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Abstract: Cognitive functions could be specifically altered but masked from the unspecific effect of
workload, a common factor affecting cognitive functions that modulate peripheral outputs. To iden-
tify workload-related and specific, task-dependent components, physiological correlates of cognitive
functioning were derived by studying 15 healthy volunteers performing attentional tasks in baseline
and post-sleep-deprivation conditions (one week interval). Sleep deprivation was introduced to
increase workload. We performed recordings of heart pulse, facial temperature, and head move-
ments during tasks assessing attentional network efficiency (ANT, Attentional Network Task; CCT,
Continuous Compensatory Tracker) workload assessments after execution of tasks. Changes in
cognitive and physiological indices were studied in both conditions; physiological correlates of
cognitive performance were identified by correlating changes from baseline to post-sleep-deprivation
condition of task indices with those of physiological measures after correction for between-conditions
workload changes. We found that mental and physical demands of workload increased after sleep
deprivation. We identified no changes in cognitive and physiological indices across conditions; spe-
cific physiological correlates of attentional systems, as indicated by the negative correlation between
changes in ANT-alerting and changes in amplitude of head movements and the positive correlation
between changes in CCT-speed indexing alertness and changes in facial temperature.

Keywords: cognitive functions; attention; physiological signals; workload; sleep deprivation

1. Introduction

The daily living of human beings is driven by cognitive processes related to the
transformation, reduction, elaboration, storage, and recovery of sensory input in the real
world [1]. The functioning of distinct cognitive functions is based on specific brain networks
and gives rise to distinguishable activations; however, a common factor affecting cognitive
functions is workload, the multidimensional construct quantifying the level of mental and
physical effort put forth by a performer in response to cognitive tasks. The evaluation of
workload spans from classical neurocognitive tests to dynamic situations such as aviation
and driving [2]; however, it is usually considered a property of an individual’s attitude
toward a demanding situation rather than to a task [3,4].

Workload is sustained by arousal and it is described as an indicator of pressure on
working memory [5]. The arousal during workload implies an autonomic activation
involved in non-consciously coordinated bodily responses for homeostasis [6]. Auto-
nomic arousal is sustained by the activity of the central autonomic network, that controls
electrophysiological changes related to cognitive and emotional processing [7]. Besides
workload-related effects, several studies have highlighted specific neurofunctional patterns
associated with cognitive tasks involving different domains. Concerning the three net-
works of attention, Posner and Petersen [8] identified the alerting, orienting, and executive
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networks. Both variations in arousal and in individual cognitive functions give rise to
changes in peripheral autonomic outputs [9] that we investigate in the present work.

From a methodological perspective, cognitive functioning has been studied by taking
advantage of intra-subject variability, which has been widely assessed in the context of sleep
deprivation, that acts as a reliable paradigm to induce acute stress response. Indeed, acute
and chronic sleep deprivation represents a tangible risk that exposes subjects to stressful
conditions in modern society, posing high and significant risks for quality of life and
psycho-physical wellbeing, including cognitive performance degradation [10]. Both acute
total sleep deprivation and chronic sleep restriction increase homeostatic sleep—process
S—leading to sleep debt. Process S augments during wakefulness and decreases during
sleep time [11]; this increasingly impairs cognitive functions such as attention, cognitive
speed, and memory during wakefulness [12]. For this reason, several studies used an acute
sleep deprivation model to understand its impact on various cognitive domains and on
subjective workload. Indeed, acute sleep deprivation might negatively influence some
aspects of cognitive functioning, in particular vigilance, which, if lowered, increases the risk
of accidents [13]. It has been reported that subjects perceived high workload after a night of
sleep loss, and that factors external to tasks concur to increase perceived workload [14,15].

In these studies, the autonomic outputs are often assessed, since higher mental work-
load is associated with a decrease of parasympathetic (“rest or digest”) autonomous
nervous system activity and an increase in sympathetic (“fight or flight”) activity [16].

