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Abstract: The ability of GIFs to generate emotionality in social media marketing strategies is analyzed.
The aim of this work is to show how neuroscience research techniques can be integrated into the
analysis of emotions, improving the results and helping to guide actions in social networks. This
research is structured in two phases: an experimental study using automated biometric analysis
(facial coding, GSR and eye tracking) and an analysis of declared feelings in the comments of
Instagram users. Explicit valence, type of emotion, length of comment and proportion of emojis
are extracted. The results indicate that the explicit measure of emotional valence shows a higher
and more positive emotional level than the implicit one. This difference is influenced differently by
the engagement and the proportion of emojis in the comment. A further step has been taken in the
measurement of user emotionality in social media campaigns, including not only content analysis,
but also providing new insights thanks to neuromarketing.

Keywords: social networks; digital consumer behavior; emotion; Instagram; GIF; consumer neuro-
science; neuromarketing; skin conductance; facial coding; eye tracking; sentiment analysis

1. Introduction

Currently, social media marketing strategies seek to position brands within the hearts
of their customers, where the main experience of value is emotion [1,2] (Smith and Bolton,
2002; Mauri, et al., 2011). This is why the involvement of the senses is fundamental to influ-
encing the emotional state of social media users [3] (Prescott, 2017). One of the most widely
used resources to achieve this emotional impact on users is GIFs. Their effectiveness has
been analyzed in several studies that have shown their ability to generate emotionality [4–6]
(Bourlai and Herring, 2014; Bakhshi et al., 2016; Gygli and Soleymani, 2016).

In fact, nowadays, communication and marketing professionals are looking for tools
that allow them to measure the effectiveness of their campaigns, in terms of emotionality.
The most frequently used research techniques are based on content analyses of comments
made by a brand’s followers on a social network [7–10] (Driscoll, 2015; Turnbull and
Jenkins, 2016; Scheinbaum, 2017; Kim and Kim, 2018). Less common is the use of neuro-
science techniques to measure emotionality based on users’ unconscious responses to a
given stimulus.

Consequently, the present study proposes a combination of emotion measures (emo-
tional valence, basic emotions and engagement) to assess the effectiveness of GIFs as
generators of emotional experiences on social networks. In addition, neuroscience tech-
niques were used to observe physiological and cognitive responses (implicit measures), as
well as to perform sentiment analyses (explicit measures) of Instagram comments.
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2. Literature Background
2.1. Conceptualization of Emotion Assessment

There are a large number of definitions of the concept of emotion in existent literature,
as well as of existing emotional states, the ways to measure them, and their neurophys-
iological representations. In this investigation, emotion is understood as the cognitive
process of evaluating and interpreting feelings, with the aim of regulating social and/or
relational responses in social networks. To address emotion, there are two traditional mea-
surement perspectives in the field of psychology. The first is the dimensional measurement
of emotion, which states that an emotion is composed of valence and arousal. Emotional
valence is the positive or negative evaluation of the emotional state, while arousal (The
construct “arousal” is a hypothetical term that describes the processes that control alert-
ness, wakefulness and activation. (Anderson, 1990) [11] or physiological arousal refers
to the activation of the parasympathetic nervous system (e.g., increased skin sweating or
heart rate) [12–14] (Harmon-Jones et al., 2017; Izard, 2010; Lang, 1995). The second is the
measurement of emotion as a discrete entity. In this case, the emotional evaluation process
results in concrete emotions, such as happiness or sadness [12] (Harmon-Jones et al., 2017).
Specifically, six basic and universal emotions have been identified: happiness, surprise,
fear, anger, disgust and sadness [15] (Ekman, 1993).

Therefore, this emotionality underlies psychological and physiological responses [12]
(Harmon-Jones et al., 2017). This is stated since emotions are normally triggered by a
stimulus that is perceived or remembered, provoking physiological actions, such as the
contractions of certain facial muscles [16] (Damasio and Carvalho, 2013). Moreover, authors
such as LeDoux and Brown (2017) [17] have investigated which brain circuits activate a
specific emotion and allow us to be aware of it and express it verbally. Consequently, it
is necessary to combine its explicit (textual) study with tools that allow us to capture the
most implicit part of the emotion (neuroscientific and biometric tools).

2.2. Sentiment Analysis and Emotional Engagement in Social Media

Several studies have been devoted to the analysis of sentiment in social networks.
Among the most relevant is that of Driscoll B. (2015) [7], who studied sentiment in 20,189
tweets and 921 replies, concluding that 38% of these replies express a positive emotion
while 20% express a negative emotion. This also highlights the importance of emotion and
its link to perceived intimacy between senders and receivers. For Turnbull and Jenkins
(2016) [8], social media reactions offer marketers the opportunity to better understand how
consumers engage emotionally with social media content, enabling greater precision in
their emotional response. This allows brands to more effectively measure their campaigns.

