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Abstract: The Grand River watershed is an important agricultural area in southern Ontario,
with several large and growing municipalities. Based on digital elevation models (DEMs), the natural
drainage network was modelled to predict flow paths. Channel lengths and locations of the predicted
network were compared with a ground-truthed channel network to determine efficacy of the models.
Approximately 5% of predicted channels lay >40 m from actual channel locations. This amounted to
388 km of channel that had no corresponding channels in reality. The model was unable to predict,
based on topography, 2535 km of actual channel present in the watershed. Channels not anticipated
by topography were mostly first-order, with low sinuosity, were most common in areas with high
agricultural land use, and are likely excavated extensions to headwater streams to facilitate drainage.
In addition, this study showed that Soil and Water Assessment Tool (SWAT) models produced using
different DEM resolutions did not predict significantly different stream flows, even when resolution
was as low as 200 m. However, these low resolution DEMs did result in under-prediction of sediment
export entering Lake Erie, most likely because the low resolution maps failed to account for small
localized areas of high slope that would have relatively higher rates of erosion.

Keywords: stream network delineation and analysis; DEM resolution and watershed modeling;
Soil and Water Assessment Tool application to watershed processes; agriculture as a major land
cover modifier

1. Introduction

Engineering of stream channels generally occurs within a context of broader changes in land
use. Between one-third to one-half of the land surface has been modified by human activities [1].
Land conversion to more economic uses (in a conventional sense of financial benefit to landowner)
has been a chief component of economic growth; many land use and land cover changes are set in
motion by individual landowners and land managers [2]. Much engineering of stream channels has
coincided with clearing of land for agriculture, launching the agrarian economy of the nineteenth and
early twentieth century in the United States and Canada.

While land use conversion continues, the rate of conversion peaked in Canada in the late 19th
century. Globally, land modification will continue to increase with a growing population, its demand for
food, and urban development [3]. Conversion of land has many social, economic, and environmental
ramifications which are acknowledged, but which lay beyond the scope of this paper.

Channelization can reduce the length of a meandering stream, replacing it with a
straightened course with sometimes drastically altered channel width, depth and bank slopes.
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Channelized headwater streams increase flow carrying capacity and flow velocity, both of which
result in ecological disturbances. Collateral effects of channelizing streams include removal of riparian
vegetation, removal of in-stream substrate, an increase in bed gradient, reduced transient storage
capacity, and a decrease in total network length of headwater streams. Removal of riparian vegetation
and in-stream bottom substrate, coupled with the greater flow capacity, increase bank and bed
erosion, leading to higher suspended sediment loads and sediment export from the watershed [4,5].
Streams originating in agricultural landscapes not only experience altered flow regimes and increased
transport of sediment, but increased nutrient transport, contributing to cultural eutrophication in
receiving water bodies [6]. Headwater streams are particularly important in processing and retaining
nutrients; however, the nutrient retention capacity is compromised by increased depth [7] and reduced
transient hydrologic retention associated with channelization [8,9]. Farmers dislike losing soil to
the erosive forces of streams, and generally would rather not be under scrutiny by environmental
regulators for contributing to nutrient export and eutrophication. However, steam channelization
offers the trade-off of effective drainage and enhanced crop growth in wet soils. As a result, reaches that
were channelized in the past are often maintained, and in jurisdictions with weak environmental
regulation and continued land use conversion, sinuous reaches are straightened.

The primary purpose of this research was to investigate the impact of landuse on stream network
in the Grand River Watershed (GRW) in Southwestern Ontario. This is an important agricultural
region of Ontario, and row crop agriculture is the predominant land use in the basin. The drainage
network of the GRW was constructed, based on soil layers and topography, to serve as a null model
for comparison against the existing drainage network. This provided an opportunity to consider how
channel engineering associated with land use (primarily agriculture) has affected drainage density,
total channel length, and sinuosity in the network. Moreover, we need to have a good understanding
of the strengths and limitations of the dataset and the modeling approaches since these tools will be
used for remediation, watershed restoration and other important decision-making processes such as
funding, grants and resource allocation within the watershed. Furthermore, similar watersheds in
Ontario have experienced the same fate at the GRW and what is learned from this study may directly
benefit the surrounding watersheds in southern Ontario.