These changes in autonomous nervous system activity have been estimated with sev-
eral peripheral physiological measures such as heart rate, skin conductance, and peripheral
temperature [17] during tasks assessing different cognitive domains. For example, there is
a positive association between cognitive load, level of glucose and oxygen in the brain [18],
and forehead temperature [19,20]. An increase in heart rate with increasing difficulty in
decision making and level of attention [21,22] and a decrease in heart rate variability with
increasing difficulty in response inhibition and memory [23,24] have also been documented.
Regarding skin conductance, its increase has been detected during the performance on
attention, memory, vigilance, and visual tracking tasks [25–27].

Moreover, different sensors placed in different putative sites have been reported to be
used [19,28,29]. Herein, we assemble all sensors in the periocular area—skin temperature
at cheekbones and forehead [19], heart pulse at the glabella (the small area between the
eyebrows and above the nose) [30], and head movements from a sensor integral with
the head [31].

In summary, many studies have used specific cognitive tasks to establish cognitive-
related physiological outcomes. Several studies, taking into account subjective workload,
have shown that physiological measures depend on the degree of subjective perceived
difficulty while performing tasks. In fact, subjective workload measurement has been
reported to be often dissociated from cognitive performance (e.g., subjects report high
cognitive demand but cognitive performance is not negatively altered [32]). This evidence
implies the urge to identify the modulation of specific cognitive functions on the peripheral
physiological signals, as suggested by the specific central networks sustaining the different
cognitive domains. In fact, the identification of specific cognitive correlates is essential for
the detection and the rehabilitation of those functions that could be specifically altered
but masked from the unspecific effect of workload. To this aim, we studied the periph-
eral physiological correlates (heart rate, head movements, and facial skin temperature)
from sensors placed in the periocular area in subjects undergoing different cognitive tasks
involving attentional systems at baseline and post-sleep-deprivation. We assessed the
perceived workload in performing the tasks in these two different conditions and we
studied associations between changes from baseline to sleep deprivation of physiolog-
ical measures and cognitive indices correcting for the workload changes. We chose to
administer the Attentional Network Task (ANT, [8,33]) and Continuous Compensatory
Tracker (CCT, [34,35]) tests to better characterize the independence of different systems
functioning (alerting, orienting, executive networks), that proved to be differently affected
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by sleep deprivation [36]. To assess subjective workload after cognitive tests, we used the
NASA Task Load index (NASA TLX) scale [37], since previous studies reported it to be to a
sensible scale to detect changes in the degree of experienced workload [14,38]. The use of
sleep deprivation allowed us to induce a transient and reversible cognitive alteration that
can be studied to compare specific attentional alterations.

While performing different tasks in the same subjects, we had the opportunity to
separate the common peripheral response over the tasks, putatively related to cognitive
workload, from that one characterizing specific cognitive functions engaged in each specific
task. The recognition of peripheral response changes, as indices of cognitive alterations,
could be used to detect attentional decrements during everyday life activities, such as
driving, without deviating subjects to a cognitive task administration.

2. Materials and Methods
2.1. Participants

Fifteen healthy young volunteers (nine females and six males; mean age ± SD:
24.5 ± 2 years) were enrolled for this experimental protocol. Subjects eligible for inclusion
met the following criteria: absence of psychiatric symptoms, as assessed by Symptom
Checklist-90-Revised [39,40]; absence of sleep-wakefulness disorders, as assessed by In-
somnia Severity Index (ISI) [41,42] and Epworth Sleepiness Scale (ESS) [43,44]; absence of
organic pathologies and psychotropic addiction, as assessed by a qualitative anamnestic
questionnaire; normal or corrected vision; age between 18 and 35 years old.

2.2. Experimental Protocol

The experimental protocol consisted of two sessions (Figure 1A), which were ran-
domized and balanced across participants and which took place with a one-week interval,
at least. Each session started at 6 pm and each volunteer was tested individually. The
laboratory room was temperature-controlled (22 ◦C).
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below, the schematic representation of the experimental timeline for both baseline and post sleep deprivation conditions.

