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Abstract: A linear regression model of particle pollution and an ordered logistic regression 

model of the relevant index were selected for observations in the US city of Los Angeles, 

California. Models were used to forecast Air Quality Index (AQI) from a sample, and were 

compared and contrasted. Methods are comparable overall but markedly different in their 

powers to predict certain categories. Linear regression models of AQI through particle 

pollution are more favored to predict moderate air quality; ordered logistic regression 

models of AQI directly are more favored to predict good air quality. 
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1. Introduction 

The availability of air pollution statistics has led to the development of different models and 

techniques to forecast air quality. For example, the literature on models of ozone levels is relatively 

well developed [1–4]. More recently, interest in air quality indices has increased [5,6], and more 

diverse measures of air pollution have been subject to time series analysis [7,8]. Different kinds of 

regression analyses such as multiple linear regression, principal component regression, independent 

component regression, quantile regression, and partial least squares regression have been used for 

forecasting daily air quality levels [9]. Vlachogianni, et al. [10] compared forecasts of multiple linear 

regression to that of artificial neural networks to investigate air quality. Stadlober, et al. [11] used 

linear regression models to combine information of the present day with meteorological forecasts of 

the next to predict daily PM10 concentrations, and showed that PM10 forecasting models based on 
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linear regression give suitable results in three European cities. Silva, et al. [12] applied nonparametric 

procedures to describe and forecast particulate material concentrations. 

More recent literature related to pollution analysis with regression focuses on asthma [13], heart 

attack [14], health effects in general [15], and mortality [16–20]. 

The research reported here was motivated by interest in regression models of Air Quality Index (AQI) 

for particle pollution. The focus was small particles or droplets in the air that are 2.5 micrometers in 

diameter or smaller, emitted directly from forest fires and dust or indirectly from automobiles, industries 

and power plants. Excessive exposure to small particles could cause major health effects in humans 

including heart stroke, cancer, problems in pregnancy and many other short and long term health 

effects. With nearly 4 million residents, its high population density and traffic, Los Angeles has some 

of the most affected air in the United States (US). Los Angeles remains the worst city in America for 

ozone concentration, and one of the worst in particulate matter concentrations. It is reported that PM2.5 

is responsible for more than 125,000 cancer cases in the US and 16,250 in Los Angeles alone, and 

causes over 5000 premature deaths per year in the Los Angeles area (Air Quality Management District). 

Negative health effects caused by particulate matter have been analyzed in many studies. A large-scale 

general review can be found in Pope and Dockery [21]. The National Association of Clean Air Agencies 

reported that PM2.5 is the worst air pollutant because of its small size making it relatively easy to inhale. 

These particulates also consist of heavy metals, solid and liquid chemical elements and toxic organic 

compounds. It is crucial to develop good prediction and modeling techniques for the concentration of 

these pollutants in the air. 

The Clean Air Act requires the US Environmental Protection Agency (EPA) to set, “National 

Ambient Air Quality Standards for pollutants considered harmful to public health and the 

environment”. These standards along with the particle pollution data gathered for this study are 

provided at EPA.gov. More specifically, they are small particles recorded in the US city of Los 

Angeles (2001–2011), monitored air quality data from the EPA Air Quality System Data Mart 

(www.epa.gov/ttn/airs/aqsdatamart/). Early years (2001–2005) were used to fit models of particles 

recorded; later years (2006–2011) were reserved for out of sample comparison and contrast. 

The AQI is a simple index for reporting daily air quality. AQI values map to an ordinal scale that is 

one where categories may be ordered, but assignment of numerical values would be arbitrary and so 

theoretically inappropriate. For ordinal data, we limit ourselves to statistical models that do not rely on 

numerical assignments. Linear regression models of particle pollution were used to generate 

predictions on a continuous scale that are mapped to predictions on the ordinal scale. Ordered logistic 

regression models were used to generate predictions directly onto the ordinal AQI scale: Good, 

Moderate, Unhealthy for Sensitive Groups (USG), Unhealthy, Very Unhealthy, and Hazardous. 

As for independent variables that may be selected, we limited them to reasonable lagged 

observations of particle pollution observed today (PT): particle pollution observed yesterday (PD), 

particle pollution observed exactly one week ago (PW), and particle pollution observed exactly one 

year ago (PY). In other words we examined time series models as opposed to econometric ones that 

enjoy the benefit of external independent variables. 

The rest of the paper is structured as follows: Section 2 includes in-sample results of Linear 

Regression. Section 3 includes in-sample results of Ordered Logistic Regression. Comparison and 
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Contrast are included in Section 4. Discussion of conclusions and future work is featured in Section 5. 

Tests of statistical significance are based on α = 0.10. 

2. Linear Regression 

In this study, we assume particle pollution observed today PT has the normal distribution and 

constant variance. The mean, however, is assumed to be a linear function of lagged observations of the 

response: particle pollution observed yesterday (PD), particle pollution observed exactly one week ago 

(PW), and particle pollution observed exactly one year ago (PY). 