Watersheds have emerged as the basic unit for most hydrologic analyses. Manual survey of a
watershed can be expensive and time consuming. However, geographic information systems (GIS)
have become valuable investigative tools with respect to stream visualization and analysis. With GIS,
one can add spatial elements and also perform analysis of variables such as slope, aspect and other
watershed parameters including climate, topography, soil type, vegetative cover, population density,
point source of pollution and farming practice. With GIS, it is possible to greatly reduce processing time
(as compared to field surveys) and elements of subjectivity that are frequently encountered with the
manual measurement of features on maps and aerial photographs. When large watersheds are being
studied, digital data resolution is important since digital elevation models (DEMs) are the primary
topographic inputs of hydrologic modelling. A digital elevation model is a numerical representation
of a surface that represents the height of the terrain. According to Ariza-Villaverde et al. [10], a DEM
may be considered in different ways, such as by (a) contours with x, y coordinate pairs along each
contour line of a specified elevation, (b) a triangulated, irregular network made up of nodes that are
irregularly distributed and lines with 3-D coordinates (x, y, z) and (c) a 2-D array of numbers that
represents the spatial distribution of elevations on a regular grid. The latter model is widely used for
raster DEMs. Previous studies [10–15] have examined the effect of spatial resolution on modeling and
quantifying stream networks in watersheds of varying sizes and have concluded that the distance
between actual stream networks and DEM derived stream networks increase exponentially at higher
resolutions. However, none of these studies specifically examined the effect of different resolutions on
headwater streams or on stream sinuosity.

The algorithm in GIS software is commonly employed as an eight-direction (D8) flow model
in order to derive hydrologic characteristics of a surface such as the direction of flow from every
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cell in the raster [10,12]. In this model, there are eight valid output directions in relation to the eight
surrounding cells into which flow can enter. The direction of flow is then computed from the direction
of steepest descent and the process is repeated to produce higher order streams in the stream network.
Immediately, two limitations of the D8 technique stand out: it will not function as anticipated on
flat terrains, and secondly, aquatic features such as lakes may not be delineated or accounted for.
One possible workaround is to burn the stream network onto the DEM to account for streams on
flat terrains.

Thus, a secondary objective of this research was to consider the effect of spatial resolution in DEMs
on prediction of stream networks, and modeling of hydrology and sediment export from the GRW.

2. The Grand River Basin, Southern Ontario

The Grand River Watershed covers an area of 6965 km2 and it is the largest of the watersheds in
Southwestern Ontario that drain into Lake Erie (Figure 1). Spanning a length of 290 km and having an
elevation differential of about 362 m from source to mouth, the Grand River follows a dendritic pattern
after it originates at the Dundalk Highlands, flows through Port Maitland and contributes about 10%
of the drainage to Lake Erie [16].
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Figure 1. The Grand River watershed is located in Southwestern Ontario and drains into Lake
Erie. The latitude, altitude and proximity to Lake Erie influence the climate of the Grand River area.
The headwaters of the Grand River lie in the north and as it makes its way to Lake Erie in the south,
it traverses four different climate zones. On average, the GRW receives 93.3 cm of precipitation each
year (Grand River Conservation Authority (GRCA), 2013). The mean temperature of headwater streams
is around 6 ◦C while Lake Erie is around 9 ◦C while the average annual temperature of the watershed
is 7.8 ◦C. (Credit: Sub-basins division modified from GRCA geospatial datasets).
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Prior to the arrival of Europeans around the mid-1770s, First Nations inhabited the basin which
was dominated by pristine forests, marshes and swamps. From the 1750s, wetlands and forests
in the GRW have been progressively modified to make way for lumber exploitation, agriculture,
pasture, settlements and industry. Nearly 95% of historical forest has been removed and there has been
extensive stream engineering of the waterscapes [16], especially by damming and channelization [17].
By the early 1900s, almost 70% of all drained wetlands in southern Ontario were converted into
agricultural lands, with noticeable degradation in water quality. In 1934, the Grand River Commission
received its charter, tasked with finding a solution to the degradation in stream flows and water
quality [16]. With around 6000 farms, agriculture has remained the dominant land use in the GRW [17].
Approximately 82% of land on the upper Grand (e.g., Nith and Conestogo sub-basins) is in agriculture
as compared to ~64% in the central Grand. At present, forests and wetlands occupy around 20% of the
total watershed [18]. Row crops, small grains, forage and bare agricultural fields accounted for 20.5%,
12.1%, 19.2% and 15.9% of the GRW, respectively. The GRW has some of the fastest growing urban
centres in Canada. Just over one million people live in the GRW, with 81% residing on 7% of the land
area in Kitchener, Waterloo, Cambridge, Guelph and Brantford [17].

A 1982 Grand River Basin Water Management Study identified intensive agriculture as the main
nonpoint source of pollution responsible for impairment of water quality in the Grand River [19].
Based on the Water Quality Index used by the Canadian Council of Ministries of the Environment,
the headwaters of the Grand River are classified as ‘good’; however, as tributaries flow through major
agricultural areas, their status drops to ‘fair’; and finally, as larger tributaries and the main Grand River
flow past urban centres, water quality drops to ‘poor’ due to the addition of high levels of phosphorus
and nitrogen from storm water and sewage treatment plants [16].