Social media, and Instagram in particular, are experiential products that continuously
reinforce both positive and negative habits [9] (Scheinbaum, 2017). Several studies point to
the bias of this online positivity, as most content distributed on social networks is rated
more positively than negatively [18,19] (Reinecke and Trepte, 2014; Waterloo, Baumgartner,
Peter and Valkenburg, 2018). In the context of emotions and positivity on the internet,
there is research that advocates the expression of emotions through networks, from which
a direct link between emotional language and online behavior can be inferred [20,21]
(Dresner and Herring, 2010; Huffaker, 2010).

Following this last idea, the link between behavior and expressed emotion has been
seen in studies that have investigated the emotional state and the engagement in social
networks. Most notably, Dubovi and Tabac (2021) [22] have tried to determine whether
the behavioral engagement of views, likes, dislikes and comments, and the emotional
and cognitive engagement in science dissemination channels on YouTube, coincide or
not. They show in their study that, regardless of the valence of emotional engagement,
emotion is linked to higher behavioral engagement in posting comments and to higher
cognitive engagement in argumentative deliberation. Morgado et al. (2020) [23] studied the
emotional engagement of users on the police’s Facebook profile, concluding that the overall
engagement is positive and that it mainly came from women. In contrast, Vizcaíno and
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Aguaded (2020) [24] study the emotional poralization of children on Instagram accounts.
Their results reveal a prominent positivity and subjectivity in the lexical field, with the
repeated use of adjectives such as “happy”, “new” or “super”. On the other hand, Kim
and Kim (2018) [10] conducted explorations on computer vision techniques on Instagram
to define associations between personality and gender by means of photography. Their
results show that users’ extroversion, agreeableness and openness were partly associated
with the emotions expressed in faces in their photos, specifically among certain pixel
traits. It was also observed that the big five personality traits can be predicted by the
above variables, except in the case of gender. Claffey and Brady (2019) [25] empirically
tested hypotheses on the effects of key components of consumer engagement (cognitive
appraisal, affective states, participation) on consumers’ affective engagement. Zhan, Tu
and Yu (2018) [26] performed a sentiment analysis on Instagram of library readers by
identifying three polarities of opinion (negative, neutral and positive) and six emotions
through comments (scary, loser, upset, enjoyable, happy and fun). These polarities provide
new insights into understanding readers, which helps libraries provide better services.
Diayanah-Abdullah and Asnira-Zolkepi (2017) [27] analyzed users’ emotions towards
brands on social media, and their results show that the feeling of provocation must be
managed efficiently to start interaction and a long-term relationship. Finally, Domingo,
Jewitt and Kress (2015) [28] stated that, on Instagram, writing is an intrinsic part of the
visual element, hence the importance of analyzing the emotional valences of the comments
posted by users of the network.

Therefore, the literature found reflects the relevance that the analysis of content has
had and continues to have today, in terms of the emotions it reflects and the emotional
engagement that can be obtained through social networks.

2.3. Neuroscience at the Service of the Study of Emotions: Implicit and Explicit Measures

The measure of emotional valence is being used as an indicator of the success of
social media communication campaigns. This measure is often obtained from automated
emotional analyses of user comments, which are considered an explicit measure as they
are self-expressed in the form of texts and emojis [7,8,22,29] (Kralj et al., 2015; Driscoll,
2015; Turnbull and Jenkins, 2016; Dubovi and Tabac, 2021). However, neuromarketing tech-
niques can also be used to analyze the unstated (implicit) responses of the target audience.
In these cases, the most common way to obtain emotional valence is through the use of
technological tools that take biometric measurements, such as skin conductance or facial
micro-expressions. However, neuroscientific techniques, such as electroencephalograms
(EEG), can also record the measurement of emotional valence.

Although there is little empirical evidence, some studies can be found that have used
neuroscience tools for the analysis of emotionality in social media. These include the study
by Harris, Ciorciari and Gountas (2019) [30], which analyzes social media strategies based
on action/challenge/emotion, showing the value of combining neuroscientific techniques
(EEG) with traditional market research methods (psychometric survey).

