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Abstract: Postpartum Depression (PPD), a condition that affects up to 15% of mothers in high-income
countries, reduces attention to the needs of the child and is among the first causes of infanticide.
PPD is usually identified using self-report measures and therefore it is possible that mothers are
unwilling to report PPD because of a social desirability bias. Previous studies have highlighted
the presence of significant differences in the acoustical properties of the vocalizations of infants
of depressed and healthy mothers, suggesting that the mothers’ behavior can induce changes in
infants’ vocalizations. In this study, cry episodes of infants (N = 56, 157.4 days ± 8.5, 62% firstborn)
of depressed (N = 29) and non-depressed (N = 27) mothers (mean age = 31.1 years ± 3.9) are
analyzed to investigate the possibility that a cloud-based machine learning model can identify
PPD in mothers from the acoustical properties of their infants’ vocalizations. Acoustic features
(fundamental frequency, first four formants, and intensity) are first extracted from recordings of
crying infants, then cloud-based artificial intelligence models are employed to identify maternal
depression versus non-depression from estimated features. The trained model shows that commonly
adopted acoustical features can be successfully used to identify postpartum depressed mothers with
high accuracy (89.5%).

Dataset License: CC-BY-NC
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1. Introduction

Cry is an innate behavior and constitutes the first form of communication newborns use to interact
with their caregivers [1]. Similar to speech in adults, cry vocalizations are produced by the vibration
of the vocal folds, which are controlled by the Central Nervous System (CNS). Therefore, acoustical
analysis of cry can identify pathological conditions associated with the vocal tract, the brain, and the
spinal cord, as demonstrated in previous research [2,3]. The functional utility of infant cry is to elicit
a response in an infant’s caregiver, but some situations and conditions diminish adults’ sensitivity
and responsiveness to cry [4–8]. Mothers who suffer from Postpartum Depression (PPD), a condition
that is reported by 10–15% of mothers in high-income countries [9,10], and up to 50% in low- and
middle-income countries, reduces the level of stimulation produced by infant cry and decreases
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mothers’ level of responsiveness to the needs of their children [11–14]. Infants of depressed mothers
are therefore exposed to an increased developmental risk [15], but this is not a uni-directional relation:
previous studies have identified a bi-directional relationship between mother and child synchrony
and well-being. Brand et al. [16], for example, identified a relation between mothers’ sleep quality and
well-being with infants’ crying behavior, cortisol secretion, and sleep patterns.

1.1. Postpartum Depression Identification

Postpartum Depression (PPD), a very common childbearing complication that develops after
a woman has given birth, is defined as per the DSM-V as a major depression disorder that emerges
within 4 weeks following delivery that causes (a) significant distress or impairment in occupational,
social, or other important area of functioning, (b) is not attributable to effects of any substance,
and (c) is characterized by at least five out of the nine symptoms presented in the diagnostic manual
(e.g., depressed mood, insomnia, fatigue, recurrent thoughts of death) [17].

Development of postpartum depression is connected to previous episodes of depression and is
more common when paired with other stressful events or in women with a family history of mood
disorder [9,18]. Rapid hormonal changes after delivery seem to play a primary role in the development
of this disorder [19]. It is worth noting that PPD is a mental state which is not related to cultural factors,
family income, and cultural background.

While the percentage of new mothers suffering from postpartum depressive symptoms has
decreased during the year [20], it is estimated that 60% of mothers with depressive symptoms receive
no treatment or a clinical diagnosis [21]. Accordingly to Ko et al. [21], common treatment barriers
are to be found in mothers’ opposition to the treatment and concerns about social stigma as well as
problems related to the cost of the treatments, possible transportation or time limitations, and lack of
knowledge about where to find treatment and about the importance of this mental illness.

The presence of postpartum depression symptoms in mothers is assessed through questionnaires
and structured interviews or investigating different biomarkers that have been demonstrated to reflect
the risk of developing PPD. The changes in concentration of hair steroid levels—such as cortisol,
progesterone, and cortisone—in hair samples measured during pregnancy and after parturition,
for example, can be used to predict the development of PPD symptoms [22,23]. The most adopted
self-report questionnaires are the Edinburgh Postnatal Depression Scale, a 10-item questionnaire that
uses four-point Likert scale responses [24,25] and the Beck Depression Inventory (BDI-II), a 21-item
questionnaire of the presence and related degree of depressive symptoms, consistent with the DSM.
An alternative approach is the Structured Clinical Interview per DMS Axis I disorders (SCID),
a semi-structured diagnostic instrument which is widely employed in clinical trials, and includes nine
modules [26] the evaluation of mood, psychotic, anxiety, eating, obsessive-compulsive, substance use,
and sleep disorders [27]. The SCID needs to be administered by clinicians with specific training [28].