3. Methods

3.1. Stream Delineation

ESRI’s ArcMap 10.2 Hydrology tool (ESRI, Redlands, CA, USA) was used to delineate the Grand
River watershed using a preprocessed digital elevation model (DEM) at 10-, 25- and 200-m spatial
resolutions. The main steps that were followed are: hydrological conditioning, watershed delineation,
and derivation of stream network characteristics. A flowchart for the procedure is as follows (Figure 2):
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Figure 2. Procedure for hydrological conditioning, watershed delineation and derivation of stream
network characteristics in ArcMap 10.2. The stream network, followed by stream links, were built by
choosing the USGS’s 4.5 km2 threshold that generated a seventh order stream (Strahler’s method) for
the Grand River. A radius of 50 metres was indicated to ensure the pour point was snapped onto the
cell with the highest flow accumulation within the specified radius.
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Comparisons of distances and lengths of the DEM-derived streams (target layer) and the
ground-truthed reference stream network were run at spatial queries of 0, 2.5, 5, 10, 20 and 40 m to
evaluate the extent of overlap between the two stream networks.

A shapefile containing the different sub-basins within the GRW (downloaded from https://data.
grandriver.ca/downloads-geospatial.html) was used to clip sub-basins in the DEM derived watersheds,
soil (downloaded from Land Information Ontario: https://www.ontario.ca/page/land-information-
ontario), tile drainage (downloaded from the Ontario Ministry of Agriculture, Food, and Rural
Affairs: https://www.ontario.ca/page/land-information-ontario), and land cover (downloaded from
Grand River Conservation Authority: https://data.grandriver.ca/downloads-geospatial.html) layers.
Analyses were performed on each sub-basin to determine land use, soil drainage and type, tile drainage
area, stream length, order and reach sinuosity. Sinuosity is the extent of curving and is a quantitative
measure of reach meandering. Stream sinuosity is calculated as a ratio of the actual reach length to its
straight-line distance between two points at 100 m intervals on the reaches.

3.2. Effects of DEM on SWAT Model Performance

A Soil and Water Assessment Tool (SWAT) model has been recently developed for the Grand River
Basin. This model is described, along with calibration and validation for the prediction of discharge
and export of sediments and nutrients from the GRW [20]. Because it is a physically-based model,
SWAT provides the unique opportunity to simulate the hydrology and water quality of ungauged
streams and to quantify the relative impacts of alternative input data on hydrology and water quality
in watersheds. In the model developed for the GRW, a DEM with 10-m resolution was used for
the delineation of the Grand River Basin, sub-basins, hydrologic response units (HRUs), and for
identification of pour points from the watershed overall, from each sub-basin, and HRU. This model’s
layers for sub-basins, HRUs and pour points were overlaid with the actual stream network, so the 10-m
DEM was not used to predict the channel network, as was described above. The hydrologic response
unit (HRU) is the smallest spatial unit in the SWAT model and this unit represents areas irrespective of
size with similar land uses, soils, and slopes within a sub-basin based upon user-defined thresholds.
This method makes for an effective approach in discretizing large watersheds where simulation at the
field scale may not be computationally feasible [21].

The availability of a ground-truthed digital river network, and of a 10-m resolution DEM for the
GRW, is a luxury. Not all watersheds for which one might wish to build a SWAT model have either
available. It is not clear how strongly the use of a lower resolution elevation model may affect the
quality of the SWAT model, particularly if the DEMs must be used not only to predict topographical
features (e.g., HRUs), but also to predict the channel network. In the current study, the effects of
DEM resolution on SWAT model predictions for hydrology and sediment transport were evaluated by
delineating the stream network, the basin, sub-basin, and pour points using 10-m, 25-m, and 200-m
resolution DEMs. As the SWAT model, constructed using a 10-m resolution DEM with an actual stream
network layer, has been calibrated and validated with respect to predicting discharge and sediment
load, it serves as the comparator against which performance of SWAT models, built using DEMs of
varying resolution, can be assessed.

