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Abstract: Movement therapy is one type of upper extremity intervention for children with cerebral
palsy (CP) to improve function. It requires high-intensity, repetitive and task-specific training.
Tedium and lack of motivation are substantial barriers to completing the training. An approach to
overcome these barriers is to couple the movement therapy with videogames. This investigation:
(1) tested the feasibility of delivering a free Internet videogame upper extremity motor intervention
to four children with CP (aged 8–17 years) with mild to moderate limitations to upper limb function;
and (2) determined the level of intrinsic motivation during the intervention. The intervention
used free Internet videogames in conjunction with the Microsoft Kinect motion sensor and the
Flexible Action and Articulated Skeleton Toolkit software (FAAST) software. Results indicated
that the intervention could be successfully delivered in the laboratory and the home, and pre- and
post- impairment, function and performance assessments were possible. Results also indicated a high
level of motivation among the participants. It was concluded that the use of inexpensive hardware
and software in conjunction with free Internet videogames has the potential to be very motivating in
helping to improve the upper extremity abilities of children with CP. Future work should include
results from additional participants and from a control group in a randomized controlled trial to
establish efficacy.
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1. Introduction

Cerebral palsy (CP) involves a group of disorders that affects a person’s movement abilities.
These disorders can disrupt the individual’s ability to control his/her muscles, movements and
posture. It is estimated that three per 1000 children in the U.S. have CP [1]. Children with CP often
experience difficulties related to motor control in their upper extremities (UE), including reaching,
grasping and manipulation. These activities are jerkier, slower, less forceful and less direct in children
with CP than typically-developing children [2]. Impairments in the UE can limit children’s functional
abilities in many of their occupations.

Movement therapy is one type of UE intervention implemented for children with CP to
improve their functioning [3,4]. This therapy requires high-intensity, repetitive and task-specific
movement training to improve performance. Tedium and lack of motivation are substantial barriers to
performance improvement [5–8]. An approach to overcome these barriers is to couple the movement
therapy with virtual reality (VR) activities, which may include videogames. Research suggests that
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using motion-based VR for rehabilitation can provide a very engaging and motivating approach for
therapy [2,7–10]. Patients who participate in VR gaming therapy increase the duration, frequency and
intensity of therapy movements, leading to enhanced motor performance [4,10–13]. Despite the benefits
of VR, a number of limitations can inhibit the implementation of VR-based therapy. Some systems
currently used for UE training require specific devices to control the systems [2,14–17]. These devices
have shown improvement in functioning for children with CP; however, some may be cumbersome,
difficult to set up, may not allow for use in the home and are limited in the segments/joints they can
train. In addition, games for many of these systems are written by computer scientists and engineers
making the games expensive and limited in selection [4,13]. Off-the-shelf games with movement
sensors (i.e., Wii™) may be used, but may not specifically meet the needs of individuals who have
an impairment (e.g., weakness, inadequate range of motion and poor motor control) [18].

Another approach for this type of therapy is using the vast number of videogames that are freely
available via the Internet [19]. Internet games eliminate the high cost of new game development, permit
games to be paired with an individual’s interests and allow for changing of games to maintain novelty.
Matching the interest of the child makes the therapy increasingly client-centered and motivating.
The Internet games are diverse, high quality, adequately complex for continued motivation, novel and
adaptable for therapy.

Coupling the free Internet videogames with the Microsoft Kinect (~$100) movement sensor [19]
and the free Flexible Action and Articulated Skeleton Toolkit software (FAAST) [20] permits almost
any videogame to be used for movement therapy [21]. Therapists can quickly learn the techniques and
easily create individualized movement therapy regimens for their clients [21]. The use of the sensor and
software paired with videogames has not been extensively tested in persons with motor disabilities.

The purposes of this investigation were to: (1) test the feasibility of delivering our upper
extremity motor training intervention to children with cerebral palsy; and (2) determine the level of
intrinsic motivation during intervention participation. Results indicated that the intervention could be
successfully delivered in the laboratory and the home, and pre- and post- assessments were possible.
Results also indicated a high level of motivation among the participants.