Relevant studies have used a combination of measures of emotional valence to inves-
tigate different stimuli related to marketing communications. There is one study, focusing
on aesthetic and utilitarian emotions in response to advertisements, that combines neuro-
science research techniques (facial electromyography and skin conductance) with the study
of subjective self-evaluations of emotion (Lajante et al., 2020) [31]. In the context of social
media, a study has been carried out comparing two measures of emotional valence: that
obtained from psychophysiological responses, and that resulting from the analysis of user
comments. This study determines the existence of significant differences in unconscious
and verbalized responses (Hernández-Fernández, Mora and Hernández, 2019) [32]. From
the field of computer science, a study is conducted that records the physiological reactions
and verbalized responses of e-game users to evaluate their experiences. Researchers recog-
nize the potential of physiological analysis to enrich research in entertainment technology
(Mandryk, Inkpen & Calvert, 2006) [33].
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This shows the potential of combining neuroscientific and biometric devices with
self-reported measures in the study of social networks.

2.4. The Use of GIFs in Social Media

GIFs have become culturally relevant in the digital context, especially in social media.
They are a good tool for sensory appeal through the use of movement, color and repetition
(Ash, 2015) [34]. They are considered a suitable resource to generate emotionality, as they
can represent a wide variety of feelings (Bourlai and Herring, 2014) [4]. In addition, due to
their simplicity and high number of meanings, they manage to arouse empathy with the
content shown (Miltner and Highfield, 2017) [35]. These qualities lead brands to use GIFs
to design experiences with affective qualities (Gürsimsek, 2016). [36]

Previous studies have investigated the use of GIFs in social media, showing interesting
results. According to one of them, GIFs are the most attractive resource on Tumblr in terms
of likes and reblogs (Bakhshi et al., 2016) [5]. Another study stated that the object that
appears and the associated emotions are more important than the movement. It also
concluded that the interest generated is associated with the number of likes the GIF
receives, but does not correlate with reblogging it (Gygli and Soleymani, 2016) [6]. In fact,
there is an interesting line of research that focuses on designing an affective computing
tool for the automated analysis of the emotions represented in GIFs based on the facial
expressions they contain (Brendan, Bhattacharya, and Chang, 2014; Chen, Rudovic and
Picard, 2017) [37], [38]. Finally, Rua-Hidalgo et al. (2021) [39] conducted a two-phase study
on GIFs used by commercial brands. In the first phase, they combined the biometric tools of
automated observation of facial expressions, skin conductance and eye position to observe
the emotional state that GIFs of well-known brands cause in participants. Furthermore, they
compared them with the effects caused by static images of the same brands, concluding that
GIFs achieve user engagement and cause a “state of well-being and pleasure” (Russell’s
Circumplex Model, 1980) [40]. In the second phase, they used the implicit association test
to observe unconscious associations related to well-known brands, and the results obtained
show that participants believed that well-known brands are quality brands. The correlation
found between the results of the two studies reveals that GIFs, while arousing positive
emotions and leading to engagement, do not achieve an enthusiastic state when brands are
internalized as quality brands.

In this way, GIFs are an attractive option when it comes to generating emotions, which
can translate into higher conversions on social networks. For this reason, addressing how
they can be effective in communicative terms, combining explicit and implicit measures
can provide information that has not been explored so far.

3. Research Questions and Hypotheses

The following are the research questions and hypotheses derived from previous literature.

RQ1. Are there differences between implicit and explicit measures of emotional valence in
Instagram users?

Hypothesis 1. The measure of explicit valence of Instagram users’ response to GIFs will be more
positive than the measure of implicit valence.

RQ2. What might account for these possible differences?

Hypothesis 2. The greater the user engagement with GIFs, the smaller the difference between
implicit and explicit measures of emotional valence.

Hypothesis 3. The longer the comment, the smaller the difference between implicit and explicit
measures of emotional valence.

Hypothesis 4. The greater the proportion of emojis in the comments on GIFs, the greater the
difference between implicit and explicit measures of emotional valence.
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RQ3. Are explicit comments and biometric tools equally effective in identifying the emo-
tions felt by subjects?

Hypothesis 5. Biometric tools are more accurate predictors for assessing the basic type of emotion
that is aroused in response to GIFs.

In order to test these hypotheses, this research was divided into two phases focused
on inferring the emotional valence derived from a selection of GIFs posted on Instagram
(Figure 1). In the first phase, techniques from consumer neuroscience or neuromarketing
were applied to obtain a measure of implicit emotional valence and engagement. The
second phase complemented the first by analyzing the explicit emotional valence based
on the semantic analysis of the comments on each GIF. Finally, a comparison was made
between the emotional data obtained implicitly and explicitly.
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4. Materials, Methods and Results
4.1. Phase 1. Experimental Study of Neuromarketing Applied to GIFs

In this first phase, neuromarketing devices (face coder, GSR and eye tracker) are
applied to analyze and quantify the emotional valence, the engagement generated and the
type of basic emotion caused by 18 Instagram GIFs selected for being used by renowned
brands and for having a high number of likes. The selected GIFs are images in movement
with an approximate duration of 4 s. All the images are high-quality, some taken outdoors
and others indoors. Concerning audiovisual treatment, some contain a filmed scene and
others constantly repeat a moving image. The visual contents are varied: people, objects
and animals, both in the foreground and in the background.

