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Abstract: This article is devoted to the geology of titanium-rich varieties of the Petyayan-Vara
rare-earth dolomitic carbonatites in Vuoriyarvi, Northwest Russia. Analogues of these varieties
are present in many carbonatite complexes. The aim of this study was to investigate the behavior
of high field strength elements during the late stages of carbonatite formation. We conducted
a multilateral study of titanium- and niobium-bearing minerals, including a petrographic study,
Raman spectroscopy, microprobe determination of chemical composition, and electron backscatter
diffraction. Three TiO2-polymorphs (anatase, brookite and rutile) and three pyrochlore group
members (hydroxycalcio-, fluorcalcio-, and kenoplumbopyrochlore) were found to coexist in the
studied rocks. The formation of these minerals occurred in several stages. First, Nb-poor Ti-oxides
were formed in the fluid-permeable zones. The overprinting of this assemblage by residual fluids
led to the generation of Nb-rich brookite (the main niobium concentrator in the Petyayan-Vara)
and minerals of the pyrochlore group. This process also caused niobium enrichment with of early
generations of Ti oxides. Our results indicate abrupt changes in the physicochemical parameters
at the late hydro (carbo) thermal stage of the carbonatite formation and high migration capacity
of Ti and Nb under these conditions. The metasomatism was accompanied by the separation of
these elements.
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1. Introduction

Carbonatites are defined in the International Union of Geological Sciences (IUGS) system of
classification as igneous rocks containing more than 50 modal percent carbonate [1]. Varieties of carbonatite
are named based on the dominant carbonate mineral [2]. They have been chemically classified according
to the percent by mass of CaO, MgO, and FeOT and MnO [1], which has an evolutionary aspect as well.
Most of the known carbonatite complexes have a common scheme of carbonatite genesis, whereby
early calciocarbonatites were replaced by magnesiocarbonatites, and ferrocarbonatites, as the most
recent [3]. The latter are considerably affected by carbo(hydro)thermal-metasomatic processes as they
develop [4]. In general, carbonatites account for more than 50% of global rare-earth elements (REE)
resources, which include Y and La-Lu [5]. REE enrichment is “most commonly found only in the
latest and most highly evolved parts of a carbonatite intrusion” [6]. The accumulation of REE in late
carbonatites is assumed to be controlled by fluid activity [7–16]. Such a surplus in articles reflects a
keen interest in REE occurring in late carbonatites. More than 99% of the world’s niobium (Nb) is also
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known to be associated with carbonatite complexes [17]. Still, only a limited number of works were
dedicated to the behavior of high field strength elements (HFSE), which include Ti, Nb, Ta, Zr, and Hf,
regardless of commercial value, at the final stages of the carbonatite genesis. The reason is that HFSE,
unlike REE, are thought to be confined to the magmatic stage of the carbonatite genesis [18]. Moreover,
a regular decrease in HFSE content occurs from early to late carbonatites [19]. However, this may not
exclusively be the case.

In most carbonatite deposits, the main niobium concentrators are minerals of the pyrochlore
group and, less frequently, the perovskite, columbite, and euxenite groups [17]. The deposits are
divided into primary (i.e., primarily magmatic) and secondary. The latter are richer and are supposed
to have accumulated Nb minerals and other HFSE, due to their low mobility in the areas of laterite
weathering above primary deposits. As such, late carbonatites have a specific HFSE-mineralization.
Examples include the industrially valuable deposits of the Magnet Cove complex in the U.S. [20,21],
carbonatites of the Salpeterkop complex in South Africa [22], and the Gross Brukkaros complex in
Namibia [23]. Nb-rich polymorphs of TiO2 play a key role in all the listed deposits. These minerals
(anatase, rutile, and brookite) are also found in many other complexes [24]. They are typomorphic for
late carbonatites and reflect the process that completes the picture of late carbonatite petrogenesis.

The evolution of the Morro dos Seis Lagos Nb (Ti, REE) deposit (Amazonas, Brazil) deserves
particular attention. Here again, the main ore mineral is Nb-rich rutile. Reserves of this deposit are
tremendous: they are up to 2.9 billion tons with 2.81 wt % Nb2O5 [25], which is much higher than
in the largest known pyrochlore deposit. Hypergenesis certainly played a crucial role in the HFSE
concentration process in the Morro dos Seis Lagos. However, laterites in this complex formed after
ferro-(siderite)carbonatites that were originally rich in Ti and Nb [25]. In the Seis Lagos, like in many
other complexes, Nb-bearing oxides are described as secondary phases replacing originally magmatic
pyrochlores, perovskites, and other minerals. Still, this mechanism is not universal for carbonatites.
Pseudomorphing of originally magmatic minerals is commonly associated with direct deposition of
TiO2 polymorphs from fluids. In the latter case, more Nb often occurs in titanium phases, as described
for the Gross Brukkaros [23]. Moreover, some examples have no pseudomorphs of rutile, brookite,
or anatase after other phases. Only paramorphs of certain TiO2 modifications have been found,
like in the Magnet Cove [26]. This calls into question the existing models of HFSE mineralization
in carbonatites.

