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Abstract: The present study examined the relationship among behavioural intention (BI) to adopt
online learning, perceived usefulness (PU), perceived ease of use (PEU), self-regulated online learning
(SR) and online learning self-efficacy (SE). A total of 900 university students with online learning
experience from many provinces of China took part in the study. Structural equation modelling
(SEM) was used to analyse the data accepted. The results indicate that PU has a significant positive
effect on BI; SR has a significant positive effect on PEU, PU and BI. SE has a significant positive
effect on PEU, PU and BI. In addition, SE and SR have significant indirect effects on BI through
the mediation of PU. The outcomes have tangible theoretical and practical implications. They not
only replicates previous research and provides possible space for further expansion of TAM, but
also provide us with an opportunity to reflect on and actively take practical measures to improve BI.
These efforts include teachers, parents and other educators trying to promote students’ academic
achievements, self-efficacy and self-regulation in the process of online learning. The former is the
most concerning issue, while the latter two are the source of students’ motivation. Furthermore,
educators should make appropriate use of the role of digital technology in online learning and be
careful not to exaggerate the value of digital technology, let alone equate it with online learning.

Keywords: behavioural intention; perceived usefulness; perceived ease of use; self-regulated online
learning; online learning self-efficacy

1. Introduction

With the rapid development of internet technologies, online learning is becoming
increasingly popular with higher education. Furthermore, the outbreak and widespread
coronavirus disease 2019 (COVID-19) also influenced the education system [1], and a
growing number of universities around the globe have rapidly transitioned from offline
to online courses [1,2]. According to survey data, 1454 colleges and universities offered
12.26 million online courses, and approximately 1 million teachers and over 17 million
students participated in online learning between February and June 2020 in China [3].
At the same time, as some scholars have pointed out, the growth of online learning will
continue [4].

As opposed to traditional face-to-face learning, online learning refers to learning
that takes place partially or entirely on the internet [5] and has several forms. The online
learning in this article refers to classroom learning with the help of technology. Gener-
ally, students in online learning conditions are viewed as performing better than those
receiving offline learning [5,6], which is partly due to the advantages of online learning;
for example, online learning can be better adapted to students’ diverse needs by breaking
down geographical and physical barriers, and learners can adjust the pace of instruction,
moving quickly through familiar material and slowing down when needed [7,8]. Online
learning offers rich educational resources, presented in the form of multiple media [5].
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Asynchronous communication makes students to be more thoughtful before answering
questions, and online materials often ask participants to ‘share their thoughts’ in their
postings, which is highly conducive to deep learning [9]. Students feel comfortable with
social media and online learning methods for academic study and courses generally [10].
The factors mentioned above can to some extent predict the behavioural intention to adopt
online learning [11]. Undoubtedly, most of these studies are limited by the perspective
of nonlearners, such as a technology-centred perspective, and pay little attention to the
initiative and responsibility of the students who are the protagonists of the learning process
of online learning, although existing studies have pointed out that self-related thoughts
and behaviours (e.g., self-efficacy, self-regulation) play an important role in learning pro-
cesses [12,13] and influence online learning intention [8,14]. To address the research gap
stated above, this study analyses the link between some factors related to online learning.
These include a selection of factors from the technology acceptance model (TAM) [15] fo-
cusing on the technical perspective, two additional factors (self-efficacy and self-regulation)
focusing on the students’ perspective, and by assuming a new relationship among these
factors. The result helps to enhance our ability to interpret the factors that may influence
behavioural intention, perceived usefulness, and perceived ease of use, eventually im-
proving students’ academic achievement and willingness to use online learning by taking
effective measures.