2. Results

2.1. Feasibility of Intervention Delivery

In total, there were 26 different games played by the children over the course of the intervention
(Table 1). Some games were played by all children, and some were selected based solely on the
preferences of the individual child.

Table 1. List and description of the 26 games played by the children during the intervention.

Game Name Game
Genre Sub-genre Goal of Game Movement Particpant

Refriger-Raiders
(Jerry) Cartoon Object

Collection

Move to cheese and pick it up,
drop it to nibbles. Avoid getting
hit by pool balls.

Wrist Extension 1, 2

Refriger-Raiders
(Tom) Cartoon Throwing Throw balloons to hit the target

as Jerry passes through it Wrist Extension 2

What's the
Catch (Jerry) Cartoon Chase

Help Jerry reach his mouse hole
before Tom catches him while
avoiding objects

Shoulder Flexion;
Wrist Extension;
Shoulder Abduction

1, 2, 3, 4

Robot Unicorn
Attack Cartoon Jumping

Jump to catch the ferries and
stay on the platform.
Avoid stars.

Shoulder Abduction;
Elbow Extension 4

Fruit Ninja Cartoon Slicing Fruit Using of sword to slice through
fruit that fly up into screen

Elbow Flexion,
Shoulder Flexion 1, 2

Tower-Inator Cartoon Sling Shot Sling shot of bowling balls at
structures to knock them over

Combination Reaching
Movement (Shoulder
circumduction)

1
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Table 1. Cont.

Game Name Game
Genre Sub-genre Goal of Game Movement Particpant

Angry Birds Cartoon Sling Shot Sling Shot of pigs at structures
to knock them over

Combination Reaching
Movement (Shoulder
circumduction)

1

GrumbleGum Cartoon Object
Collection

Take character along path in
order to collect items Shoulder Flexion 3

Star Wars: Jedi
vs. Jedi Cartoon Fighting Jedi fight against computer Jedi

Shoulder Fexion;
Shoulder External
Rotation

3

Shotgun vs.
Zombie Cartoon Fighting Character fighting and

shooting zombies
Shoulder Flexion;
Shoulder Abduction 4

Lateral
Collateral 2 Sports Football

Get the ball to the endzone
without being tackled. Pass the
ball back and forth to teamates
and move up and down
the field.

Bilateral Elbow
Flexion; Shoulder
Abduction

2, 3, 4

Highway
Madness Sports Car Racing

Drive down the road avoiding
traffic and collecting bonuses to
complete the mission.

Shoulder Flexion,
Shoulder External
Rotation

3

Penalty
Shootout Sports Soccer Aim and shoot the ball into the

net. Avoid the goalie.

Combination Reaching
Movement (Shoulder
circumduction)

3

Hoops Mania Sports Basketball Make as many baskets in a row
as possible.

Elbow Flexion;
Shoulder Abduction;
Shoulder External
Rotation; Shoulder
Internal Rotation

1, 3, 4

Air Hockey Sport Hockey Move hand around to defend
goal and shoot puck

Combination Reaching
Movement (Shoulder
circumduction)

1, 3

Marathon
Runner Sport Running Jump over obstacles

while running Elbow Flexion 1

Upstream
Kayaking Sport Kyaking Direct kayaker around obstacle Elbow Flexion 1

G-Switch Sport Running Move character while running
to avoid obstacles Elbow Flexion 1

Basket Shot Sport Basketball Make as many baskets in a row
as possible.