3.2.1. Preparation of SWAT Model Input Data

A DEM (10 × 10 m resolution) for Ontario was obtained via the Scholars Geospatial Portal
at Ryerson University (http://geo2.scholarsportal.info/). This DEM (version 2.0.0) is a 3-D raster
data set which captures terrain elevations and has cell resolutions of 10 m in southern Ontario.
A rectangular clipped portion of the DEM was used to delineate the watershed and the pour point
was snapped on the main stream network as it entered Lake Erie. The GRCA’s ground-truthed stream
network (https://data.grandriver.ca/downloads-geospatial.html) was burned onto the raster during
the watershed delineation process to produce more accurate sub-basin delineations in subsequent
steps. The virtual stream layer is a single line, fully connected network that represents the inferred

https://data.grandriver.ca/downloads-geospatial.html
https://data.grandriver.ca/downloads-geospatial.html
https://www.ontario.ca/page/land-information-ontario
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https://data.grandriver.ca/downloads-geospatial.html


Geosciences 2019, 9, 46 6 of 15

flow through watercourses and water bodies. DEMs with lower resolution (25- and 200-m) were also
obtained from GRCAs website (https://data.grandriver.ca/downloads-geospatial.html).

The primary DEM used in this study was based on the Provincial Digital Elevation Model
(Ontario’s PDEM) that most closely reflects true ground elevations as much as possible. The raster was
constructed using several data sources to provide seamless coverage for all of Ontario. These data
sources include the Ontario Basic Mapping (OBM) program and NASA’s Shuttle Radar Topographic
Mission (SRTM) including the Ontario Radar Digital Surface Model (ORDSM), OBM DTM, OBM Spot
Height and OBM Contour. A number of interpolation techniques were employed including:
ANUDEM/ESRI Topogrid spline interpolation, ESRI Local Polynomial Interpolation (LPI) algorithm
for areas covered by SRTM, and ESRI Bilinear Resampling of finer resolution DTM’s derived from
more recent high resolution elevation data acquisitions. Data for the final DEM product was captured
at a scale of 1:10,000, with an absolute Positional Accuracy of 5 m and absolute Vertical Accuracy
(contours and DTM) of 2.5 m.

3.2.2. Land Cover/Land Use

Land cover classification was based on Landsat 7 TM Imagery in 1999 and updated in 2005
(downloaded from Grand River Conservation Authority: https://data.grandriver.ca/downloads-
geospatial.html). Pixel sizes in the landcover GRID were 25 m × 25 m. To date, SWAT has
a library of 97 plant types and 8 urban land uses in its database. The GRW was divided into
19 of these different land cover categories, listed here along with corresponding SWAT code in
parentheses: built-up (residential) (URHD), built-up (commercial/industrial) (UCOM), row crops
(AGRR), small grains (AGRL), forage (ALFA), pasture/sparse forest (PAST), dense forest (deciduous)
(FRSD), dense forest (conifer) (FRSE), dense forest (mixed) (FRST), plantation (mature) (AGRL),
open water (WATR), wetlands (WETL), extraction/bedrock/roads/beaches (BARR), golf courses
(FESC) and bare agricultural fields (AGRL).

3.2.3. Soil Classification

Geospatial data were obtained from the Soil Landscapes of Canada’s online geospatial database
that is maintained by the Canadian Soil Information Service or CanSIS (http://sis.agr.gc.ca/cansis/).
A soil database was built to identify and link the physiochemical properties of the top 10 layers
(if present) of the soil profile to the soil groups in the watershed. The names and characteristics of the
different soil layers were also downloaded from the CanSIS website in the Soil Name Table and the
Soil Layer Table. SWAT requires the following properties for each layer within the soil: soil hydrologic
group, maximum rooting depth of soil profile, fraction of porosity from which anions are excluded,
maximum crack volume of soil profile, texture of soil layer, depth from soil surface to bottom of
layer, moist bulk density, available water capacity of the soil layer, saturated hydraulic conductivity,
organic carbon content, clay content, silt content, sand content, rock fragment content, moist soil
albedo, USLE K, electrical conductivity, soil CaCO3 and soil pH. This database was then appended to
the SWAT usersoil database.

Soil slope was divided into four groups based on a modification of the Canada Slope Gradients
classification: little or no slope (0–3% gradient), gentle slope (3–9% gradient), moderate slope (9–15%
gradient) and steep or excessively steep slope (>15% gradient). After the watershed was delineated,
SWAT generated HRUs by overlaying and combining land use, soil and slope.