In this paper, we propose the usage of machine learning models based on the analysis of infants’
cries to support clinicians in identifying postpartum depression symptoms in mothers. The rationale
behind this tool is that by analyzing cry samples an initial estimate of the diagnosis can be performed
at little to no cost, and in a limited amount of time. Moreover, because cry recordings can be obtained
even by parents themselves, the tool can be used in rural areas. Finally, because the tool is not based
on mothers’ responses, it may provide feedback which is not influenced by depressed mothers’ fear of
being stigmatized. Such a tool may be used to improve clinical diagnosis and thereby enhance the
quality of life of both infants and mothers.

1.2. Infant Cry

Infants’ actively regulate acoustic information in their vocalizations to express specific needs.
For example, acoustical analysis of cries has been used to identify the stimulus to cry, whether hunger,
pain, or discomfort [29]. Similarly, babies vocalize differently according to their health status.
Analysis of infants’ cries has shown that specific patterns of cry vocalizations reflect infants’ health
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status [30]. For example, Sheinkopf et al. [31] found different patterns of acoustical properties of
cry vocalizations in infants at risk for ASD compared to vocalizations from a healthy control group,
with at risk infants producing both pain and non-pain vocalizations at higher fundamental frequency
(F0), as compared to the control group. Likewise, Garcia and Garcia [32] successfully employed a
feed-forward neural network (97% accuracy) to distinguish between cry samples collected from deaf
and normal-hearing infants.

In a typical study, cry vocalizations are elicited in babies using a trigger (e.g., heel prick) and
recorded on digital or analog sources [33]. Cry signals are then filtered to remove higher frequency
components. Finally, acoustic features are estimated from the signals. Commonly used acoustic
features are the Fundamental Frequency (F0), which is the lowest pitch of periodic signals, and its
formants (F1–F4), which are frequency peaks with wavelengths multiples of the fundamental frequency.

Different techniques are used to estimate acoustic features from cry samples, automatically
(by means of a peak detection algorithm) or manually (by visual inspection of spectrograms). Estimated
features are then compared using statistical methods (to investigate the existence of specific patterns
associated with a pathology) or imported to a classifier (to investigate whether those differences
are adequately robust to be used to identify a clinical situation reliably). Because of depressed
mothers’ reduced sensitivity and reactions to infants’ cries, infants may regulate the frequencies
of their vocalization to maximize responses of their caregivers. A limited number of studies have
focused on cries of infants of PPD mothers, with the majority focusing not on the acoustical properties,
but vocalization patterns in terms of quantity and length. In a study of infants of three and six months
of age, Milgrom and colleagues [34] found that three-month-olds of depressed mothers cry for longer
period of times during an average day, if compared to infants of healthy mothers. These results
suggest that infants may increase the frequency of their cry vocalizations to respond to lack of maternal
attention [12,34]. Similar results were found by Miller et al. [35] in a study of the length of distress
vocalizations in 6-week-old infants, with the vocalizations of infants of depressed mothers significantly
longer than those of same age infants of healthy mothers [36].

Concerning the acoustical properties of cry, a previous study identified significant differences
between the vocalizations of infants of depressed and non-depressed mothers, with the first producing
vocalization at a significantly higher F0 and within a smaller frequency range [12].

On these bases, an analysis of the acoustical properties of cry vocalizations could be used to
identify, in a non-invasive way, infants of mothers who suffer from PPD.

1.3. Cloud Based Model

Because of depressed mothers’ reduced sensitivity and reactions to infants’ cries, children may
regulate the frequencies of their vocalization to maximize the responses of their caregivers. A previous
study has identified significant differences between the vocalizations of infants of depressed and
non-depressed mothers [12]. Therefore, an analysis of the acoustical properties of their cry vocalization
can be used to identify the children of depressed mothers.