2. Theoretical Framework and Literature Review
2.1. Technology Acceptance Model as Theoretical Framework

TAM, introduced by Davis [16], is an adaptation of the theory of reasoned action
specifically tailored for modelling user acceptance of information systems [15]. TAM is
shown in Figure 1, with arrows representing causal relationships. According to the model,
usage is determined by behavioural intention to use, which in turn is jointly determined by
both attitude towards using an object and its perceived usefulness. Attitude towards use is
a function of two major beliefs: perceived usefulness and perceived ease of use. Perceived
usefulness can be affected by various external variables and perceived ease of use. External
variables have a causal effect on perceived ease of use [15,16].
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Figure 1. Technology Acceptance Model (TAM).

This theory has been used and validated in many studies on technology adoption and
acceptance (e.g., [17,18]), and it is even regarded as the most widely used and influential
framework for exploring people’s attitudes and intentions to adopt technology [2,19]. In
addition, TAM has also been an appropriate model as a theoretical framework in research
settings in an educational context [20]. Therefore, this paper adopts the TAM as its the-
oretical framework. To make it more relevant to this study, we modified it by selecting
behavioural intention, perceived usefulness and perceived ease of use from the model and
adding self-regulation and self-efficacy from the students’ perspectives.

2.2. Behavioural Intention to Adopt Online Learning (BI)

Behavioural intention is viewed as a proxy to predict actual usage [21]; more specifi-
cally, if a person intends to perform a behaviour, then it is likely to be done [22]. As a result,
understanding students’ behavioural intention to adopt online learning contributes to un-
derstanding their actual behaviour. In addition, as mentioned above, behavioural intention
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has been taken as a dependent variable in many relevant studies (e.g., [8,23]). Therefore, it
is also used as a dependent variable in this paper, but we made a modification to fit the
theme and expressed it as a whole as by “behavioural intention to adopt online learning”.

2.3. Perceived Usefulness(PU)

Perceived usefulness is defined as “the degree to which an individual believes that
using a particular system would enhance his or her job performance” [16], which is similar
to performance expectancy [24]. Perceived usefulness refers to the individual’s perceived
effect of online learning on academic performance in the current research. According to
prior research, perceived usefulness has a positive impact on adoption intention [25,26]
and is a statistically significant predictor of behavioural intention [27]. It may also mean
that higher perceived usefulness results in higher behavioural intention to adopt online
learning. Based on this literature, we establish the first hypothesis.

H1: PU will have a positive effect on BI.

2.4. Perceived Ease of Use(PEU)

Perceived ease of use is defined as “the degree to which an individual believes that
using a particular system would be free of physical and mental effort” [16], which is similar
to effort expectancy [24]. This concept refers to the literacy of students to use digital media
and technology for successful online learning in the current research. Davis argued that
perceived ease of use had a significant direct positive effect on perceived usefulness, as
a system that is easier to use will, all else being equal, improve user performance (i.e.,
greater usefulness) [16]. This is consistent with the research of Dasgupta, Granger and
McGarry [17] and [18]. In fact, technical problems have long posed challenges to the use of
technology for learning [4], so that, if online learning technology is easy to use, students will
realise its additional benefits. Based on this literature, we establish the second hypothesis.

H2: PEU will have a positive effect on PU.

The results from the extant literature also indicate that perceived ease of use was a
statistically significant predictor of intention to use the internet (e.g., [25,27]). From the
students’ perspective, they will develop a positive attitude towards online learning and
increase their intention to use it if they perceive that the technology involved in online
learning is simple. Based on this literature, we establish the third hypothesis.

H3: PEU will have a positive effect on BI.

2.5. Online Learning Self-Regulation (SR)

Self-regulation is defined as a set of principles and practices by which people monitor
their own behaviours and consciously adjust those behaviours in pursuit of personal
goals [19], including metacognitive strategies, management and control of effort and actual
cognitive strategies [28]. Self-regulated online learning is very important to the study of
the development of educational systems with computer-assisted technology, especially in
online learning contexts [29], and is even viewed as a key element of online learning [30].