The valence variable allows us to identify the sign of the emotion (positive or negative).
The engagement variable indicates the emotional state the person is in when viewing the
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stimulus, and is extracted through the combination of emotional valence and activation.
The type of basic emotion recorded indicates which specific emotions have been experi-
enced through the recording of facial expressions (happiness, surprise, anger, disgust, fear
and sadness).

The three variables provide the measure for each subject and each GIF, and these indi-
vidual data are added to the aggregate values for the group, thus obtaining a quantitative
value for each variable for each GIF.

4.1.1. Participants

Participants were selected randomly, with the inclusion criterion being regular use of
at least one social network.

The sample size was 30 participants. This sample size was considered represen-
tative with a probability of error of less than 1% [41–43] (Cohen, 1992; Sands, 2009;
Hensel et al., 2017). The size is adequate to provide sufficient knowledge about the stimu-
lus for the purpose of the research. Furthermore, the distribution of the sample was based
on the Interactive Advertising Bureau and the Elogia study (2018) [44], which described
the profiles of social network users. Therefore, the composition was 33% for each age range
(16–30; 31–45; 46–55), with 53% women and 47% men.

4.1.2. Stimuli

The stimulus used in this experimental phase was a video of 2 min and 26 s, made
from a random combination of 18 GIFs, incorporating distractors between each of them.
In order to avoid presentation bias, three different videos were edited with the elements
randomly ordered.

The selection of the GIFs was based on a review of all GIFs posted on Instagram
(1 March–10 April 2019) by the top 100 international brands (2017 Best Global Brands ranking—
Interbrand, 2017 [45]). The 18 GIFs with the highest number of likes were selected.

All subjects viewed one of the three versions of the video. During the presenta-
tion of the stimulus, facial micro-expressions, skin conductance level and pupil direction
were recorded.

4.1.3. Devices

The GIFs were presented via a laptop (Windows 10 operating system) and a 24-inch
monitor. In addition, an external webcam was used to record facial expressions and
pupil direction.

4.1.4. Measuring Tools

Face coder. This records the data from the decoding of the person’s face through
software that analyzes the image provided by the webcam. The software developed by the
company INTERACTÚA+ was used.

The Face Coder tool provided six concrete emotions (joy, surprise, sadness, fear, anger
and disgust), with their respective value, recorded from facial micro-expressions that were
generated in the presence of each GIF. Subsequently, the values of these emotions registered
in all participants were aggregated, obtaining a single value for each emotion per GIF.

Previous research in communication and marketing stimuli using this tool for the
analysis of emotion type has been considered as the empirical background (McDuff, El
Kaliouby and Picard, 2012; Bellman, Wooley and Varan, 2016; Goyal and Singh, 2018;
Mundel et al., 2018) [46–49].

Galvanic Skin Response (GSR). This records skin conductance levels through electrodes
placed on the fingers of the subject’s hand. The eSense® device was used.

Previous studies involving GSR to analyze unconscious responses to marketing stimuli
were taken into account in the design (Weibel et al., 2019; Walla, Koller, Brenner and
Bosshard, 2017; Guerreiro, Rita and Trigueiros, 2015; Reimann, Castano, Zaichkowsky and
Bechara; 2012) [50–53].
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Eye-tracker. This has been included in the experimental study to ensure that the
participant is viewing the stimulus. It consists of a device that tracks the eye and records
the subject’s gaze while viewing a stimulus.

4.1.5. Data Analysis

All recorded data were first processed in Excel in order to clean them and make them
manageable in the SPSS statistical software.

Specifically, the data recorded by the facial emotion identification tool (face coder)
determine the valence of the emotions (positive or negative) and the type of emotion
according to the classification of the six basic universal emotions (Ekman, 1993) [14].
The recording of the level of skin conductance (GSR) during the visualization of the
stimulus was used to obtain the level of arousal. From these two records, the engagement
variable was calculated, which indicates the emotional state in which the participants
found themselves while they were watching the video, as it combines the type of emotion
with the intensity of this emotion. In addition, as a control measure, the position of the
pupil (eye tracking) was monitored, which made it possible to verify the stimulus that was
really generating the emotion.