Two cognitive tests followed by a perceived workload assessment were completed
both in the baseline session and the post-sleep-deprivation session; Figure 1B. Sleep depri-
vation lasted from 8:00am of the day before the session to beyond the end of the session
(about 8:00 pm)—a total of 36 hours. To ensure that volunteers had normal sleep before the
baseline session, sleep monitoring was accomplished by actigraphy registration and by fill-
ing out a sleep diary for two days before each session [45,46]. Actigraphic monitoring was
also used to ensure volunteers were completely sleep-deprived in post-sleep-deprivation
sessions; any sleep episode implied the exclusion from the study. For this double pur-
pose, participants wore an ActiGraph wGT3X-BT (ActiGraph, Pensacola, FL, USA) placed
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on their non-dominant wrist. Data were analyzed and visually inspected using Actilife
software (version 6.11.9).

For each session, volunteers underwent the Attentional Network Task (ANT) and
Continuous Compensatory Tracker (CTT) task implemented in the Psychology Experiment
Building Language (PEBL) software and administered on a PC monitor (60 cm was the
distance from the 27-inch screen to the eyes, screen resolution 1024 × 768). The time for
performing ANT and CTT tasks was 15 and 10 min, respectively. We administered each
task consecutively, without any intervals. To this purpose, we chained the task using the
setting options given by PEBL software. In the PEBL software, subjects are assumed to
perform a standardized training session to familiarize with task instructions and to prevent
bias effects attributable to the order of the sessions. During the cognitive assessment,
participants had to wear the Psychophysiological sEnsoRs Mask FOr Real-Life Cognitive
Monitoring (PERFORM), a periocular sensorized mask for biosignal acquisition [29]. Thus,
the perceived workload was assessed immediately after the completion of the PEBL cogni-
tive tasks for both conditions by using PEBL NASA Task Load Index (PEBL TLX) scale [47].
The overall duration of the session was about 30 min.

2.3. Cognitive Assessment
2.3.1. Psychology Experiment Building Language (PEBL) Attentional Network Task

The attentional network task (ANT) aims to assess the functioning of alerting, ori-
enting, and executive control attentional networks [8,33]. Participants are supposed to
determine the direction of the central arrow in a set of five, while ignoring the directions of
the surrounding arrows. To indicate the correct direction of the central arrow, participants
have to press the corresponding button on the keyboard. In the current study, the PEBL
version of the Attentional Network Test was used and, according to Fan et al. [33], we
considered the correct trials (i.e., not considering the incorrect answers) for the perfor-
mance indices calculation, represented by (1) alerting index, (2) orienting index, and (3)
conflict index.

The efficiency of the alerting network is examined by changes in reaction time (RT)
resulting from a warning signal. The alerting index is calculated by subtracting the mean
RT of the double-cue condition from the mean RT of the no-cue condition [36].

The efficiency of orienting is examined by changes in the RT that accompany cues
indicating the location in which the target will occur. The orienting index is expressed as
the difference between the mean RT of the items in a central cue condition (“central cue”)
and the average RT of the items in a spatial cue condition (“spatial cue”) [36].

The efficiency of the executive network is examined by requiring the participant to
respond by pressing two keys indicating the direction (left or right) of a central arrow
surrounded by congruent, incongruent, or neutral flankers. The conflict index is calcu-
lated by subtracting the mean RT of congruent flanking conditions from the mean RT of
incongruent flanking conditions [36].

2.3.2. PEBL Continuous Compensatory Tracker

The Continuous Compensatory Tracking (CCT) is a cognitive test originally developed
to assess alertness and vigilance [34,35], and also used to assess sustained attention. Partic-
ipants have to continuously adjust the position of a pointer to overlap it to a target during
eight consecutive trials (from T1 to T8). The pointer is under randomly directed forces
that need to be continuously compensated [47]. In the current study, the PEBL version of
the CCT task was used to assess vigilance by means of two indices—CCT deviation and
CCT speed.

The degree of adaptation was assessed by considering the changes of the deviation
and speed from the beginning (T1) to the end (T8) of the task:

• CCT deviation. The median of spatial displacements between the target position and
the pointer was calculated for each trial (lower values of median deviation correspond
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to higher accuracy of task performance) and CCT deviation was estimated as the
displacements change from the first to the last trial.

• CCT speed. The mean of mouse velocity over the task was calculated for each trial and
CCT speed was estimated as the speed change from the first to the last trial. Mouse
velocity should indicate the degree of the subject’s reactivity toward the task; higher
values correspond to a higher degree of reactivity for compensating random motion
of the pointer.