Elbow Flexion, Wrist
extension 1, 2, 4

Harry Potter
Quiddithch Sport Quidditch Blocking computer player from

scoring in goals

Combination Reaching
Movement (Shoulder
circumduction)

1, 3

Cyclomaniacs Sport Bicycling Guiding bike along path Shoulder Abduction;
Shoulder Flexion 3

Spiderman
Racing Sport Bicycling Guiding bike along path

Shoulder Abdcution;
Shoulder External
Rotation

4

Ulitmate
Baseball Sport Baseball Batting within baseball game Wrist Extension 4

1 on 1 Soccer Sport Soccer Playing Soccer against
computer person

Shoulder Abduction;
Wrist Extension 4

Guitar Geek Music Guitar Hit the notes at the right time to
play the guitar

shoulder external
rotation; shoulder
flexion

1

Music Catch 2 Music Object
Collection

Move select hand around the
screen in order to catch the
falling music notes

Combination Reaching
Movement (Shoulder
circumduction)

1

Recorded data from the Kinect and FAAST software indicated that the four participants completed
all 12 weeks of the intervention and demonstrated success in using equipment and software in their
homes. Due to family preferences, Participant 1 did not progress to the intervention fully taking place
in the home. This participant continued coming to the laboratory two times per week and completed
one session at home per week for the last nine weeks of the intervention. The remaining participants
progressed through the pre-set 12-week plan.

All participants obtained a high number of repetitions during training sessions. On average,
Participant 1 obtained about 500 repetitions per session. Participant 2 completed about 640 repetitions
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per session. Participant 3 completed an average of 850 repetitions per session. Participant 4 obtained
an average of 1480 repetitions per session.

The score of the “basketball shot” game for Participant 1 continued to increase over the first 12 training
sessions (Figure 1), except in cases where technical difficulties occurred. Slight decreases in game score
occurred when the “success” threshold was increased, but adaptation to the greater difficulty was
quickly made (Figure 1). During the last eight sessions, there was a plateau in both game score and
threshold setting.
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Figure 1. Example of high game score and game success threshold setting over the course of 20 sessions
for Participant 1. + Denotes day of technical difficulty that prevented best effort.

The three different assessment types were successfully collected before and after the intervention.
For the active range of motion (AROM), no meaningful changes were noted for Participants 1 and 2.
Participant 3 showed an increase in AROM for shoulder flexion, abduction and external rotation in his
affected UE. Participant 4 showed an increase in AROM for shoulder flexion and abduction and wrist
flexion and extension in his affected UE (Table 2).
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Table 2. The pre- and post-intervention upper extremity joint active range of motion results for the participants.

Participant (#) Shoulder
Flexion

Shoulder
Extension

Shoulder
Abduction

Shoulder
Internal
Rotation

Shoulder
External
Rotation

Elbow
Flexion

Elbow
Extension

Wrist
Flexion

Wrist
Extension

Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post
1 155 150 50 50 155 146 75 80 45 50 140 145 0 0 75 67 0 7
2 160 150 60 52 150 158 75 68 55 50 140 140 0 0 30 25 0 5
3 127 140 50 33 134 145 54 72 57 70 145 136 0 0 70 69 0 9
4 147 160 55 47 140 144 40 53 67 88 160 152 0 0 3 50 0 35

Note: Measurements in degrees.



Behav. Sci. 2016, 6, 10 6 of 14

Data were successfully collected using the Bruininks–Oseretsky Test of Motor Proficiency (BOT-2)
for Participants 3 and 4. There were no changes for Participant 3 (Table 3). On the other hand,
Participant 4 had an increase in upper limb coordination. Participant 4 also showed an increase in
manual coordination overall, increasing from the sixth percentile to the 16th percentile from pre- to
post-intervention (Table 2).

Table 3. The pre- and post-intervention BOT-2 standard scores for Participants 3 and 4.

Participant (#) Manual
Dexterity

Upper-Limb
Coordination

Manual
Coordination % Rank

Pre Post Pre Post Pre Post Pre Post
3 2 3 7 7 28 29 1% 2%
4 6 7 11 15 34 40 6% 16%

Data were able to be collected for the Modified Functional Reach Test both before and after the
intervention [22,23]. For the data analysis, it was hypothesized that movement improvements were
made if the movements progressed closer to similar movements of the unaffected arm. Changes were
observed for joint movements; however, they varied across participants. For example, Participant 1
showed improvements in her radial/ulnar deviation during forward extended reach by displaying
greater movement toward a more neutral position and closer to the motion of her unaffected side
(Figure 2). Participant 4 showed an increase in wrist extension during the left side extended reach
(Figure 3). As with Participant 1, his movements were both closer to a neutral position and closer to
the motions of his unaffected side.