Emotional valence and engagement were tested for normality and homogeneity of
variances. The basic emotion type was quantified to get an approximation of how much
each emotion was experienced upon exposure to each GIF.

4.1.6. Ethical Issues

The study was approved on 20 April 2018 by the Ethics Committee of the Universidad
Internacional de la Rioja, Spain, under the number LABNMKT-001-2018.

The ethical protocols of the World Medical Association Declaration of Helsinki (1964)
were followed. In addition, informed consent was obtained from all participants, assuring
data confidentiality.

4.1.7. Procedure

After signing the informed consent form, each participant was placed in front of
the computer. Both the face coder and the GSR were checked to ensure that they were
calibrated and working correctly, and the baseline measurement was taken. Then, one of
the three videos with the 18 stimuli was randomly played. Once the video had finished,
they were thanked for their participation and accompanied to the exit. Each test lasted
about 6 min in total.

In order to obtain the baseline of the GSR tool, sensors were placed on the non-
dominant hand of the participants in such a way that it began to collect values prior
to the presentation of the stimulus, thus establishing the skin conductance baseline of
each participant. At the same time, the computer equipment and the tool software were
synchronized. On the other hand, the eye tracker and Face Coder tools shared the same
software and implementation. The first step was to regulate the webcam to achieve optimal
lighting conditions and get the face of the participant centered on the screen. Then, the
calibration software allowed us to obtain the baseline. This involved following a point that
moved across the screen and picking up the point where the pupil is located.

4.1.8. Results

The Shapiro–Wilk normality test (see Table 1) shows that the variables implicit emo-
tional valence (VIE) and engagement (Eg) are close to normal (VIE: p = 0.779 > 0.050;
Eg: p = 0.772 > 0.050). Furthermore, their variances are homogeneous, according to the
results obtained in Levene’s test of equality of variances (VIE: p = 0.873 > 0.050; Eg:
p = 0.818 > 0.050). The measures of the variables analyzed are shown in Table 1.

The 18 GIFs selected reflect the six basic emotions. The emotion that appears most
frequently is sadness, followed by anger, as shown in Table 2.
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Table 1. Statistic results of the variables in Phase 1.

Variables Media Standard Deviation Standard Error

Implicit emotional valence (VIE) 0.1480 0.0356 0.0084
Engagement (Eg) 0.0025 0.0309 0.0073

Table 2. Types of emotions registered in each GIF by the face coder.

Links 1 Happiness Surprise Anger Disgust Fear Sadness

GIF1 0.0307 0.005 0.0914 0.0487 0.0097 0.1062
GIF2 0.0579 0.005 0.0903 0.0310 0.0119 0.1499
GIF3 0.0475 0.0121 0.0852 0.0193 0.0198 0.1304
GIF4 0.0414 0.0042 0.083 0.0272 0.0059 0.1455
GIF5 0.029 0.047 0.0793 0.0092 0.0162 0.1263
GIF6 0.0415 0.0536 0.0827 0.0169 0.0093 0.1242
GIF7 0.0459 0.0705 0.0649 0.0121 0.0053 0.123
GIF8 0.0519 0.0628 0.0977 0.0200 0.0096 0.1499
GIF9 0.0371 0.0059 0.0628 0.0391 0.0078 0.1013

GIF10 0.0528 0.0008 0.0802 0.0238 0.0076 0.1395
GIF11 0.0398 0.0665 0.0722 0.0206 0.0322 0.1245
GIF12 0.0409 0.0383 0.0800 0.0242 0.0097 0.1415
GIF13 0.0576 0.0027 0.0506 0.0189 0.0056 0.1445
GIF14 0.0455 0.0029 0.0884 0.0428 0.0039 0.1305
GIF15 0.0353 0.0129 0.0778 0.0361 0.0086 0.1136
GIF16 0.0394 0.0343 0.0644 0.0083 0.0069 0.1248
GIF17 0.0184 0.0328 0.0817 0.0290 0.0366 0.1396
GIF18 0.0422 0.0152 0.1021 0.0347 0.0082 0.1379

Media 0.0419 0.0263 0.0797 0.0257 0.0119 0.1307
1 Links to GIFs for inclusion in Table 2 were obtained on 15 May 2021.

4.2. Phase 2. Sentiment Analysis of GIF Content on Instagram

In this phase, a quantitative methodology was implemented and a content analysis
was carried out, using data mining and sentiment analysis. To do this, the comments on
the Instagram GIFs selected in Phase 1 were obtained.

The explicit emotional valence of the comments was quantified (negative or positive),
both the one derived from the text and the one derived from the emojis in the comments
(negative and positive), as well as the length of the comment itself (including both text and
emojis) and the proportion of emojis in the comments.