2.3.3. PEBL NASA Task Load Index (PEBL TLX)

The NASA Task Load Index [37] is a self-report multidimensional scale aiming at pro-
viding an overall perceived workload score, based on a weighted average of six subscales.
The subscales are mental demand, physical demand, temporal demand, own performance,
effort, and frustration. Subjects have to rate the perceived workload experienced during
the previous completion of cognitive tasks by choosing a score ranging from 0 to 100 for
the six subscales; higher values indicate greater perceived workload. In the present study,
the perceived workload rating was assessed by using the version of NASA TLX on PEBL
software (PEBL TLX) [47].

2.4. Physiological Assessment

During cognitive assessment, participants wore the Psychophysiological sEnsoRs
Mask FOr Real-Life Cognitive Monitoring (PERFORM), a validated multi-sensorized
wearable and non-obtrusive mask [29] able to detect, record, and analyze the following
physiological signals from a set of dry electrodes placed over the periocular area:

• Facial temperature signals, recorded at 1Hz sampling rate from sensors placed over
the left and right zygomatic muscle and the left and right forehead;

• Heart pulse, recorded at 100 Hz sampling rate with a photoplethysmograph sensor
placed over glabella (the area between the eyebrows and above the nose);

• Head movements signal recorded at 100 Hz sampling rate from a 3-axial accelerometer
placed over the left side of the mask.

For each signal, peripheral measures were extracted to study how performing a
cognitive task could change the peripheral outputs. In accordance with the physiological
nature of each measurement, we obtained a time series of measures from the beginning to
the end of each cognitive task. Thus, as effective parameters associated with the performed
task, we considered the changes of each extracted measure from the beginning of the task
(average of the measure over the first tenth of its time series) to its end (average of the
measure over the last tenth of its time series).

From the facial temperature time series we considered:

• MaxT, defined as the maximum of the four temperature changes calculated between
the beginning and the end of the task;

• zfT, defined by comparing the aforementioned T changes at the forehead vs. those
at the cheekbones (zfT = ∆Tz − ∆Tf where ∆Tz is the average changes over the two
forehead sensors, and ∆Tf is the average changes over the two cheekbones sensors).

From the heart pulse time series, we obtained the pulse to pulse time interval se-
ries [48], which allowed us to estimate the changes of heart rate (HR), defined as the rate
change calculated between the beginning and the end of the task.

From the head movements time series, we obtained an integrated measure of head
movements from the variance of the combined three axial oscillations calculated within
consecutive 1 s windows. We estimated the head movement amplitude (HMA) as the
changes between the beginning and the end of the task of this measure.

2.5. Statistical Analysis

This work aimed to identifying specific physiological correlates of performing tasks
mainly involving a unique attentional component. We used sleep deprivation to manipulate
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workload in order to remove the effect of general workload on physiological responses.
We formulated the following hypothesis (Ha) to be tested against the null hypothesis (H0):

• H0 = no significant correlations between cognitive and physiological indices changes
from baseline to post-sleep-deprivation condition after correcting for workload. Cor-
relation between variables is = 0;

• Ha = significant correlations between cognitive and physiological indices changes from
baseline to post-sleep-deprivation condition after correcting for workload. Correlation
between variables is <0 or >0.

H0 is rejected if Sig < α, where< α = 0.05
Accordingly, we analyzed the data by following two main steps:

(1) identifying sleep deprivation effects on the perceived workload;
(2) identifying physiological correlates of intra-subject cognitive performance changes

(from baseline to post-sleep-deprivation) in the different cognitive tasks after remov-
ing the contribution of workload changes.

For step (1), PEBL TLX subscales differences between sleep deprivation and baseline
sessions were assessed with a two-tailed Wilcoxon signed-rank test. Non parametric tests
were used since they allowed studying of parameters irrespective of normality. Indeed,
variables in this study were heterogeneous (from psychometric score to physiological
parameters); some were skewed and some varied over a span of a few discrete values. We
estimated effect size for non-parametric tests using the following formula:

r =
Z√
N

in which N is the total number of observations on which Z score is based [49].
For step (2), physiological correlates of intra-subject cognitive performance changes

were identified by correlating the changes of cognitive task indices and physiological
measures from baseline to post-sleep-deprivation. To remove the contribution of workload
changes from correlation values between cognitive indices and physiological measures, the
partial correlations (rp, partial ranks correlation) were calculated by controlling for those
workload subscales that reached the statistical significance at step (1).