3.2.4. Weather Data

Daily maximum and minimum (◦C), precipitation (mm·d−1), wind speed (m·s−1), solar radiation
(MJ·m−2) and relative humidity (fractional) are required weather inputs provided for the length
of SWAT run (31 years in total). Weather data were assigned to every sub-basin using data from
the station that is closest to the centroid of that sub-basin. All weather data were obtained from
Environment Canada (http://climate.weather.gc.ca/historical_data/search_historic_data_e.html) and

https://data.grandriver.ca/downloads-geospatial.html
https://data.grandriver.ca/downloads-geospatial.html
https://data.grandriver.ca/downloads-geospatial.html
http://sis.agr.gc.ca/cansis/
http://climate.weather.gc.ca/historical_data/search_historic_data_e.html
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missing data downloaded from the SWAT’s Global Weather Data tool (http://globalweather.tamu.
edu/). Also, due to absence of measured some daily solar radiation, humidity and wind speed
datasets, the Hargreaves’ method of simulating potential evapotranspiration was selected for the
model run. This method of inferring PET rates has shown reliable estimates when compared to
measured values [22,23]. The use of simulated weather data to fill the missing gaps on streamflow
using SWAT is modelled in many environments [24,25].

3.2.5. SWAT Model Construction and Run

The duration of the SWAT run was set up from 1980 to 2010 and the model was run on a monthly
time scale using a 10/10/10 Multiple HRU threshold for soils, land use and slope. The model was run
on a monthly scale for four different scenarios: (a) 10-m DEM using the ground-truthed stream network
(referred to as a comparator), (b) 10-m DEM using ArcSWAT for stream delineation, (c) 25-m DEM
using ArcSWAT for stream delineation and (d) 200-m DEM using ArcSWAT for stream delineation.
Manual calibration of streamflow and sediment discharge was done using parameters as outlined in a
SWAT model for the GRW that has been constructed, calibrated, and validated for prediction of water
discharge, sediment transport and phosphorus transport [20].

4. Results and Discussion

4.1. Stream Network Delineation

The quality of predicted stream networks, based on DEMs at 10 m and 25 m resolution,
was assessed by comparing the total channel length predicted by these models versus the actual
channel length in the GRW network, and by determining how well the predicted stream channels
spatially coincided with actual stream channels. The total stream length for the GRW network in the
reference network source layer is 11,329 km. The stream network derived from the 10-m and 25-m
resolution DEMs predicted similar total stream lengths of 9182 km and 8958 km, respectively, or 81.0%
and 79.1% of the actual total stream length. Hence, approximately 20% of the stream network cannot
be topographically derived. The actual stream network has greater total stream channel density than
the predicted network derived from either DEM, as illustrated by comparing the actual network versus
that predicted from the 10-m resolution DEM (Figure 3A).

Spatial agreement between predicted stream networks and the actual GRW network was
considered based upon how much of the total predicted channel length lies within various distances
of actual stream channels. Of the total 9182 km of channel length predicted from the 10-m resolution
DEM, 8102 km, or 88.2%, overlapped with actual channel positions (Table 1), while 8325 km or 90.7%
of the total length of predicted channels lie with 5 m of actual channel positions. The 25-m resolution
DEM was also useful in predicting channel position, with 7818 km of the total predicted network
overlapping with actual channel positions. However, the 10-m resolution DEM provided a better
correspondence to the actual network, as 95% of the total predicted channel length fell within 17 m
of actual channel positions, while 95% of predicted channel length fell within 40 m of actual channel
positions for the network derived using the 25-m resolution DEM.

http://globalweather.tamu.edu/
http://globalweather.tamu.edu/
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Table 1. Total km of the predicted channels in stream networks derived from DEM models that overlap
or lie within varying distances of the existing channels in the Grand River Basin.

Total Overlap in km (and % Total Channel Length)
DEM Model 0 m 2.5 m 5 m 10 m 17 m 20 m 40 m

10 m DEM 8102 (88.2%) 8209 (89.4%) 8325 (90.7%) 8551 (93.1%) 8727 (95.0%) 8756 (95.4%) 8795 (95.8%)
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Approximately 48% of the total channel length in the GRW network is first-order, with an
additional 23% being second-order (Figure 4), consistent with the distribution in basins described
elsewhere [26,27]. Predicted network models based on DEMs were good at predicting the positions of
channels second-order or higher, but were less accurate in predicting positions of first-order channels.
If one considers only those predicted channels that did not lie within 10 m of existing channels,
one would expect 48% of the total length to be represented by first-order streams. This would be true
if the model predicted positions of all channels equally well regardless of size (stream order). Similarly,
one would predict 23% of the total length of these outlying channels to be second-order. However,
when considering only those predicted channels that fail to lie within 10 m of actual channels, 82% and
76% of the total basin-wide channel length are first-order in networks derived from the 10-m and
25-m resolution DEMs, respectively (Table 2). In contrast, 16% and 17% of the predicted channels
that do not lie within 10 m are second-order for networks derived from 10-m and 25-m resolution
DEMs. The findings of this section is in agreement with previous studies that show that as DEM
resolution decrease, the overlapping distances exponentially increases at resolutions greater than
180 m [10–13,28].
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Figure 4. Stream length of different stream order of the Grand River stream network.