4.2.1. Stimuli

A total of 1420 comments were analyzed. These came from each of the 18 GIFs used in
Phase 1. Up to 100 comments were extracted from each GIF (15 April–1 May 2021). If they
had less than 100 comments, all existing comments were extracted. Similarly, if they had
more than 100 comments, only the first 100 were used.

4.2.2. Measuring Tools

Sentiment analysis of comments. To obtain information on the length and composition
of the comments, a program written in Python 3 was used. This program takes as input an
excel document, generated through the Export Comments application, with the comments
on each GIF (the openpyxl library was used). The comments were cleaned up using a
function that removes strange punctuation symbols and tags that correspond to other users.
The Emoji library was used to identify the emojis present in the comments. Then, a function
was created to obtain the number of words, the average lengths of the comments, and
the percentage of words and emojis in the comment. With all the information obtained, a
new Excel document was generated (using openpyxl) that includes the following statistics:
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average number of words in the comments, average number of emojis and percentage of
emojis versus words for each GIF.

The Twinword API (https://www.twinword.com/; accessed on 31 May 2021) was
used. This natural language processing (NLP) interface, based on the Python programming
language, detects the intentionality of sentences and paragraphs. The measure it provides
is the overall score of the analyzed text. Thus, values lower than −0.05 are considered
negative, values higher than 0.05 are considered positive, and all values in between are
considered neutral. In addition, thanks to this application, a list of the most emotionally
charged words and adjectives was obtained from the comments.

Detection of the basic emotions in the comments. Through Twinword’s Emotion Analysis
API, the basic emotions in each of the 18 GIFs were identified.

Analysis of the emotionality of emojis. The emotional valence of emojis was obtained
using the Emoji Sentiment Ranking (http://kt.ijs.si/data/Emoji_sentiment_ranking/;
accessed on 31 May 2021), developed and validated by Kralj et al. (2015) [29].

Content analysis. We developed our own counting application to obtain the maximum
length of the comments, as well as their composition (proportion of text and emojis).

4.2.3. Procedure and Data Analysis

(1) Compilation of comments on each GIF

Using the URLs of the Instagram GIFs, up to 100 comments were collected for each
of the 18 GIFs under study. Using Export Comments (https://exportcomments.com/;
accessed on 31 May 2021), an Excel file was obtained for each GIF. If it had more than
100 comments, the tool extracted 100; if this number was lower, all comments were extracted.

Subsequently, all comments were translated into English as the sentiment analy-
sis tool only evaluates content in this language. This was done via Google Translator
(https://translate.google.com/?hl=fr&tab=TT; accessed on 31 May 2021).

(2) Analysis of the explicit emotionality of each GIF and calculation of the variable VEE
(Table 3)

Table 3. Variables, dimensions and tools of Phases 1 and 2.

Variable Dimension Tool

Implicit Emotional Valence (VIE) Value of emotion Face coder

Engagement (Eg) Emotional state Face coder + GSR

Explicit Emotional Valence (VEE) Value of emotion Twinword

Difference VIE y VEE (VD) Difference between valences VEE−VIE

Comment length (LgC) Number of elements that appear in the comment Element Counter (own design)

Proportion of Emojis (Pemj)
Percentage of emojis over total number of

elements in a comment
Element Counter

(own design)

Type of basic emotion Identification of basic emotions
Twinword Emotion Analysis API

(explicit method)
Face coder (implicit method)

The analysis of the emotionality of the textual content was carried out with Twinword.
An emotion value was obtained for each comment in the GIF, calculated by averaging the
total emotion value of each GIF, which was in the range −1 to 1.

The emotional valence of the emojis was then obtained by means of the Emoji Senti-
ment Ranking.

In order to obtain one single standardized value for the explicit valence measure, all
text and emoji values were taken together and divided by the number of comments. This
resulted in the variable Explicit Emotional Valence (VEE).

https://www.twinword.com/
http://kt.ijs.si/data/Emoji_sentiment_ranking/
https://exportcomments.com/
https://translate.google.com/?hl=fr&tab=TT
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(3) Analysis of the Composition of Comments and Calculation of Variables LgC and Pemj
(Table 3)

In order to count the length (LgC) and the proportion of emojis in the total content of
the comments (Pemj), we used our own counting application, designed in Python language.
Thus, we obtained the average value of the length of the comments in each GIF and the
percentage of emojis used in their comments.