Chen and Hwang separated self-regulation into two parts, metacognition and moti-
vation, and found that they had significant positive effects on effort expectancy [29]. This
is because online learning self-regulation, as actions and processes directed at acquiring
information or skills that involve agency, purpose, and instrumentality perceptions by
learners [31], had a profound impact on individuals’ cognition of the difficulty of things.
for instance, in a learning environment with a considerable degree of autonomy, where
students with lower levels of self-regulation experience greater difficulties [32]. That is,
the higher students’ self-regulation ability is, the higher their perceived ease of using
technology in online learning. Based on this literature, we establish the fourth hypothesis.

H4: SR will have a positive effect on PEU.
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Students’ self-regulation is crucial to academic achievement in the course [33], possibly
because students who have self-direction and self-regulation ability can manage their
own learning processes and have more positive beliefs about the effectiveness of online
learning [30,34]. This enables students to adopt correct learning strategies, constantly
reflecting and improving learning efficiency, and eventually obtaining better academic
performance. Based on this literature, we establish the fifth hypothesis.

H5: SR will have a positive effect on PU.

Self-regulated learning capability has been shown to shape individuals’ attitudes
towards online learning and has a significant positive effect on participants’ continuous
intention to learn online [8]. This finding is supported by Hood, who concluded that higher
self-regulation of time and the study environment were closely associated with greater
intention to use archived virtual tutorials, and that higher self-regulation was the most
important predictor of intentions to attend online lectures [14]. Based on this literature, we
establish the sixth hypothesis.

H6: SR will have a positive effect on BI.

2.6. Online Learning Self-Efficacy (SE)

Perceived self-efficacy is concerned with judgements of how well one can execute
courses of action required to deal with prospective situations [12], which was regarded as
the first most commonly used external factor when Abdullah and Ward analysed 107 papers
using external factors of TAM in the context of e-learning adoption [35]. Online learning
self-efficacy refers to an individual’s confidence in their ability to successfully embrace
online learning and achieve good academic performance.

Self-efficacy was the best predictor of students’ perceived ease of using e-learning
systems [35], which is supported by recent studies indicating that perceived self-efficacy had
a significant influence on students’ perception of the ease of usage [36,37]. In other words,
students with a high level of self-efficacy have a more positive attitude towards themselves,
spend more time studying certain internet technology tools and are familiar with their
interfaces and features, are more likely to overcome possible technology difficulties and
ultimately experience the simplicity of the tool. Based on this literature, we establish the
seventh hypothesis.

H7: SE will have a positive effect on PEU.

Evidence about the relationship between self-efficacy and perceived behavioural
usefulness lacks consistency. Abdullah and Ward carried out a systematic analysis of
27 related articles and found that more than half of them lacked a positive significant
correlation [35], which is consistent with the findings of Wu, Li, Zheng and Guo [38].
Nevertheless, it was found that online learning self-efficacy had a significant positive
impact on the use and user satisfaction of e-learning in some studies (e.g., [39,40]). The
latter is more reasonable based on Bandura’s theory [12]; that is, self-efficacy determines
how much effort people will expend and how long they will persist in the face of obstacles
or aversive experiences, and so favourable outcomes occur if individuals have high self-
efficacy. Based on this literature, we establish the eighth hypothesis.

H8: SE will have a positive effect on PU.

The existing body of literature on online learning reported that self-efficacy was a
critical factor in students’ behavioural intentions to use online learning courses on the
internet [11]. This was confirmed by recently published studies (e.g., [36]) which showed
that self-efficacy positively influences the perceived intention to use online learning systems.
Based on this literature, we establish the ninth hypothesis.

H9: SE will have a positive effect on BI.
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In addition, according to the relationship among BI, PU, PEU, SR and SE mentioned in
the above literature, we believe that these variables play an indirect role in the relationship
between their two adjacent variables. Therefore, we propose the following hypothesis:

H10: PU will mediate the association between PEU and BI.

H11: PEU will mediate the association between SR and PU.

H12: PEU will mediate the association between SE and PU.