Table 2. Performance of stream network models derived from 10 m and 25 m DEMs in predicting
locations of first and second order channels.

Stream Characteristics
DEM Resolution
10 m 25 m

Total length of non-overlapping (within 10 m) first order channels (model predicted versus actual) 515 m 598 m
% of non-overlapping (within 10 m) channels that are first order (model predicted versus actual) 81.6% 76%
Number of predicted first order stream segments that do not overlap actual first order channels 2151 3078

Sinuosity of actual first order channels not predicted by DEM 1.06 1.05
Total length of non-overlapping (within 10 m) second order channels (model predicted versus actual) 101 m 132 m
% of non-overlapping (within 10 m) channels that are second order (model predicted versus actual) 16.1% 16.8%
Number of predicted second order stream segments that do not overlap actual first order channels 485 877

Sinuosity of actual second order channels not predicted by DEM 1.06 1.04

Stream networks predicted by DEM models include some channels that do not exist in reality.
These missing channels (or sub-networks) may be a result of a variety of factors, such as burial
in the course of urban development. In contrast, predicted networks were missing some channels
that do exist in reality. Upon closer inspection of these missing channels, many were relatively
straight headwater channels, extending upstream of their predicted starting locations based on DEMs
(Figure 3B). The sinuosity of these channels was very low at ≤1.06 km channel length per linear km
(Table 2). Channelization, or straightening of meandering reaches of streams, is a common practice in
agricultural areas, but contrary to expectations, there is little evidence that this type of modification
has occurred to a substantial degree in the GRW. Actual total network channel length is greater than
that predicted from topography, and sinuosity in all major sub-basins, and for the network overall,
was greater than sinuosity predicted from DEMs (Table 3). Though the D8 method of flow accumulation
(and indirectly, stream length) may account for some of these systematic differences [10,12], it alone
cannot account for such large discrepancy since most of the unaccounted streams are in the headwaters
where topography is not an issue with flow direction and flow accumulation using the D8 method.
The only logical variable that would most likely account for such observed difference is the highly
agricultural nature of the land and its subsequent modification of the landscape.
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Table 3. Analysis of stream network and land use in major sub-basins in the Grand River basin.

Sub-Basin Area
(km2)

Strahler
Stream
Order
(Main

Channel)

Sinuosity
all Actual
Channels

Sinuosity all
Predicted
Channels

(10 m DEM)

Sinuosity
Actual
First

Order
Channels

Sinuosity
Predicted

First Order
Channels

(10 m DEM)

% Agri. %
Forest/Wetland

% Network
Length
That is

First Order
(actual)

Total
Predicted
Channel

Length-10 m
DEM (km)

Total Predicted
Length First

Order
Channels-10 m

DEM (km)

% Network
Length
That is

First Order
(Predicted)

Conestogo River 819.9 6 1.13 1.12 1.13 1.11 78.0 9.2 50.0 1078.2 505.8 46.9
Fairchild Creek 400.7 5 1.17 1.14 1.14 1.11 63.4 21.3 46.2 620.8 278.8 44.9
Lower Grand 355.9 7 1.14 1.11 1.13 1.1 62.4 22.0 48.9 482.6 233.6 48.4

Lower Middle Grand 475.6 6 1.17 1.15 1.13 1.12 66.0 14.7 48.6 743.3 333.9 44.9
McKenzie Creek 368.2 5 1.21 1.13 1.15 1.10 58.8 30.5 47.8 515.3 237.5 46.1
Middle Grand 604.6 7 1.15 1.11 1.15 1.11 43.4 19.1 44.5 788.8 363.1 46.0

Nith River 1128.0 6 1.16 1.10 1.14 1.10 76.3 11.7 49.1 1487.0 682.8 45.9
Speed River 780.8 6 1.15 1.09 1.15 1.09 56.8 24.6 49.7 1031.8 508.5 49.3

Upper Grand 791.2 6 1.13 1.10 1.13 1.10 69.9 18.9 48.0 992.9 478.8 48.2
Upper Middle Grand 639.8 6 1.15 1.09 1.14 1.09 77.7 9.6 47.8 838.2 386.7 46.1