Big Data computing is a data science paradigm that is gaining popularity in recent years. It refers
to the analysis of multi-dimensional information mining for different purposes, including but not
limited to the development of new scientific discoveries, implementation of large scale infrastructures,
and advanced business analytics [37]. To deal with the need for fast and scalable computing resources,
different companies have designed tools for the mining, storage, and analysis of big data. Amongst
those, Google R© created a set of Software as a Service (SaaS) that runs in the cloud that can be used by
customers to store and analyze datasets [38,39].

Adoption of cloud-based models in scientific research provides different advantages, including
the reduction of computational burdening related to storage and computation, provides for high
scalability for additional data, and security through the adoption of Secure Socket Layers (SSL) for
the connections and the possibility of encrypting stored data [39,40]. However, advanced models
based on cloud resourcing require large amounts of data and therefore may not be suitable for
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the analysis of physiological measures, especially when the number of samples per class is not
balanced. A solution proposed for solving missing data values, called data augmentation, consists of
reconstructing missing values in balanced two-way tables. It can be adopted in machine learning to
increase the number of analyzable data [41]. A prominent approach is Additive White Gaussian Noise
(AWGN), which consists in the creation of new values for a dataset by adding white noise to a copy
of the values of the original dataset [42,43]. These methods require fewer computational resources
and can be employed to increase the dimension of numeric datasets. The technique is based on the
assumption that, given a signal, adding noise that follows a Gaussian distribution to a copy of the
original signal, and using both the original and the modified versions as a training element for a
classifier, enhances the quality of the classifier itself, making it more noise-resistant [44]. Especially
useful to increase the number of samples for deep learning images classification, the technique has
been proven to work well to increase the accuracy of different classifiers. Rochac et al. [44], for example,
employed additive white Gaussian noise to verify whether the accuracy of an image classifier based on
convolutional neural network would benefit from the addition of more samples containing added noise.
Not surprisingly, their classifier was almost 20% more accurate when the number of initial samples
was increased by 100 times. Similarly, Bjerrum et al. [45] verified the performances of a convolutional
neural network for the analysis of near-infrared (NIR) spectral signals with and without the addition
of additive white Gaussian noise. Their results showed that by increasing the dimensionality of the
dataset using AWGN the model could achieve high accuracy.

1.4. Aim and Hypothesis

As proven by a previous study [12], the acoustical properties of cry vocalizations of infants of
depressed and non-depressed mothers differ significantly. For this reason, in this study, we investigated
the possibility of using cry samples to identify infants of depressed mothers. More specifically,
we hypothesized that a cloud computing based model could identify infants of mothers suffering from
PPD by using acoustic features estimated from recordings of their cry vocalizations.

2. Methods

2.1. Analytic Plan

In this work, acoustical features (F0, F1–4, Intensity) were estimated from cry vocalizations
collected in a previous study [12]. The full feature extraction procedure is reported in Section 2.3.
Then, a cloud-based AI model, based on Google R© AutoML Tables, was trained and tested. A visual
representation of the overall process is displayed in Figure 1.

Figure 1. Summary of the steps employed in the development of the model for the diagnosis of
Postpartum Depression (PPD) from infants’ cry vocalizations.
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2.2. Data

To test our hypothesis, we adopted the recordings from the dataset used in a previous publication
on acoustical differences in cry vocalizations of infants of depressed and healthy mothers [12].

Vocalizations from infants of depressed (N = 29, 8 infant girls) and non-depressed mothers
(N = 27, 7 infant girls) were collected at home when the infants were about 5 months of age (mean
age = 157.4 days ± 8.5). Fifty-six (N = 56) mothers (mean age = 31.1 years ± 3.9) were recruited from
the Washington DC metropolitan area by mailing lists and newspaper advertisements; they included
European Americans (n = 36), African-Americans (n = 10), Asian Americans (n = 7), American Indians
(n = 1), and Latin Americans (n = 2). Concerning their education level, 30% of the mothers completed
at least one university graduate program, 50% completed college, while 20% had only partial college
education or less. About 60% of infants were first-born, with a percentage slightly higher for infants of
depressed mothers (70%). Biological fathers lived with the family at the time of the recordings in all
(100%) the households. The study was approved by the IRB of the Eunice Kennedy Shriver National
Institute of Child Health and Human Development (protocol code: 02-CH-0278) and was conducted
according to the principles expressed in the Declaration of Helsinki. Written informed consent was
obtained from all mothers before each recording session.