H13(1): PU will mediate the association between SR and BI.

H13(2): PEU will mediate the association between SR and BI.

H13(3): PEU and PU will mediate the association between SR and BI.

H14(1): PU will mediate the association between SE and BI.

H14(2): PEU will mediate the association between SE and BI.

H14(3): PEU and PU will mediate the association between SE and BI.

3. Method
3.1. Participants

A total of 900 students were recruited and completed questionnaires. One hundred
and thirty-three (14.78%) questionnaires were excluded from further analysis due to poor
response quality. The final sample included 767 participants, and their responses were used
for data analysis, including confirmatory factor analysis, descriptive analysis, correlation
analysis and structural equation modelling (SEM). Detailed demographic information of
the participants is shown in Table 1. All participants had undertaken the online learning
courses provided by the university and were mainly from the Chongqing, Shandong,
Xinjiang, Guangxi, Qinghai and Xizang provinces of China. Data were collected through
Wenjuanxing (https://www.wjx.cn/, accessed on 10 September 2021; a popular online
survey platform in China) between 10 September and 20 October 2021. The information
sheet and the link to the survey were sent to potential participants via WeChat, a widely
used instant messaging and social media application in China. We had to give out online
questionnaires because offline face-to-face investigation was not allowed due to COVID-19.
Participants indicated their consent by completing the questionnaire. It took up to 10 min
to complete the survey.

Table 1. Demographic information of the participants.

Demographic Variable
Sample

Number Percentage

Gender
male 229 29.9

female 538 70.1

Nationality
Han 457 59.6

minority 310 40.4

Grade

freshman 370 48.2

sophomore 156 20.3

junior 119 15.5

senior 122 15.9

3.2. Instrument

The instrument used in the current study consisted of two parts. Part one was named
demographical information, which focuses on collecting basic information about the partic-

https://www.wjx.cn/
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ipants, including gender, nationality and grade. Part two was named the online learning
scale, which consisted of five subscales covering BI, PU, PEU, SR and SE.

The BI subscale was designed based on Davis [15] and Song, Huang and Li [41],
which takes into consideration behavioural intention towards online learning. Six items
are included, e.g., I think online learning is a very good experience. The PU subscale was
designed based on Zhang, Huang and Li [42] and Tian, Feng and Han [43] to examine the
learning effect achieved through online learning and includes 5 items, e.g., I can accurately
state the content of this online teaching. The PEU subscale was compiled by the author to
examine students’ ability to use digital resources in the process of online learning, which
includes 6 items, e.g., when I have a problem with digital technology, I can solve it quickly.
Self-regulated online learning and online learning self-efficacy were designed based on
Pintrich and De Groot [28] to understand students’ self-regulation ability and perceived
confidence during online learning, which includes 3 items and 5 items respectively, e.g.,
I often push myself to study online and I believe I have the ability to carry out online
learning. All items were measured using a five-point Likert scale, ranging from 1 (strongly
disagree) to 5 (strongly agree).

3.3. Data Analysis

Data were analysed with SPSS 21.0 and AMOS 24.0. First, confirmatory factor analysis
(CFA), reliability and validity were calculated to assess the degree of fit, stability and
effectiveness of the subscales. Second, descriptive analysis and correlation analysis was
calculated to investigate the basic level of the subjects. Third, SEM was conducted to
investigate the relationships among the five variables.

4. Results
4.1. Assessment of the Model Fit

The fit of the research models was assessed, and the results showed that χ2/df (chi-
square divided by the value of degree of freedom) = 4.07, CFI (comparative fit index) = 0.91,
TLI (Tucker–Lewis index) = 0.90, SRMR (standard root-mean-square residual) = 0.05,
RMSEA (root mean square error of approximation) = 0.06, indicating a good fitness of
the collected data with the measurement model based on the principles of Bentler and
Bonett [44], Hu and Bentler [45], MacCallum, Browne and Sugawara [46].

