

• Generative: It learns a generative model to describes how data are generated consider-
ing a probabilistic model.

• Adversarial: The training data of a model are made by an adversarial setting.
• Networks: Use deep neural networks as artificial intelligence (AI) algorithms for

training progress.

We proposed a set of deep-learning-based GAN (Generative Adversarial Network)-
structured labeled data to detect the area of driftwood on the seashore. Figure 3 shows the
model for GAN for handling the picture-based image data for classification analysis.
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Step 1: The user labels render only a few amounts of few defective driftwood images
and save the labeled images into our system.

Step 2: The module produces a defect-sensitive model through the GAN technique.
Step 3: A series of prototype images are used as base images to be taken by the UAV.
Step 4: The generative network creates candidates with respect to the discriminative

network and evaluates them [16]. The contest follows in terms of data distribution. Gen-
erally, the generative network is designed to learn the map from a latent space to a data
distribution when the discriminative network discriminates candidates produced by the
generator from the true data distribution. The generative network’s training goal is to
increase the error rate of the discriminative network.
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Step 5: A given dataset serves as the initial training data for the discriminator. Training
progress concerns presenting them from the training dataset until it approaches an accept-
able level of accuracy. The generator trains the data by considering whether it succeeds in
fooling the discriminator. Typically, the generator is produced by randomly input sampled
data through a given latent space [17–19].

Afterwards, we step-by-step plan the entire study to four stems.

(a) The Generator Model

The generator model generates a set of samples in the domain using a set of input
random vectors. A Gaussian distribution can be typically utilized to generate the vector,
which is then used as a seed for the generative process. A compressed representation of
the data distribution will be formed after training when points in this multidimensional
vector space will be assigned to points in the issue domain. This vector space is also known
as a latent space or a vector space made up of latent variables. Latent variables, often
known as hidden variables, are factors that are significant for a domain but cannot be seen
directly [20–22].

(b) The Discriminator Model

The discriminator model forecasts a series of binary class labels of actual or fake
(created), using the sample from the domain as input (real or generated). In other words,
the training dataset contains the actual example. The generator model outputs the created
examples. An ordinary (and well-known) classification model serves as the discrimina-
tor [23]. The discriminator model is eliminated during the training progress, since we are
more interested in the generator. Generally speaking, the generator is adaptable because
it has mastered the art of successfully extracting features from instances in the issue area.
With the same or similar input data, some or all of the feature extraction layers can be
employed in transfer learning applications [24–26].

(c) Generation of training samples and testing samples

There are 7 categories of images made of 28 × 28 pixels, which are located at the
northeast of the coast of Taiwan. This is the training sample of the study area. Figure 4
shows all the categories and distributions for the training samples and locations for testing
samples.

(d) Generate the confusion matrix and thematic map for verification

The confusion matrix uses the testing samples to ensure our two approaches are valid.
The first approach considered using the original bands for GAN. The second approach ap-
plied the texture information with the original band for GAN. The results for the confusion
matrix and thematic map are both rationally presented.
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3. Results
3.1. The Post-Progress for GAN

The previous preliminary steps for GAN are defined architecture, data preparation, ini-
tializing the networks, and training loop. Then, the dropout and training are incorporated
into the second stage of the generator and discriminator networks:

(1) Dropout in discriminator: During training, we applied dropout to the discriminator’s
hidden layers. For example, you can set a dropout rate of 0.5, meaning 50% of the
neurons are randomly deactivated during each forward and backward pass.

(2) Training the discriminator: We sampled a batch of real data from the dataset and
generated a batch of fake data using the generator. Then, we trained the discriminator
with the real and fake data batches: We computed the discriminator loss based on
how well it distinguishes real from fake data. Then, we updated the discriminator’s
weights and biases using backpropagation.

(3) Dropout in generator: During training, we applied dropout to the generator’s hidden
layers (if necessary). See Figure 5.

(4) Training the generator: We generated a new batch of fake data using the generator.
Then, we trained the generator to “fool” the discriminator. We computed the generator
loss based on the discriminator’s response to the generated data. Afterwards, we
updated the generator’s weights and biases using backpropagation.

The final step is used to build the ending criteria:

(i) Alternating training: Step 2 and Step 4 are used to exchange information between
each other.

(ii) Loss function: We used appropriate loss functions, such as binary cross-entropy, to
guide the training of both the discriminator and the generator.

(iii) Hyperparameter tuning: Usually, we experiment with different learning rates, batch
sizes, dropout rates, and architectures to optimize GAN training.