Whitemans Creek 403.9 6 1.18 1.11 1.16 1.10 70.0 16.5 48.2 555.4 253.6 45.7
Summary 6768.8 7 1.16 1.11 1.14 1.10 69.7 18.0 48.1 9134.3 4263.1 46.7
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The stream network density for a drainage basin is widely used as the starting point for stream
restoration [29]. Comparing predicted versus actual network density can indicate areas where
restoration efforts might be focused on increasing channel length, or where regulatory actions might
be indicated to protect further loss of stream network density. Interestingly, in the GRW, it appears
that land use modifications may marginally increase, rather than decrease, total channel length and
stream network density. Possibly, this is a result of extending headwater streams as channels or ditches
to increase drainage from agricultural lands. Sub-basins of the GRW differ in land use, with percent
of land in agricultural production varying from 43.4% (Middle Grand) to 78.0% (Conestogo River)
(Table 3). The percentage of total stream network that is first-order also varied among sub-basins,
and was correlated with percent agriculture (r = 0.61, p = 0.04). Extending headwater streams
for drainage from agricultural lands may contribute to this pattern, although the circumstantial
concentration of agricultural activity in the northern portion of the GRW, the headwaters of the basin,
likely contributes more to the relationship. However, the difference between DEM-predicted and
actual % first-order stream length ([% predicted–% actual]/% actual) is also correlated with percent
agricultural activity across sub-basins (r = 0.70, p = 0.015), suggesting that the extension of headwater
streams for agricultural purposes has a pervasive effect on the GRW channel network.

Headwaters are important lotic systems that represent hydrological connectivity [30] between
upland and downstream waters [31] by facilitated transferal of mass, momentum, energy, or biota
within or between various components of the hydrologic cycle [32]. Whether perennial or intermittent,
headwater streams are important sites for biogeochemical transformation of nutrients [33]. Due to
their dendritic, hierarchical patterns and their large width to depth ratio, headwater streams are critical
in controlling the amount of nutrients that are exported downstream [34]. It is the dynamic coupling
of hydrological and biogeochemical processes in headwaters that regulates not only the chemical
form of the nutrient that is being transported, but also its residence time and longitudinal transport to
downstream receiving waters with the fastest uptake and subsequent transformation of nitrogen takes
place in headwater streams.

Land use changes do impact hydrology and hydrological processes [35]. The Grand River basin
is highly agricultural. The apparent increase in first-order channel length by extending headwaters
to facilitate drainage may mitigate some of the impacts of agricultural runoff on the Grand River.
This notwithstanding, the Grand River is consistently rated poor with respect to water quality prior to
entering Lake Erie.

These extended reaches of headwater channels provide a unique opportunity for land owners,
the conservation authority, municipalities and other stakeholders, to target effective stream
restoration polices and agricultural best management processes within major basins in the watershed,
particularly in those with especially high agricultural activity such as Conestogo, Nith and Upper
Middle Grand, in an effort to abate sediment and nutrient export into Lake Erie. Restoration activities
might be concentrated on these extended reaches (effectively ditches) to improve sediment and nutrient
retention and processing near the site of loading. Such activities come at cost, and it is important to
first define what impact such targeted efforts in these relatively small stretches of the watershed might
have on water quality. Recently, a SWAT model for the GRW was constructed, calibrated, and validated
for prediction of water discharge, sediment transport, and phosphorus transport [20]. This model can
provide an effective tool for future testing of the application of Best Management Practices to these
extended headwater channels, to reduce sediment and nutrient transport. This would provide some
guidance on how best to balance management goals and objectives with costs of implementation. This,
as well as full discussion of the SWAT model, are beyond the scope of the current study, however the
SWAT model for the GRW was developed using the 10-m DEM to generate the predicted channel
network. As this paper considered the effects of DEM resolution on predictive fidelity to the true
network, the effects of DEM resolution on SWAT model are considered next.
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4.2. Effects of DEM Resolution on SWAT Model

The resolution of the DEM used had varying impacts on the delineated watersheds with respect
to watershed sizes, sub-basin number and sizes, and HRU number and sizes (Table 4). The use of
a 10-m DEM to generate stream channel networks, and to delineate basins, sub-basins, and HRUs
produced a larger watershed with fewer sub-basins but more HRUs relative to the SWAT model
using a 10-m DEM, but with the actual stream network layer. The number of sub-basins and HRUs
delineated, as well as predicted watershed area decreased with DEM resolution. The SWAT model
using the 200-m DEM delineated 92% of the total number of sub-basins (based on comparator model),
however it only delineated 60% as many HRUs. This difference in number of HRUs may result in loss
of important information on watershed heterogeneity and may affect SWAT outputs such as stream
flow, sediment and nutrient yields.

Table 4. Comparison of SWAT models constructed using different DEM resolutions, compared against
a SWAT model constructed using a ground-truthed stream network and 10 m resolution.