(4) Analysis of the Differences between Explicit and Implicit Emotionality and Calcula-
tion of the Variable VD (Table 3)

The variable Emotional Valence Difference (EVD) was obtained by the difference
between the values recorded explicitly (comments) and implicitly (biometric tools):

VD = VEE − VIE

4.2.4. Results
Implicit Measure of Valence Versus Explicit Measure of Valence

The first step was to calculate normality for the VIE and VEE through the Shapiro–
Wilk test (Table 4). The distributions were found to approach normality for both VIE and
VEE (p > 0.050). In addition, the assumptions of homogeneity of variance were met using
Levene’s test for equality of variances (p = 0.873 > 0.05).

Table 4. Result for normality test.

Shapiro–Wilk

Data Origin Statistic Sig.

Biometric tool (VIE) 0.969 0.779
Instagram comments (VEE) 0.943 0.323

The correlation was significant at the 0.05 level (bilateral).

Since the normality and homoscedasticity criteria were met, a t-test for independent
samples was performed to compare the average of implicit valence and explicit valence.
The results, as shown in Table 5, reveal statistically significant differences between VIE
(MVIE = 0.148, SD = 0.036) and VEE (MVEE = 0.407, SD = 0.030; t(34) = −7.178, p = 0.000).
Therefore, emotional valence was significantly higher when users expressed themselves
through comments on Instagram than when the emotional valence aroused by GIFs was
recorded through biometric tools. Consequently, H1 is confirmed. Moreover, in both cases
the average emotional valence was positive.

Table 5. Statistical results of emotional valences.

Data Origin Average Standard
Deviation Standard Error

Biometric tool (VIE) 0.1480 0.0356 0.0084
Instagram comments (VEE) 0.4068 0.0305 0.0072

Differences between Implicit and Explicit Measures of Emotional Valence for Each GIF

A new continuous variable is defined: the difference of the emotional valence between
the implicit and the declared measures in each GIF (VD). This value was calculated for
each GIF. Additionally, in order to obtain which variables could explain this difference
between the two measures of valence, different correlations between different variables
were studied through Pearson’s bivariate correlation coefficient. Specifically, these variables
were engagement (Eg), comment length (LgC) and proportion of emojis in the comments
of the GIFs (Pemj).

(1) Relation between Valence Difference (VD) and Engagement (Eg)
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In the relation between VD and Eg, the correlation showed a statistically significant
inverse relation with a negative sign, as shown in Table 6 (r = −0.546, p > 0.050). This
indicates that the more engagement a GIF generates, the smaller the difference in emotional
valence measured explicitly (through comments) and implicitly (biometric tools), thus
confirming H2.

Table 6. Correlation between the variable Implicit–Explicit Valence Difference and Engagement.

Engagement (Eg) Implicit-Explicit Valence Difference (VD)

Engagement
(Eg)

1 −0.546 *
0.019

Implicit–Explicit Valence
Difference (VD)

−0.546 * 1
0.019

* The correlation is significant at the 0.05 level (bilateral).

(2) Relation between Valence Difference (VD) and Comment Length (LgC)

A possible significant and positive relation between VD and LgC has been hypoth-
esized. However, the results indicate that there was no statistically significant relation
between VD and LgC (r = −0.380, p = 0.120), rejecting H3. Therefore, the greater difference
found between the psychophysiological and the stated measure of valence was not due to
the length of the comment.

(3) Relation between the Valence Difference (VD) and the Proportion of Emojis (Pemj)

With respect to the relationship between VD and Pemj, as hypothesized, a significant
and positive correlation was found (r = 0.631, p > 0.010), as shown in Table 7. This indicates
that the greater the proportion of emojis used in comments, the greater the difference
that will be found between the psychophysiological and the stated measure of valence.
Therefore, H4 was accepted.

Table 7. Correlation between the variable Explicit–Implicit Valence Difference and the percentage of emojis in the comment.

Percentage of Emojis in the
Comment (Pemj)

Explicit–Implicit Valence
Difference (VD)

Percentage of emojis in the
comment (Pemj)

Pearson’s correlation 1 0.631 *
Sig. (bilateral) 0.005

Explicit–Implicit Valence
Difference (VD)

Pearson’s correlation 0.631 * 1
Sig. (bilateral) 0.005

* The correlation was significant at the 0.01 level (bilateral).

Comparison between the Emotions Generated by the GIFs According to Whether
They Were Measured Implicitly or Explicitly.

In order to find out which type of measurement is more effective as a predictor,
understanding effectiveness in this case in terms of precision, the specific emotions that
gave rise to both implicit and explicit emotional valence were obtained (see Table 8).

Table 8. Number of GIFs containing each type of emotion by measurement.