4.2. Analysis of Reliability and Validity

The analysis of reliability and validity was conducted for each subscale. Internal
consistency reliability was used to examine the correlations among items of the same
subscale. The results showed that the internal consistency coefficients of the five subscales
were 0.88, 0.76, 0.88, 0.73 and 0.84, which were above the minimum acceptable level of
0.70 [47], denoting high internal consistency for all subscales. Discriminant validity was
used to test the extent to which a subscale differs from other subscales, with the square root
of the number AVE on the diagonal of the scale mostly higher than the Pearson correlation
among subscales, indicating that five subscales have high discriminant validity based on
the principle of Fornell and Larcker [48]. See Table 2 for details.

Table 2. Reliability and validity of all subscales.

Internal Consistency Coefficient
Discriminant Validity

BI PU PEU SR SE

BI 0.88 0.74

PU 0.76 0.62 0.63

PEU 0.88 0.40 0.36 0.74

SR 0.73 0.56 0.56 0.44 0.69

SE 0.84 0.65 0.53 0.57 0.67 0.72
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4.3. Descriptive Statistics and Correlations among the Variables

To check the quality of the data, skewness and kurtosis for all the measured variables
were calculated. The skewness and kurtosis of BI, PU, PEU, SR and SE are −0.33, −0.26,
−0.03, −0.32, 0.04; 0.42, 2.46, 0.51, 0.61, 0.55, respectively, denoting that the shape of the
data distribution in the study may not be severely nonnormal because of the absolute
values of skewness ≤ 3.0 and kurtosis ≤ 10.0 [47].

The means of BI, PU, PEU, SR and SE ranged from 3.42 to 3.51, and the standard
deviations ranged from 0.53 to 0.76. Meanwhile, correlations were examined to check
whether there was a correlation among these subscales, and it was found that all subscales
were significantly (at the alpha level of 0.01) correlated with the range of 0.35–0.56. See
Table 3 for details. Since SE and SR are highly correlated, we checked for multicollinearity
issues for their parameters, and found that the VIF values were 1.39. As the VIF values
were far below the threshold of 10, collinearity was not a concern in the model [47]. At the
same time, we also conducted common method bias testing; specifically, we compared the
goodness-of-fit indices across three models. The single-factor model used all items of SE
and SR as indicators of one latent common method factor; the two-factor model treated
SE and SR as two latent factors indicated by their corresponding items; the three-factor
model added a second-order common method factor to the two-factor model. The results
of single-factor test indicated that the fit of the single-factor model was unsatisfactory:
χ2/df = 12.24, CFI = 0.90, TLI = 0.85, RMSEA = 0.12. The fit of the two-factor model was
acceptable, χ2/df = 2.75, CFI = 0.99, TLI = 0.98, RMSEA = 0.05. The model fit of the
three-factor model was also acceptable: χ2/df = 1.29, CFI = 1.00, TIL = 1.00, RMSEA = 0.02.
These results indicated that CMV is not significant and does not account significantly for
the shared variance between SE and SR in our data because the single-factor model did not
show a good fit to the data and was worse than the two-factor model; meanwhile, latter
does not show obviously more deterioration than the three-factor model (∆χ2/∆df = 4.77,
p > 0.05) [49].

Table 3. Descriptive statistics and correlation coefficients among subscales.

Subscales M SD
Correlation Coefficient

BI PU PEU SR SE

BI 3.51 0.76 1.00

PU 3.43 0.53 0.50 ** 1.00

PEU 3.38 0.73 0.39 ** 0.35 ** 1.00

SR 3.39 0.72 0.46 ** 0.44 ** 0.39 ** 1.00

SE 3.42 0.66 0.56 ** 0.45 ** 0.51 ** 0.53 ** 1.00

Notes: ** p < 0.01.