The Yekutieli and Benjamini procedure [50] for controlling the false discovery rate
(FDR) of the family of hypothesis tests concerning all physiological features correlated with
each cognitive task index was applied. The false discovery rate was set equal to 0.05 and
adjusted p-values were calculated.

3. Results
3.1. Perceived Workload Changes from Baseline to Sleep Deprivation

The perceived workload measured after tasks was different between conditions for
mental and physical demand subscales; mental and physical demands increased in the
post-sleep-deprivation condition (p = 0.04 and p = 0.01, respectively). Table 1 provides
statistics for each PEBL TLX subscale.

3.2. Physiological Correlates of Attentional Systems’ Functioning

Regarding attentional and physiological indices, no significant differences between
conditions was identified (Supplementary Tables S1–S4).

However, significant associations were found between cognitive indices and phys-
iological measures after removing the putative linking effect related to the changes of
perceived workload (Figure 2).
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Table 1. PEBL Task Load Index.

PEBL NASA Task Load Index
(PEBL TLX) Condition m ± s.e. ∆ (m ± s.e.) Sum of Positive

Ranks p-Value Effect Size

Mental demand
B 27 ± 4.82

11.66 ± 5 24 0.04 * −0.37
D 39 ± 5.42

Physical demand
B 18 ± 2.71

21 ± 7 9 0.01 ** −0.46
D 39 ± 6.62

Temporal demand
B 43 ± 6

5.33 ± 8.41 46.5 0.70 −0.06
D 48 ± 7

Frustration
B 39 ± 4.29

3.66 ± 5.46 35.5 0.47 −0.12
D 42 ± 4.36

Effort
B 33 ± 5.36

14.66 ± 8 27.5 0.116 −0.28
D 48 ± 7

Performance
B 24 ± 6

5.66 ± 10 36 0.50 −0.12
D 30 ± 7

Overall workload
B 31 ± 2

10 ± 5 90.5 0.08 −0.31
D 41 ± 4.35

B, baseline condition; D, sleep-deprived condition; ∆ = D − B; * Wilcoxon signed rank test with p < 0.05; ** Wilcoxon signed rank test with
p < 0.01.
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4. Discussion

Our study aimed to identifying peripheral physiological correlates of attention compo-
nents in healthy subjects. A within-subject study using sleep deprivation as a stressor [12]
was used to induce changes in individual cognitive performances. Each participant un-
derwent two experimental sessions and one of which took place after one night of sleep
deprivation. For each session, physiological signals were recorded using the PERFORM [29]
during the completion of two cognitive tasks assessing attentional networks efficiency. Af-
ter cognitive tests, an evaluation of the perceived workload was performed. The evaluation
of perceived workload allowed us to get an estimate of its contribution to AT function-
ing changes from the baseline to the post-sleep-deprivation condition and to remove its
unspecific contribution to the physiological/cognitive relationships.

Herein, physiological signals were derived from peri-ocular sites by using the PER-
FORM [29], a system conceived to be used in VR headset.

4.1. Sleep Deprivation Increases Mental and Physical Demands

Our results highlighted an increased mental and physical demand in the post-sleep-
deprivation condition as compared to baseline. Several studies reported that the progress of
prolonged wakefulness leads to a gradual increase in the homeostatic biological drive [51]
that consequently augments the state of sleepiness. In this context, perceived workload
increase after a period of prolonged wakefulness is reported [14,52] and explained as a
counterbalancing response to a fatigued state. Liu and colleagues [38] reported a general
increase in all workload subscales after 32 hours of sleep deprivation in a sample of expert
airplane pilots after simulated flight tasks. Tomasko and colleagues [14] assessed workload
in sleep-deprived medical students after laparoscopic-simulated tasks, while Fairclough
and colleagues [53] did the same in sleep-deprived subjects after primary driving tasks
and both highlighted increased scores for all NASA TLX subscales, except for the mental
demand one.