Behav. Sci. 2016, 6, 10  6 of 14 

Data  were  successfully  collected  using  the  Bruininks–Oseretsky  Test  of Motor  Proficiency   

(BOT‐2)  for Participants 3 and 4. There were no changes  for Participant 3  (Table 3). On  the other 

hand,  Participant  4  had  an  increase  in  upper  limb  coordination.  Participant  4  also  showed  an 

increase in manual coordination overall, increasing from the sixth percentile to the 16th percentile 

from pre‐ to post‐intervention (Table 2). 

Table 3. The pre‐ and post‐intervention BOT‐2 standard scores for Participants 3 and 4. 

Participant (#) 
Manual 

Dexterity 

Upper‐Limb

Coordination 

Manual 

Coordination 
% Rank 

  Pre  Post  Pre  Post  Pre  Post  Pre  Post 

3  2  3  7  7  28  29  1%  2% 

4  6  7  11  15  34  40  6%  16% 

Data were able to be collected for the Modified Functional Reach Test both before and after the 

intervention [22,23]. For the data analysis, it was hypothesized that movement improvements were 

made  if  the movements progressed  closer  to  similar movements of  the unaffected arm. Changes 

were  observed  for  joint  movements;  however,  they  varied  across  participants.  For  example, 

Participant 1 showed improvements in her radial/ulnar deviation during forward extended reach by 

displaying  greater movement  toward  a more  neutral  position  and  closer  to  the motion  of  her 

unaffected side (Figure 2). Participant 4 showed an increase in wrist extension during the left side 

extended  reach  (Figure  3). As with  Participant  1,  his movements were  both  closer  to  a  neutral 

position and closer to the motions of his unaffected side. 

 

Figure  2.  The  Right  Extended  Forward  Reach;  (+)  ulnar  deviation  and  (−)  radial  deviation  for 

Participant 1. Note: Frame number is a representation of time. The interval between frames was 1/60th 

of a second. Participant 1 took longer to perform the reach prior to the intervention compared to after 

the intervention. 

Figure 2. The Right Extended Forward Reach; (+) ulnar deviation and (´) radial deviation for
Participant 1. Note: Frame number is a representation of time. The interval between frames was
1/60th of a second. Participant 1 took longer to perform the reach prior to the intervention compared to
after the intervention.
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Figure 3. The Side Extended Reach; (+) flexion and (´) extension of Participant 4. Note: Frame number
is a representation of time. The interval between frames was 1/60th of a second. The affected arm of
Participant 4 took longer to perform the reach compared to the unaffected arm.

2.2. Level of Intrinsic Motivation during Training

The participants expressed high intrinsic motivation throughout the intervention. This was
demonstrated by their average rating of 46 out of 49 possible points on the interest/enjoyment subscale
of the Intrinsic Motivation Inventory (IMI) over the 12-week intervention (Figure 4).
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Figure 4. The score for the interest/enjoyment subscale of the Intrinsic Motivation Inventory (maximum
score = 49).

A high level of motivation was also noted in the comments made by the participants. Participant 1
came to every session knowing what score she was aiming to beat on her basketball shot game.
Participant comments included: “I really like playing, when do I get to do these at home?”, “I wish my
teacher had this, so I could play it there.” (Participant 2), “I want to play this all day!” (Participant 3).
“I remember when I was really bad at this game . . . like two weeks ago!” and “When can I play this at
home, mom?” (Participant 4).