4.4. Hypothesis Testing

Gender, nationality, and grade were statistically controlled in the tested models as
there were significant differences between gender, nationality and grade in the mean
scores of some variables, as seen in Table 4. For example, male and Han participants had
significantly higher PEU than female and minority participants (p < 0.01), respectively. PU
scores were significantly greater in the seniors than in the freshmen (p < 0.001), sophomores
(p < 0.01) and juniors (p < 0.001); PEU scores were significantly greater in the seniors than
in the freshmen (p < 0.001), sophomores (p < 0.01) and juniors (p < 0.01); PEU scores were
significantly greater in the sophomores than in the freshmen (p < 0.05); SR scores were
significantly greater in freshman than in sophomore (p < 0.05) and juniors (p < 0.01); SE
scores were significantly greater in the seniors than in the freshmen (p < 0.05).
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Table 4. Differences test BI, PU, PEU, SR and SE by gender, nationality and grade.

BI PU PEU SR SE

M SD M SD M SD M SD M SD

Gender
male 3.49 0.86 3.41 0.65 3.51 0.76 3.43 0.80 3.45 0.72

female 3.52 0.72 3.44 0.48 3.32 0.71 3.37 0.68 3.41 0.63
t −0.54 −0.54 3.35 ** 0.93 0.66

Nationality
Han 3.54 0.80 3.45 0.56 3.44 0.76 3.41 0.73 3.46 0.69

minority 3.47 0.70 3.40 0.49 3.29 0.67 3.36 0.70 3.37 0.61
1.23 1.16 2.93 ** 1.06 1.91

Grade

freshman 3.52 0.75 3.41 0.52 3.27 0.71 3.47 0.72 3.38 0.59
sophomore 3.50 0.79 3.40 0.58 3.42 0.75 3.33 0.75 3.46 0.72

junior 3.41 0.80 3.34 0.46 3.39 0.70 3.23 0.64 3.38 0.69
senior 3.61 0.71 3.61 0.56 3.64 0.72 3.38 0.70 3.57 0.70

F 1.38 6.11 *** 8.37 *** 3.91 ** 2.88 *

Notes: * p < 0.05, ** p < 0.01. *** p < 0.001.

The significant correlations among BI, PU, PEU, SR and SE showed that these fac-
tors were highly connected. To obtain the specific causality relationships among factors,
covariance-based SEM was selected based on such specific conditions of choice of the SEM
technique, such as the focus, sample size, data normality, etc [50,51]. Additionally, the non-
standardised coefficient (B), standard error (SE), standardised coefficient (β), critical ratio
and significance level were calculated to test the abovementioned hypotheses with gender,
nationality and grade as control variables. The results indicated that some hypotheses were
supported; see Tables 5 and 6 for details.

Table 5. The results of structural equation modelling.

Hypothesis Hypothesised Path B SE β Critical Ratio Result

H1 PU→BI 0.714 0.103 0.349 6.940 *** Supported

H2 PEU→PU 0.021 0.022 0.048 0.978 Rejected

H3 PEU→BI 0.022 0.038 0.024 0.585 Rejected

H4 SR→PEU 0.222 0.062 0.171 3.599 *** Supported

H5 SR→PU 0.218 0.034 0.377 6.465 *** Supported

H6 SR→BI 0.160 0.058 0.135 2.751 ** Supported

H7 SE→PEU 0.584 0.055 0.507 10.661 *** Supported

H8 SE→PU 0.181 0.030 0.350 5.937 *** Supported

H9 SE→BI 0.433 0.054 0.411 8.019 *** Supported
Notes: ** p < 0.01, *** p < 0.001.