To increase the ecological validity of data, data were collected in mothers’ homes by researchers
of the National Institute of Health (NIH, USA). Mothers were asked to behave as they normally would,
ignoring the presence of the experimenters. Infants and mothers were audio and video-recorded
for at least 50 min, an amount of time that according to Holden and Millers [46] falls in the optimal
time-frame for mother-infant observation.

Mothers’ PPD was assessed using the Structured Clinical Interview for DSM-IV Axis I Disorders
(SCID-I) and the Beck Depression Inventory (BDI-II) [47]. Evaluation of the scales was performed by
researchers of the National Institute of Health (NIH, USA). Mothers categorized as depressed had a
high score on the BDI scale (>12) and had been diagnosed as having minor or major depression (SCID)
by the time their infants were five months old.

2.3. Features Extraction

Collected cry samples (N = 715) were digitalized in WAVE (wav file format, two channels) at
44.1 kHz (16 bit). Being a lossless compression format, WAVE has been selected to preserve frequency
information convoyed by cry signals, that may have been altered with lossy file formats [33]. Moreover,
the sampling rate allows for analysis of frequencies up to 22 kHz, which makes it suitable for reliable
analysis up to the fourth formant (F4), which is the Nyquist frequency of recorded signal. No further
preprocessing was conducted on recorded signals to avoid alterations of frequency information
contained within the signal.

Features (F0–4) were extracted using Praat (v. 6.0.50, Windows 64 bit), an open-source software
designed for voice analysis [48]. This software is based on the spectrographic analysis of a signal
by means of a Long-Term Average Spectrum (LTAS), which ensures reliable evaluation of acoustical
properties of a signal even in the presence of noise. Specifically, the signal is first segmented into
windows of a pre-specified length, then each segment is analyzed utilizing an auto-correlation
algorithm that works in the lag-domain (or τ − domain).

Being designed for the acoustical analysis of adult voices, the software’s default settings are not
suitable for the analysis of infant cry. To rectify this issue, software settings were adapted to correctly
identify F0 (lower cutoff = 250 Hz, upper cutoff = 800 Hz) and the first four harmonics (number
of harmonics = 5, upper cutoff = 6000 Hz) in a range that covers the spectrum in which infant cry
vocalization properties are usually found [49]. A copy of the script used for feature estimation is
available online [50].
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2.4. Classification

To investigate the possibility of using advanced Cloud Computing techniques to verify whether
machine learning models could be used to identify infants of depressed mothers , we relied on the
Google Cloud Platform R©: Google AutoML Tables (https://cloud.google.com/automl-tables/) [51].
A binary classification model was employed to discriminate between the cries of infants of mothers
suffering from PPD from those of infants of healthy mothers. AutoML Tables were configured so that
80% of imported data was used for training, 10% for validation, and 10% for testing.

The model was executed up to two node hours (total running time of the training phase
spread across the different machines that compose a node), while the model was uploaded using
server-side encryption. Accuracy of the model was evaluated in terms of Precision (expressed in
percentage), Area under the precision-recall curve (AUC PR, a value between 0 and 1, such that the
higher the value, the higher the quality of the model), area under the curve of the receiver operative
characteristics (AUC ROC, a value between 0 and 1, such that the higher the value, the higher the
quality of the model), and logarithmic loss (a value between 0 and 1, such that the lower the value,
the higher the quality of the model.

Data Augmentation

AutoML Tables require at least 1000 samples to be executed (Beta version), therefore a data
augmentation technique, Additive White Gaussian Noise (AVGN), was applied to increase the number
of samples of the dataset.

In this study, AWGN (±1 STD) was applied to the acoustical features’ values of a copy of the dataset
and then merged with the original samples to obtain a dataset about twice the size of the original set of
data (N = 1413). Augmented dataset, containing both acoustic (F0, F1–4, and Intensity) and demographic
information (infants’ gender, mothers’ age) was employed for classification purposes. A copy of the final
dataset is available online in the data repository of the Nanyang Technological University [50].