3. Discussion

The purposes of this investigation were to: (1) test the feasibility of delivering our upper extremity
motor training intervention to children with cerebral palsy; and (2) determine the level of intrinsic
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motivation during intervention participation. There were five major limitations associated with the
investigation. First, the purpose of the study was to determine the feasibility of the intervention. It was
not to thoroughly investigate the changes that occurred as a consequence of it. Hence, only limited
amounts of pre- and post-assessment data were presented to demonstrate feasibility. Larger, more
controlled studies can demonstrate the potential effect of the intervention. Second, participants were
on the higher functioning spectrum of our inclusion criteria. Their high functioning and involvement
in multiple activities may have led to a ceiling effect for our selected assessments. While our goal
was to confirm that we could collect the measures both pre- and post-intervention, care must be
taken in selecting assessments that can match the abilities of the participants in future investigations.
Further, we do not know how well participants that were more or less impaired would respond to the
intervention. Since 91%–97% of children play videogames, it is likely that they could become engaged
in the intervention [24,25]. Third, the Kinect sensor and FAAST software were unable to monitor
movements of the hand and fingers where three of the participant had difficulties. It is possible that
newer iterations of the Kinect may monitor hand movement, but that has not been tested. Fourth, we
experienced periodic technical difficulties, which at times interrupted continuous play. The problems
were solved, and play continued; yet, it is important to be aware that technical difficulties are possible.
Finally, it should be noted that the IMI has been shown to be a valid and reliable instrument, including
the interest and enjoyment subscale. However, it has not been previously administered with children
with CP. The results should be considered carefully for this reason, as well as the small cohort.

The intervention feasibility was deemed successful based on the assessment criteria.
Participants completed the 12-week intervention in both the laboratory and the home. Twenty-six free
online videogames were used in conjunction with the Kinect motion sensor and the FAAST software
to facilitate the intervention. Game scores continued to increase over the course of the intervention.
Further, high numbers of repetitions were recorded for all participants during the 40 min of game play
per session (average ~870). The high number of repetitions was greater than our other study with
persons with stroke, where 250 repetitions were achieve during 20 min of game play [11]. These high
repetitions enable current rehabilitation motor learning theory [26]. High meaningful repetitions are
important in achieving brain remodeling (neuroplasticity) where new areas of the brain take on new
functions to make up for areas that have experienced damage.

Feasibility was also successful in our ability to collect assessment data prior to and following the
intervention. Three different levels of assessments were made, including impairment (AROM), motor
performance (BOT-2) and function (Functional Reach Test). It was noted that a variety of assessments
should be used to account for the high degree of variability among the participants.

The level of intrinsic motivation was high based on the scores from the interest/enjoyment
subscale of the IMI [27]. High motivation was also supported by the comments made by the participants
throughout the investigation. Our prior work with only a few videogames indicated that a child with
CP quickly lost interest in playing videogames when the games were no longer a challenge and new
games were not available [28]. It seems reasonable to assume that our ability to select games based on
the child’s interest and to change the games when interest was waning (Table 1) had much to do with
the high level of motivation throughout the 12-week intervention.

The current investigation adds to the body of knowledge from one major perspective. Free online
videogames can be used in conjunction with the Kinect motion sensor (~$100) and the free FAAST
software to create a highly motivating upper extremity motor intervention for children with CP .
The use of free videogames is extremely novel and innovative. There is an endless supply of free
videogames on the Internet covering any topic of interest. The videogames allow for matching the
individual participant’s interests with specific games. The Kinect is able to monitor the participant’s
movement and to feed the data to the FAAST software where individualized movement needs can be
continuously challenged to elicit improvement.

The clinical implications of this study are that this tool can be used by therapist to motivate clients
to obtain a large amount of challenging repetitions in the short amount of time allowed for therapy
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sessions. Future investigations should test the methods with additional participants and include
a control group.

4. Materials and Methods

4.1. Participants

The current investigation recruited four participants with spastic hemiplegia CP (Table 4).
All participants were actively involved in age-appropriate activities. Participants 1, 2 and 4 displayed
impairments in their wrists on the affected side, while Participant 3 had impairments in the right
shoulder. Informed consent was obtained from participant’s parents. All participants were identified
as Level 1 of the Gross Motor Function Classification System (GMFCS) due to their ability to perform
functions like running and jumping with impaired balance, speed and coordination. The GMFCS
is a 5-level classification system that describes the gross motor function of children and youth with
cerebral palsy on the basis of their self-initiated movement with particular emphasis on sitting,
walking and wheeled mobility. Distinctions between levels are based on functional abilities, the need
for assistive technology, including hand-held mobility devices (walkers, crutches or canes) or wheeled
mobility and, to a much lesser extent, quality of movement [29].