The data in Table 5 show that PU has a significant positive direct effect on BI (β = 0.349,
p < 0.001); therefore, Hypothesis 1 is supported. SR has significant positive direct effects
on PEU (β = 0.171, p < 0.001), PU (β = 0.377, p < 0.001) and BI (β = 0.135, p < 0.01); thus,
Hypothesis 4, Hypothesis 5 and Hypothesis 6 are supported. SE has significant positive
direct effects on PEU (β = 0.507, p < 0.001), PU (β = 0.350, p < 0.001) and BI (β = 0.411,
p < 0.001), meaning that Hypothesis 7, Hypothesis 8 and Hypothesis 9 are supported.
However, PEU was not found to have significant direct effects on PU (β = 0.048, p > 0.05)
and BI (β = 0.024, p > 0.05); therefore, Hypothesis 2 and Hypothesis 3 were rejected.
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Table 6. Total and indirect effects and ratio of both.

Hypothesis Hypothesised Path Total Effect Indirect Effect Result Ratio of Indirect Effect to
Total Effect

H10 PEU→PU→BI 0.041 0.017 Rejected 0.415

H11 SR→PEU→PU 0.385 * 0.008 Rejected 0.021

H12 SE→PEU→PU 0.374 * 0.024 Rejected 0.064

H13(1) SR→PU→BI 0.273 ** 0.131 ** Supported 0.480

H13(2) SR→PEU→BI 0.004 Rejected 0.015

H13(3) SR→PEU→PU→BI 0.003 Rejected 0.011

H14(1) SE→PU→BI 0.554 * 0.122 ** Supported 0.220

H14(2) SE→PEU→BI 0.012 Rejected 0.022

H14(3) SE→PEU→PU→BI 0.008 Rejected 0.014

Notes: * p < 0.05, ** p < 0.01.

To further clarify the mechanism of causality between the nonadjacent subscales,
several main paths were analysed. The statistical significance was tested by setting the
bootstrap number to 5000 and the confidence interval to 95%. The results revealed that SR
had a statistically significant indirect effect on BI through the mediation of PU (β = 0.131,
p < 0.01). SE had a statistically significant indirect effect on BI via the mediation of PU
(β = 0.122, p < 0.01), supporting H13(1) and H14(1). Other hypotheses on indirect effects
were rejected. See Table 6 for details.

5. Discussion

The findings demonstrate that PU has a significant positive effect on students’ BI to
adopt online learning, which coincides with the results of Fusilier and Durlabhji [27] and
Hong, Thong, Wong and Tam [52], revealing the strong effects of PU on BI. That is, students
are more likely to adopt online learning when they achieve good academic performance
during online learning. In addition, the results of the present study demonstrate that
PU is not only a direct predictor of BI but also a crucial mediator of BI. More specifically,
PU played a significant mediating role in the relationship among SE, SR and BI, and its
proportion to the total effect was larger. Given the importance of PU, schools should pay
more attention to college students’ learning effects and take more measures to promote
their academic achievement in the process of online learning, which can effectively improve
students’ behavioural intentions to adopt online learning.

The unanticipated finding of this study is that PEU does not have a significant positive
effect on PU and BI. This is not consistent with most studies, which show PEU as having a
significant effect on students’ PU and BI when using the e-learning system (e.g., [20,53]),
but it does not mean it is an entirely divergent result because a handful of studies have
also found it (e.g., [36]). This finding means that a high PEU does not directly convert
to a high PU and BI. One possible explanation for this result is that PEU in the article
only focuses on the technology of online learning process, while PU and BI not only focus
on online learning technology, but also on the benefits and good experiences brought by
online learning and which are covered in PEU. Thus, improving PEU itself is not enough to
improve students’ PU and BI. The result also provides some illuminating reflections; for
instance, teachers and parents should avoid a one-sided view of technology orientation and
attach importance to knowledge acquisition and competence development, while helping
students become more proficient in the use of computer technology.