(iv) Stopping criteria: We decided on a stopping criterion based on the performance of the
discriminator and generator. The latter will discuss the outcomes of accuracy.
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3.2. Epoch for Accuracy

Generally, a neural network is a supervised machine learning algorithm that is typically
used to solve classification problems. However, using neural networks for machine learning
has its advantages and disadvantages. Developing a neural network model involves
addressing various architecture-related issues [27,28]. It usually depends on the complexity
of the problem and the available data; we can train neural networks of different sizes and
depths. It has to be noticed that most of the neural network system requires iterations
(recorded as epoch) to present the convergence speed of learning [29]. Additionally, we
need to preprocess our input features, initialize the weights, add bias if necessary, and
select appropriate activation functions [30,31].

The accuracy and loss values are the way to observe the convergence and prediction
for each epoch, which are plotted in Figure 6a,b. The GAN has two types of loss functions:
one for generator training and one for discriminator training. Both the generator and dis-
criminator losses are calculated from a single measure of distance between the probability
distributions of functions. However, during generator training, we drop the term in the
distance measurement that reflects the distribution of the real data and focuses only on
the term that reflects the distribution of the fake data. Figure 6a presents the percentage
errors of the generator on the y-axis, while Figure 6b presents the percentage errors of the
discriminator. The red bars represent the accuracy (in %), and the blue lines represent the
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error rates. The focus of the observations was on the convergence of the last 600 epochs.
The generator randomly produced many samples, resulting in a significant deviation in the
loss.
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3.3. Confusion Matrix

Confusion matrix on images from GAN of datasets without any pre-processing on
28× 28 pixels. The study plans to classify seven categories as driftwood, grass, rock, gravel,
tree, road, and seawater. Through the GAN approach, the prediction accuracy is about
0.7. This is because most of the driftwoods are irregular in shape, which makes it very
hard to identify their appearance by GAN with raw image material. Current advances
for Generative Adversarial Networks (GANs) have create a series of realistic-looking
digital images that create a major challenge to the detection by the computer model. In
addition, we also use the selected texture information as material to attain the accuracy of
the prediction of the confusion matrix.

It has to be noticed that the driftwoods in Figure 7a are all misclassified as rock. This
is due to the driftwoods being irregular without any certain shape. With applying useful
texture information (Table 1), the driftwood will successfully be detected by GAN. Thus,
it can be concluded that texture information is a crucial material for picture-based deep
learning classifiers.
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3.4. Prediction for Thematic Map

A thematic map displays the geographic pattern of a specific category (thematic) in
a geographic area. This often contains the use of different colors and map symbols to
present the selected target category of geographic features which are determined by a given
classifier.

Driftwood is a precious material in the coastal area of Taiwan. If a UAV can take some
images or pictures to quickly observe the locations of driftwood, it can save a lot of time.
However, generating a thematic map can be challenging with a picture-based deep-learning
approach; thus, we have to opt to use square blocks to present it. The left side of the blocks
represents the real categories, while the right side shows the predicted categories generated
by the GAN. We also overlapped the prediction category on the top of the ground-truth
area. Figure 8a,c show the prediction by a color image, and Figure 8b,d show the prediction
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of the gray image with texture information. The main finding is that in Figure 8c,d, the
driftwoods are being successfully predicted.
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4. Conclusions

Driftwood has always been regarded as a precious natural asset in Taiwan. The
locations and distributions of driftwoods are difficult for detecting by spatial technology
combing with deep learning approaches. However, the essential idea of a GAN derives
from the “indirect” training through the discriminator, another neural network that can
tell how “realistic” the input seems, which itself is also being updated automatically. With
the rapid growth in deep learning approaches, the studies of computing digital images
for many computer vision assessments have played an important role in recent years due
to different algorithms’ extraordinary performance and the availability of large amounts
of data. If one can select a proper training data set, the model learns through those data
and then generates new predictions with testing samples for classification. For instance, a
GAN model train in pictures look at least superficially precise to human observers in which
they may have many realistic attributes. The originally proposed as a form of a generative
model for unsupervised learning, then, it directly applied raw data (e.g., an R+G+B + IR
image) and eliminated the needs for domain features. The preliminary study finds there
are two approaches to obtaining the regional picture to attain the image classification for
driftwood. The first one is to use an R+G+B + IR image. Alternatively, we also can use
the gray image with texture information to attain the thematic map. The accuracy of their
results is outlined below:

(a) Original RGB + IR image has about 70% overall classification outcomes. All the
driftwood accuracy is misclassified. But a big amount of rock was misclassified,
reducing the producer accuracy.

(b) The texture gray-based image has about 78% overall classification outcomes. But
a large amount of grass has been misclassified to the tree, reducing the producer
accuracy. The driftwood has about 79.5% producer accuracy.
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