Table 4. Demographic information about participants recruited for investigation.

Participant (#) Age (y) Gender Affected Side * GMFCS Level ** MACS Level

1 17 Female Right I II
2 8 Female Right I II
3 10 Male Right I II
4 9 Male Left I II

Note: * Level 1 of the Gross Motor Function Classification System (GMFCS) due to their ability to perform
functions like running and jumping with impaired balance, speed and coordination; ** Level II of the Manual
Abilities Classification System (MACS) due to their ability to handle some object with reduced quality and use
of alternative methods of performing some tasks.

All participants were identified as Level II of the Manual Ability Classification System (MACS)
due to their ability to handle some object with reduced quality and the use of alternative methods
for performing some tasks. The MACS was developed to classify how children with cerebral palsy
(CP) use their hands when handling objects in daily activities. The five-level classification system
is designed to reflect the child’s typical manual performance, not the child’s maximal capacity [30].
The Institutional Review Board at Washington University School of Medicine approved the study
protocol. Participants continued pre-existing therapy and activities during participation.

4.2. Intervention

The UE VR training system consisted of free Internet videogames, a Microsoft Kinect sensor [20] ,
the FAAST software, a computer and a 81 cm monitor (Figure 5). The Microsoft Kinect sensor was
used to quantify the participants’ motion while playing the videogame and to send position data
(X, Y, Z coordinates of body segments) to the FAAST software. The FAAST software: (1) monitored
the body segment coordinates; (2) identified when a therapist-specified movement threshold was
achieved; and then (3) activated a keyboard stroke/mouse movement. The keyboard stroke/mouse
movement was that which was required to play the videogame. Hence, the Kinect streamed movement
data of the participant to the FAAST software. The FAAST software monitored the joint/segment
movement selected by the therapist (e.g., wrist extension) waiting for the movement threshold (e.g., 20˝

of extension), also chosen by the therapist. When the movement threshold was achieved, the FAAST
software sent a keystroke signal (e.g., upper arrow key) to the videogame for game play (Figure 5).
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Figure 5. Movement therapy using free videogames, Kinect and FAAST software. The participant
performs the motion. The Kinect converts segment/joint motion to XYZ coordinates. FAAST software
identifies movement threshold and activates keyboard stroke. Jerry jumps.

Intervention sessions were aimed at obtaining high joint repetitions through single and
combination joint movements. Sessions occurred three times per week (1 h) for 12 weeks. Each session
consisted of the child performing five minutes of supervised UE stretching to warm-up. Next, the
child played four different games while standing (each ~10 min), involving different UE movements
for each game. Participants were given short rest breaks, between games as needed.

Joints undergoing movement training in the UE were based on each individual’s abilities derived
from the child’s available active range of motion assessed during the pre-intervention assessment
session. During each training session, the entire UE was engaged in game play. UE movements targeted
during a session included shoulder abduction, shoulder flexion/extension, shoulder internal/external
rotation, elbow flexion/extension and wrist flexion/extension, as needed. Increases in movement
thresholds occurred individually as each child’s active range of motion increased to continually
increase challenge.

Games played during the sessions were based on the interests each child expressed during
a pre-intervention interview and through continued input throughout the training. Games varied
throughout the intervention based on the child’s desires. While the games varied, targeted body areas
remained constant. Each session provided a choice to the participant while targeting specific UE
movements. One example included a child playing “Run Jerry Run” using right wrist extension to
cause the mouse to jump over objects [31].

Training sessions progressed in a stepwise manner from completion in the laboratory to
completion in the child’s home. Participants were provided with necessary hardware and software
to complete sessions in the home. Experienced research assistants trained the parents to conduct the
in-home sessions during the first 3 weeks. Training included: introduction to the project, explanation
of the equipment setup and protocol instruction (total time ~2 h). Research assistants handled
troubleshooting of any problems with hardware and software throughout the intervention.