Our findings partially agree with the previous studies, since perceived workload
increase was limited to mental and physical demand subscales. It is worth noting that
previous studies enrolled selected group of participants for their investigations, thus admin-
istering tasks intimately linked to the subjects’ activities of daily living (i.e., surgical task
for surgeons, simulator flight task for expert flyers), whereas, in the present research, tasks
were not part of everyday life and they could have represented a novel experience. The
novelty of the tasks, the effort to comprehend instructions, and the lack of similarity with
activities of daily living could represent additional mental stressors that are exacerbated by
sleep deprivation. However, it is worth noting that the scores of cognitive tasks did not
show significant differences between conditions (baseline and post-sleep deprivation). In
this context, it is possible to suggest that the higher the perceived workload, the higher the
effort to counteract fatigue to guarantee an adequate cognitive performance. Interestingly,
cognitive task performance and physiological measures did not differ between baseline and
post-sleep deprivation conditions, though participants reported higher perceived workload
for mental and physical demand. Although these results could appear counterintuitive,
previous studies reported dissociation between subjective workload and effective perfor-
mance [14,32]. It is possible to suggest that subjective perception of high workload after
an acute period of sleep loss could be a product of the complex mechanism to counteract
sleep-related fatigue during prolonged wakefulness, which helps subjects perform tasks
efficiently. However, it is important to point out the difference between acute and chronic
sleep deprivation in the context of cognitive performance. Acute sleep deprivation might
activate mechanisms to counteract detrimental effects ascribable to a few nights of sleep
loss, in order to maintain adequate cognitive performance, while chronic sleep deprivation
could permanently degrades cognitive abilities, especially the higher level ones [54].
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4.2. The Physiological Correlates Differ between Attentional Systems’ Functioning

Our results highlighted the associations between changes from baseline to post-sleep
deprivation conditions of physiological measures and attentional indices. These associa-
tions were putatively sustained by different factors—the general increase of workload and
the modulation of the attentional systems specifically involved in each task. Most of the
associations identified between physiological measures and attentional indices also held
true after mental and physical demands correction, suggesting a strong contribution of
specific attentional systems on physiological reactions.

As regards the alerting efficiency, a higher reactivity of this system in the post-sleep
deprivation condition was associated with a decreased amplitude of head movements.
Accordingly, a study of head movements during surgical tasks has shown that less head
movement amplitude during a laparoscopic simulation was associated with better learn-
ing [55]. Our results sustain the hypothesis that fewer head movements are related to more
precise and more focused performances during tasks.

Concerning vigilance during the visuo-motor tracking task, a higher reactivity (CCT
speed) after sleep deprivation was shown in the participants who displayed greater temper-
ature changes from the beginning to the end of the task between cheekbones and forehead
sensors (zfT) and between all facial sensors. Classically, temperature fluctuations during
tasks are associated with task performance. It has been reported that brain metabolism
increase during cognitive tasks implies more heat production [20]. As some blood vessels
connect facial tissues with the brain [56], metabolic brain changes cause variations in the
peripheral skin temperature that we were able to detect.

5. Conclusions

This integrated evaluation of attentional systems using subjective, behavioral, and
physiological measures allowed us to gain a better comprehension of attentional systems
and their relative physiological changes after sleep deprivation. An augmented perceived
physical and mental demand was shown in the post-sleep deprivation condition. Head
movements and temperature variations were revealed to be sensitive to changes occurring
during specific cognitive performance involving different attentional systems in sleep
deprivation as compared to baseline.

This study has some limitations that should be addressed in future research. The small
sample size and its homogeneity with respect to ethnicity and age could have precluded
robust conclusions. Regarding statistical analysis, the choice of partial correlations to
control the effect of workload was importantly limited by the low sample size. Moreover,
correlation analysis did not indicate direction of interaction and could have been sustained
by some latent factor modulating both measures. In this light much work would be needed
for confirming and better specifying the associations suggested by our data. Also, the
psychometric scales to ascertain the absence of sleep disorders did not cover all sleep
disorders, such as restless leg syndrome; the Pittsburgh Sleep Quality Inventory should
be used to prevent this issue of inclusion/exclusion. Finally, the sleep deprivation session
was not conducted in a controlled-laboratory room.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076
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