Happiness Surprise Anger Disgust Fear Sadness

Biometric tool 18 18 18 18 18 18
Instagram comments 18 12 0 0 6 1

As a result, while the biometric tools detected the six basic emotions (happiness,
surprise, anger, disgust, fear and sadness) in the 18 selected GIFs, when analyzing the
comments, it was not possible to detect all the emotions. Only the emotion happiness
appeared in all 18 GIFs, while more negative emotions such as anger or disgust were
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not detected in any of them. In fact, most of the words used in the comments alluded to
positivity (see Figure 2). Given that the biometric tools were more accurate in detecting the
six emotions, we accept H5.
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5. Discussion

The present study reflects the emotional impact that can be achieved through the use
of GIFs in social networks [4,35,36], (Bourlai and Herring, 2014; Gürsimsek, 2016; Miltner
and Highfield, 2017), specifically Instagram. Moreover, the use of different implicit and
explicit techniques in the two phases of the study highlights the need to use biometric and
self-reported tools in a complementary manner [31,32] (Hernández-Fernández, Mora and
Hernández, 2019; Lajante et al., 2020) in order to eliminate biases—biases that undoubtedly
occur if only the analysis of the comments declared by the subjects is taken into account.

By comparing implicit and explicit emotional valence, we find that social network
users tend to express comments with a significantly higher (more positive) emotional
charge than what they actually feel (before processing the stimulus rationally). Biometric
tools can therefore help to provide a more accurate analysis.

This finding raises the question of what might account for the differences between the
two valence measurements. Thus, the possible influences of engagement, the length of the
comments, or the higher proportion of GIFs on the difference in valence are investigated.

As for the relation between the differences in valence and engagement, a significant
inverse relation is evident. This indicates that the greater the engagement with the GIF, the
smaller the difference between the valences. This relation can probably be explained by
understanding engagement as commitment to the brand. This commitment could mean
that users are less vulnerable to external influences, so that the emotions expressed would
be more in line with what the subjects really feel towards the brand. In contrast, with a
lower level of engagement, the emotions declared are under greater external influence:
conditioning due to being a quality brand [39] (Rúa-Hidalgo et al., 2021), a sense of
belonging, prestige, etc. In short, well-known brands need to surprise in order to activate
users; when this does not happen, less engagement is generated (Rúa et al., 2021) [39].
However, it remains possible that the comments on social networks continue to be positive,
moving even further away from the emotion that is really felt.

On the other hand, the length of the comment is not found to influence the differences
between implicit and explicit measures of valence. This suggests that the emotionality of
the words contained in the comment matters more than the length of the comment itself.

The proportion of emojis has not been found to be a reliable predictor when assessing
the emotional level of the social network user. A higher proportion of emojis in comments
generates a greater distortion between implicitly and explicitly measured valence. This
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could be due to the fact that text provides greater possibilities for expressing emotions felt
(greater semantic richness), while with emojis the range of expression is smaller, and more
limited in its emotional gradation.

Finally, in the comparison of the type of emotion recorded by biometric tools and in
the declared comments, a higher number of emotions were detected when recording data
with neuromarketing devices.

We suggest that, when there is public exposure, through comments on social networks
users express more positive emotions (happiness and surprise), avoiding more negative
ones such as anger or disgust [17,18] (Reinecke and Trepte, 2014; Waterloo, Baumgartner,
Peter and Valkenburg, 2018). It is possible that the external influences to which we as social
beings are subjected (need to belong, social judgement, status, etc.) are the cause. However,
these influences disappear when the implicit emotion is recorded through neuromarketing
tools, making it possible to identify a greater and more precise variety of emotions.

All of the above indicates that using the comments received on social networks as the
only indicator of the level of success of a communication action can lead to a false sense of
success for well-known brands.

It also shows that the implicit measurement of emotion is more effective, both in
quantifying the emotional level of subjects and in identifying the basic type of emotion that
subjects experience, thus achieving greater richness and precision in the analysis.

6. Implications of the Work

Biometric tools have proven to be very useful in specifying and settling the emotions
perceived by users. This does not mean eliminating other traditional methods of analysis,
but rather using them complementarily. In short, they highlight what the users are not
even able to identify themselves.

7. Limitations and Future Lines of Research

A limitation of the research lies in the use of Google Translator to transcribe sentiment
analysis comments into English. This basic translation tool can cause the context to be lost
in translation; however, less than 11% of the comments needed to be translated, and in
most cases, they were short, easily translated comments.

In addition, as the GIFs were always from well-known brands, the level of emo-
tionality in the comments may be different from if they were used in the context of non-
known brands.

It would be interesting to carry out future research to study whether the use of other
types of stimuli in social networks (stories, photos or videos) can achieve similar results to
those achieved with GIFs.
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