Hydrology DEM Resolution
10 m with Actual Stream Network 10 m 25 m 200 m

Watershed area 6782 6909 6443 6358
Sub-basins 787 771 742 722

HRUs 7219 7357 7218 4364
Streamflow/precipitation 0.5 0.5 0.5 0.5

Baseflow/Total flow 0.34 0.33 0.34 0.33
Surface runoff/Total flow 0.66 0.67 0.66 0.67
Percolation/precipitation 0.19 0.19 0.19 0.19

Deep recharge/precipitation 0.01 0.01 0.01 0.01
ET/precipitation 0.47 0.47 0.47 0.47

Average stream discharge (m3 s−1) 126.3 126.7 121.5 119.9
Average sediment discharge (TSS) (mgL−1) 27.9 29.2 28.3 22.5

SWAT models built with lower resolution DEMs had lower predicted discharge and sediment
export (Table 4). However, all models performed well in predicting discharge, agreeing to within
~5% of the comparator model. This agreement held over 10 years of the model simulation (Figure 5a),
and for monthly averages across all years (Figure 5b). By default, the SWAT model mainly estimates
watershed runoff using the Soil Conservation Service (SCS) runoff equation. The runoff curve number
(CN) is an empirical parameter that predicts surface runoff and infiltration rates from a rainfall event in
a particular area. CN is essentially a coefficient that reduces the total precipitation to runoff potential,
after accounting for evapotranspiration, infiltration and surface storage. CN is highly dependent on
the hydrologic soil group and land use and to a lesser extent, treatment and hydrologic condition.
Although DEM reflects topography and slope, these are not the primary variables that influence runoff,
hence, differences in DEM resolution resulted in negligible differences in monthly stream flow into
Lake Erie from the Grand River watershed.

The models using 10-m and 25-m spatial resolution also agreed well with the comparator model
for sediment export, again to within 5%. These models generally overpredicted TSS export. This was
true across years, but the overestimate in TSS export was most observed in years with high discharge
such as in the early 1980s (Figure 5c), and similarly in spring months with high discharge (Figure 5d).
The SWAT model constructed using 200-m spatial resolution under predicted sediment export, by ~20%
relative to the comparator model. This was consistent across years, and was also most pronounced in
spring months when discharge was highest. SWAT uses the Modified Universal Soil Loss Equation
(MUSLE) to estimate soil loss from sub-basins. MUSLE depends on the slope-length gradient which in
turn depends on slope length and slope steepness, both of which are determined from the DEM base
layer. Based on SWAT’s watershed delineation and subsequent MUSLE calculation, slopes were higher
and slope lengths were shorter for higher resolution DEMs when compared to coarser resolution.
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Consequently, the SWAT model using low resolution DEM recognized little heterogeneity in slope
within HRUs, missing local but relatively small areas of high slope which contribute to greater erosion.
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resolutions, (b) comparison of average monthly simulated stream flow (over period 1980–2010) 
predicted by SWAT model using DEMs of varying resolutions, (c) simulated total suspended solids 
(1980–2010) predicted by SWAT model using DEMs of varying resolutions, (d) comparison of average 
monthly total suspended solids (over period 1980–2010) predicted by SWAT model using DEMs of 
varying resolutions. 
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5. Conclusions

1. The DEM resolution is important in predicting the extent of a river network and the location of
stream channels. The use of a DEM with 10-m resolution did a better job in simulating the actual
river network than DEMs of lower resolution.

2. The existing river network includes first order channels that are not predicted from topography.
Perhaps this is a function of resolution and 10-m is too coarse to predict the upper limits of
first order channels with fidelity. Or, perhaps these reflect an extension of headwater channels
to serve in drainage from agricultural areas. This is supported by the low sinuosity of these
unpredicted portions of headwater streams, sinuosity being less for these reaches then for first
order streams overall in the sub-watersheds. Also supporting this is the relationship between
agricultural activity and the percent of the channel network that is comprised of first order
streams, as extension of headwater channels for drainage would increase the overall percent of
a network that is first-order. Moreover, the relationship between agricultural activity and the
percent difference between actual and predicted first-order streams suggests that there are more
unaccounted for kilometers of first-order streams in more agricultural sub-basins.

3. DEM resolution is less important in predicting river network hydrology, as there was little
difference in output of SWAT models using 10-m, 25-m, or 200-m resolution. Predicted discharge
was similar among models regardless of resolution, although the low resolution DEM did result
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in under prediction of sediment export, primarily because coarse resolution did not account for
small, localized areas of high slope.

4. While higher resolution DEMs may be preferable for simulating natural flow paths and river
networks, and for use in constructing SWAT models, the results suggest there is little drop off
in performance with a decrease in resolution from 10 to 25 m. Moreover, resolution as low as
200 m was sufficient to predict discharge in the Grand River, although SWAT models constructed
with low resolution DEMs may not perform as well in watersheds with greater local variation
in topography.
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