3. Results

Model training stopped after 0.916 node hours, reporting an average accuracy on the test set of
89.5%, as well as robust values for AUC PR (0.954), AUC ROC (0.969), and logarithmic loss (0.250).
Overall, the model achieved more than the 90% of precision (90.4%), with a true positive recall of
88.8% and an almost null false positive rate (0.09). Metrics of the score of the different evaluations are
reported in Table 1.

For the model’s error distribution, the confusion matrix of the model is reported in Table 2.

Table 1. Google’s AutoML Model Evaluation Metrics.

Metric Score

AUC PR 0.954
AUC ROC 0.969

Logarithmic Loss 0.250
Accuracy 89.5%
Precision 90.4%

True positive rate (Recall) 88.8%
False positive rate 0.090

Table 2. Google’s AutoML Model Confusion Matrix.

Predicted Label

True Label False True

False 88% 12%
True 9% 91%

https://cloud.google.com/automl-tables/
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4. Discussion

In this work, we tested the possibility of using machine learning models to identify postpartum
depression in mothers from characteristics of their infants’ cry vocalizations.

Results of our model, trained on Google R©’s cloud computing service, demonstrate the robustness
of the method based on analysis of infants’ cries. More specifically, by using commonly investigated
acoustical properties of cry vocalizations, our model identified, with a high degree of accuracy (89.5%)
the vocalizations produced by infants of depressed mothers. This is especially important if we consider
that a model trained on AutoML Table can be easily integrated with web or mobile applications
and can, therefore, be useful to those who have limited or no access to health services and clinical
supports. Moreover, releasing the model as a software may allow us to obtain more samples that,
when combined with proper clinical evaluation, will increase the accuracy of the model and reduce
the risk of overfitting.

Additionally, our results support the work from Esposito et al. [30], confirming the presence of
acoustical differences in the vocalizations of infants of depressed and non-depressed mothers, as well
as suggesting the reliability of the Data Augmentation technique for the analysis of cry vocalizations
using machine learning models.

Our results suggest that machine learning models, trained in cloud environments, can support
clinicians in the diagnosis of PPD.

Limitations

Despite these promising results, some limitations need to be addressed. First, our model was
tested on a single dataset, which was expanded using a data augmentation procedure. Future studies
should address the performance of models on data collected from different participants to verify
the broader utility of the methods. Moreover, we trained the models using only acoustical features
and demographic information about mothers (age) and infants (gender). Future studies might also
address how including additional data, such as questionnaire scores (BDI) or the gestational ages
of the babiesat birth, might improve predictive models by reducing the ratio of false positives and
false negatives.

Additionally, special attention has to be drawn to privacy issues in investigating health-related
problems on the cloud. In our study, the data of multiple participants were anonymously imported to
the model, making it impossible to match model predictions with participant demographic information.
In a real application of the technique, special measures would have to be taken to prevent any possible
leak of data that could undermine patient privacy and well-being.

Finally, because of the fact that our analysis is based on data collected on a previous study,
and because of the limitations of the technology then used, we are not able, at this stage, to provide a
reliable investigation of how the level of depression affects the accuracy of the model, as this would
require not only a greater number of samples but also a balanced distribution of levels of depression of
participating mothers.

5. Conclusions

In this study, we investigated the possibility of using cloud-based machine learning models
to identify postpartum depression in new mothers by analyzing their infants’ cry vocalizations.
By employing a machine learning model based on Google’s Cloud Platform R©, we demonstrated that,
by using acoustical features estimated from cry recordings, it is possible to identify, with a good degree
of accuracy (89.5%), the vocalization produced by infants of depressed mothers.

Despite our relatively small sample size, and the fact that the dataset was not originally designed
for this kind of analysis, our results are promising for the development of a low-cost tool that can be
employed by clinicians to support their diagnosis of PPD.



Behav. Sci. 2020, 10, 55 8 of 10

Future studies should address whether similar models can obtain better performances by studying
larger numbers of vocalizations collected from different infants from a more variegated population
to overcome possible problems because the participants in our study were all located within a small
geographical area [52]. Additionally, future work should verify whether a different set of features,
such as those based on the cepstrum analysis, could be used to enhance the performances of machine
learning classifiers.
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LTAS Long-Term Average Spectrum
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