Similar to the results of previous studies (e. g., [54,55]), our results support the effect of
SR on PEU and PU and BI, indicating that self-regulated online learning plays a crucial role
in students’ perceived ease of using technology, academic achievement in the online learn-
ing process and behavioural intention to adopt online learning. This result can be attributed
to the value of self-regulation itself; i.e., when they have high SR online learning, individu-
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als can actively overcome technical trouble and academic problems and achieve academic
performance by spending time adjusting learning strategies, which further improves stu-
dents’ behavioural intention to adopt online learning. Therefore, specific measures such as
promotion of students’ perceived leadership and group cohesion [13] should be considered
to equip university students with stronger self-regulatory skills. At the same time, SR also
has significant indirect effects on BI via PU, which is helpful to explain the relationship
between SR and BI in depth. Specifically, BI is a complex psychological phenomenon that
may be affected by many factors, meaning that as an isolated individual ability SR needs
a process to affect BI. For example, individuals with self-management ability have better
control over time, learning strategies and effort. The former is conducive to individual
academic performance, while the latter can also improve individuals’ willingness to adopt
online learning, as mentioned above. This study found that SE had a significant effect on
PEU, PU and BI, which was in accord with the findings of Ifinedo [37], and Lynch and
Dembo [56]. At the same time, SE also had a significant indirect effect on BI through PU.
Judgements of self-efficacy determine how much effort people will make and how long
they will persist in the face of obstacles or aversive experiences. The higher the level of
perceived self-efficacy, the more attention and effort are distributed to solve obstacles and
finish tasks, and the greater the performance accomplishments [12]. That is, individuals
will spend more time studying related technology and overcoming academic difficulties in
the online learning process if they have high online learning self-efficacy. This means that
they are more likely to have higher technical competence and academic achievement and
more active behavioural intentions to adopt e-learning. In contrast, individuals with low
online learning self-efficacy cannot overcome any challenges they may face if the work is
complex, and they will not persevere in their efforts when suffering setbacks [53]. They
may eventually face problems such as poor employment of technology and poor academic
performance. Therefore, it is vital to make students confident in the process of online
learning. To this end, teachers and parents should adopt measures to help students achieve
high academic achievement and provide verbal persuasion and opportunities to observe
the outstanding performances of others [12].

6. Limitations and Conclusions

Three limitations in the current research should be noted. First, a convenience sam-
pling method was used to collect data and the number of participants was limited, which
resulted in the data in the research not being representative of all Chinese university stu-
dents. To explore the relationships among variables more deeply, future studies should
adopt a more comprehensive sampling method and recruit more subjects from more varied
provinces in China. Second, although SE and SR were selected in this study from the
perspective of students, BI, PU and PEU are influenced by many factors, including family
socioeconomic status, parents’ education notions, family atmosphere and the design of the
online curriculum offered by the school. Therefore, future research should cover as many
different variables as possible. Finally, the cross-sectional study used in this study cannot
infer causality between variables in a strict sense, and longitudinal designs or randomised
controlled studies can be used in future relevant studies to further verify the relationship
between them.

This study uses TAM as a theoretical model and explores the relationship among
BI, PU, PEU, SR and SE based on data from Chinese university students. Results of the
current study may make several theoretical and practical contributions. From a theoretical
perspective, the result replicates previous research and adds evidence to confirm the
relationships among PEU, PU and BI. Furthermore, the current study extends this kind
of research by documenting the relationships among SE, SR and PEU, PU, BI, which
provides possible space for further expansion of TAM to some extent. From a practical
perspective, our findings provide us with an opportunity to reflect on and actively take
practical measures to improve PEU, PU and especially BI. For example, teachers, parents
and other educators should properly recognise that digital technology plays a supporting
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rather than central role in the process of online learning, and thus avoid laying much more
stress on it than on online learning. In addition, some measures should be taken to promote
students’ online learning self-efficacy and self-regulation, such as giving students training
of an outstanding quality and a technical support team that includes experts in using
the system [53], providing complex, personally meaningful tasks in which students have
multiple opportunities for decision making, autonomy, self- and peer evaluation, and can
work collaboratively [57]. Perhaps most importantly, teachers should always pay attention
to improving students’ academic performance.
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