4.3. Feasibility of Intervention Delivery

The feasibility of delivering the videogame motor training intervention was determined using
four different methods. The first was whether the entire 12-week intervention (3 ˆ /week) could
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be completed by the participant in both the laboratory and the home. This included the videogame
motor training in the laboratory and home and the collection of assessment data to determine if any
changes occurred as a result of the intervention. It also included instructing the parents and the child
how to perform the training at home. The evaluation was performed by recording the motion data
from the Kinect sensor in MATLAB (running in the background) during game play and the recorded
documentation from the FAAST software output. The second method was quantifying the number
of repetitions that typically occurred during a single training session. Repetitions recorded from
MATLAB data were counted for each participant for each day and averaged across the intervention.
The third method was monitoring the progression of game play over the course of the 12-week
intervention. This was quantified by recording the high score of a single game over the intervention.

The final method was collecting three different types of assessments prior to the start and
immediately after the completion of the training regimen to quantify any effects that could come about
from the training program. All assessments were performed by a single experienced clinician with
prior training in all measures.

The first was the child’s AROM which is an assessment designed to evaluate an individual’s
active movement in different directions. The AROM measurements followed standard procedures
using a goniometer. Measurements were taken for shoulder flexion, shoulder abduction/adduction,
elbow flexion/extension and wrist flexion/extension. The use of goniometers is accepted as a valid
clinical tool for collecting AROM [32]. It is desirable to have the same person complete the assessment
on all of the participants. The AROM assessment prior to the start of the intervention was also used to
determine targeted training movements for the intervention and set parameters for the degree of body
movement thresholds during game play.

The second assessment type was the manual coordination subtest of the Bruininks–Oseretsky Test
of Motor Proficiency (BOT-2). The BOT-2 is a standardized norm-referenced measure of fine and gross
motor skills of children and youth, 4–21 years of age [33]. It is intended to be a discriminative and
evaluative measure to characterize motor performance, specifically in the areas of fine manual control,
manual coordination, body coordination and strength and agility. The manual coordination subtest
quantifies the child’s ability to demonstrate skills, such as catching, throwing and dribbling a tennis
ball with one or both hands.

The third assessment type was the Modified UE Functional Targeting Reach Test [22,23], used
to evaluate UE motor control. This assessment utilized an 8-camera video motion capture system to
detect children’s movement based on reflective markers placed on their UE. During this assessment,
the child completed three reaches in the sagittal and coronal planes with each UE at an “easy” and
“extended” distance [22]. Data from the reaching tasks were used to evaluate joint angles during
reach. Joints examined included trunk (flexion/extension, lateral flexion, axial rotation), shoulder
(abduction, elevation, internal/external rotation), elbow (flexion/extension, pronation/supination)
and wrist (flexion/extension, ulnar/radial deviation) [11,22]. Angles were defined in relation to the
more proximal body segment.

4.4. Level of Intrinsic Motivation during Training

The level of intrinsic motivation during training was monitored biweekly throughout the intervention
using the interest/enjoyment subscale of the IMI. This subscale has been shown to reflect the overall
level of intrinsic motivation an individual experiences when engaged in an activity [34]. Based on
the developer’s guidelines, a total score from the seven questions was calculated. From a qualitative
perspective, all verbal comments relative to the training made by the participant during the intervention
were recorded in a SOAP (subjective, objective, assessment and plan) note.

5. Conclusions

This investigation determined the feasibility of delivering a videogame motor training intervention
to four children with CP, as well as their level of motivation during play. The intervention used
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a free Internet videogame in conjunction with the Kinect motion sensor and the FAAST software.
Results indicated that the intervention could be successfully delivered in the laboratory and the home,
and pre- and post-assessments were possible. Results also indicated a high level of motivation among
the small number of participants. Future work should include results from additional participants and
from a control group in a randomized controlled trial to establish efficacy.
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IMI Intrinsic Motivation Inventory
ROM range of motion
UE upper extremity
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