PT ~ normal(µ, σ) 

µ = linear f(PD, PW, PY) 

The important question at first is whether or not coefficients (on the independent variables) are 

generally different from zero. Expectations based on the main effects model are given by the least 

squares fit (fit to particles recorded in years 2001–2005): 

PT = 0.6891171(PD) + 0.0511629(PW) + 0.0335756(PY) + 4.601193 

However, we fail to reject the hypothesis that β (PY) = 0, so we fit the full second order model to 

investigate interaction. No significant interaction in the full second order model includes particle 

pollution observed exactly one year ago (PY), so we drop it and reestimate the function of main effects: 

PT = 0.6914947(PD) + 0.0377937(PW) + 5.483561 

It explains R2 = 48.37% of the variation in particles recorded in years 2001–2005. 

3. Ordered Logistic Regression 

In ordered logistic regression—a direct generalization of logistic regression—we estimate with 

maximum likelihood an underlying score as the linear function of independent variables and  

cut-points. The probability of observing an outcome is analogous to the probability that estimated 

linear function is within the outcome’s cut-point range. We estimate the coefficients β together with 

the cut-points k where u is logistically distributed, 

P(outcome = i) = P(ki−1 < β1x1 + β2x2 + … + βkxk+u ≤ kI)  

= 1/[1 + exp (−ki + β1x1 + β2x2 + … + βkxk)]  

− 1/[1 + exp (−ki−1 + β1x1 + β2x2 + … + βkxk)] 

Outcomes are Good, Moderate, Unhealthy for Sensitive Groups (USG), Unhealthy, Very Unhealthy, 

and Hazardous. Coefficients of the main effects ordered logistic regression model correspond to 

particle pollution observed yesterday (PD), particle pollution observed exactly one week ago (PW), 

and particle pollution observed exactly one year ago (PY). Only the coefficient on PD is generally 

different from zero considering years 2001–2005, so again we fit the full second order model to 

investigate interaction. No significant interaction includes PW, and none includes PY, so they are 

dropped from the main effects model which is re-estimated with PD as the lone independent variable. 
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P(Good) = P[0.138488(PD) < 2.134985] 

P(Moderate) = P[2.134985 < 0.138488(PD) < 6.59586] 

P(USG) = P[6.59586 < 0.138488(PD) < 9.838576] 

P(Unhealthy) = P [9.838576 < 0.138488(PD)] 

For a “pseudo” R2 = 23.75% we use the formula 1 − L1/L0 where L0 is the constant-only  

log- likelihood, and L1 = −1063.8966 is that of the model under consideration. 

4. Comparison and Contrast 

In order to gain some relative insight into the power of linear and ordered logistic regression for 

particle pollution, we evaluated models out of sample (2006–2011). Expected values based on linear 

regression were mapped to the ordinal scale; those based on ordered logistic regression were most 

likely according to expected probabilities. Results of linear regression are in Table 1; those of ordered 

logistic regression are in Table 2. 

Table 1. Observed versus expected outcomes based on linear regression (out of sample).  

Outcomes Unhealthy USG Moderate Good Total

Good 0 0 315 645 960

Moderate 0 7 624 102 733

USG 0 9 26 1 36 

Unhealthy 0 0 2 0 2 

Total 0 16 967 748 1731

Table 2. Observed versus expected outcomes based on ordered logistic regression (out of sample). 

Outcomes Unhealthy USG Moderate Good Total

Good 0 0 218 819 1037

Moderate 1 7 565 219 792

USG 0 9 29 2 40 

Unhealthy 0 0 2 0 2 

Total 1 16 814 1040 1871

Total observations for ordered logistic regression are greater because fewer independent variables 

meant fewer missing data. 

To summarize, we provide power to predict the outcomes for linear (REGRESS) and ordered 

logistic (OLOGIT) regression in Table 3. 

Table 3. The power to predict.  

Outcomes Regress OLOGIT 

Good 645/960 = 67.2% 819/1037 = 79.0% 

Moderate 624/733 = 85.2% 565/792 = 71.3% 

USG 9/36 = 25% 9/40 = 22.5% 

Unhealthy 0/2 = 0% 0/2 = 0% 

Total 1278/1731 = 73.83% 1393/1871 = 74.45%
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5. Conclusions 

While linear (REGRESS) and ordered logistic (OLOGIT) regression performed similarly overall, 

their greatest powers clearly lie in the prediction of different outcomes. REGRESS is 1.19 times more 

powerful than OLOGIT to predict the Moderate outcome. OLOGIT is 1.88 times more powerful than 

REGRESS to predict the Good outcome. Future research into models of air quality index for particle 

pollution should determine the relative usefulness of those with approximately 74% total power to 

predict. Other future work should address the matter of extrapolation, which is for better or worse 

invited by REGRESS but prohibited by OLOGIT. Finally, these results are based entirely on arbitrary 

decisions including the choice of Los Angeles (2001–2011) and the cut-point to define out of sample 

years (2006–2011). 
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