Considering these challenges, decoding the processes of the late carbonatites petrogenesis is a
major task. Determining these processes has both practical and fundamental value. The key step in the
petrogenetic decoding is applying genetic mineralogy methods to Ti and Nb oxides [23,27–29]. The real
challenge is dividing the late metasomatic changes and hypergenesis processes, which obscure earlier
processes. The task becomes easier in the Vuoriyarvi. Weathering crusts that existed before the latest
glaciations were eroded by glacial abrasion. Subsequently, almost no hypergenesis processes occurred
due to the site’s location in the sub-Arctic region [30]. These “preserved” sites help to identify products
of late hydrothermal alteration and those of hypergenetic processes [31]. Studying the evolution of
the Ti-Nb mineralization in the Petyayan-Vara has supported a high migration capacity at the late
hydrothermal stage of such immobile elements as Ti and Nb. We have also found evidence of fluid
activity being accompanied by these elements’ fractionation.

2. Geological Setting of the Petyayan-Vara Rocks

This research focused on the poorly studied carbonatites of the Petyayan-Vara area at the eastern
flank of the Vuoriyarvi alkaline-ultrabasic carbonatite complex, southwest of the Murmansk region,
Northwest Russia. The Vuoriyarvi is one of the Devonian Kola Alkaline Province massifs [32].
Its concentrically zonal structure (Figure 1) includes almost all rock varieties typical for such
massifs [33].
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Figure 1. The geological setting and structure of the Vuoriyarvi alkaline-ultrabasic carbonatite 
complex after [33], simplified and added. Blue circles indicate positions of the Tukhta-Vara, Neske-
Vara and Petyayan-Vara carbonatite fields and the Kolvikskiy agpaitic nepheline-syenite massif-
satellite. 

Thus, at the current erosion section, the massif core is composed of olivitites (the first phase of 
intrusion) surrounded by pyroxenites (the intermediate ring, second phase) and foidolites (the outer 
ring, third phase). The next (fourth) stage of the magma intrusion produced nepheline syenites and 
related rocks concentrated in the Kolvikskiy massif-satellite mostly. The youngest formations of the 
Vuoriyarvi are stockwork-like bodies of various carbonatites (fifth phase) cutting other rocks and 
forming several separated fields. Thus, near the Tukhta- and Neske-Vara tops, mostly calcite and, to 
a lesser extent, dolomite carbonatites and phoscorites are found. The Tukhta-Vara carbonatites 
include a deposit of apatite-magnetite-forsterite and rare metal (baddeleyite) ores. This deposit is 
close to the well-known Kovdor deposit (Kola Peninsula, Russia). On the Neske-Vara upland, along 
with apatite-magnetite ores, a deposit of niobium and tantalum exists, including more than 110 tons 
of Ta2O5 reserves and 4750 tons of Nb2O5. Their major concentrators are pyrochlore, hatchettolite, and 
zirkelite [33]. Thus, the Vuoriyarvi massif is a typical alkaline-ultrabasic carbonatite formation both 
structurally and compositionally. 

Most carbonatite fields contain minor amounts of late varieties. The exceptions are the Petyayan-
Vara carbonatites that include pyroxenite-cutting veins and lenses. They are as long as several 
hundred meters and tens of meters thick. The Petyayan-Vara carbonatites are spatially associated 
with phlogopite glimmerites metasomatically formed after pyroxenites. The orientation and 
morphology of the above carbonatite bodies are close to those of calcite carbonatites (soevites) from 
the Petyayan-Vara surroundings. However, the carbonatite bodies differ from these rocks with their 
wide range of mineralogical parageneses and a scope of mineralization, making them unique both 
for the Vuoriyarvi massif and for the Kola Alkaline Province in general. Magnesiocarbonatites are 
widespread within the Petyayan-Vara field (Figure 2), but unaltered primary magmatic dolomite 
carbonatites are rare. 

Figure 1. The geological setting and structure of the Vuoriyarvi alkaline-ultrabasic carbonatite complex
after [33], simplified and added. Blue circles indicate positions of the Tukhta-Vara, Neske-Vara and
Petyayan-Vara carbonatite fields and the Kolvikskiy agpaitic nepheline-syenite massif-satellite.

Thus, at the current erosion section, the massif core is composed of olivitites (the first phase of
intrusion) surrounded by pyroxenites (the intermediate ring, second phase) and foidolites (the outer
ring, third phase). The next (fourth) stage of the magma intrusion produced nepheline syenites and
related rocks concentrated in the Kolvikskiy massif-satellite mostly. The youngest formations of the
Vuoriyarvi are stockwork-like bodies of various carbonatites (fifth phase) cutting other rocks and
forming several separated fields. Thus, near the Tukhta- and Neske-Vara tops, mostly calcite and, to a
lesser extent, dolomite carbonatites and phoscorites are found. The Tukhta-Vara carbonatites include
a deposit of apatite-magnetite-forsterite and rare metal (baddeleyite) ores. This deposit is close to
the well-known Kovdor deposit (Kola Peninsula, Russia). On the Neske-Vara upland, along with
apatite-magnetite ores, a deposit of niobium and tantalum exists, including more than 110 tons of
Ta2O5 reserves and 4750 tons of Nb2O5. Their major concentrators are pyrochlore, hatchettolite,
and zirkelite [33]. Thus, the Vuoriyarvi massif is a typical alkaline-ultrabasic carbonatite formation
both structurally and compositionally.

Most carbonatite fields contain minor amounts of late varieties. The exceptions are the
Petyayan-Vara carbonatites that include pyroxenite-cutting veins and lenses. They are as long as several
hundred meters and tens of meters thick. The Petyayan-Vara carbonatites are spatially associated with
phlogopite glimmerites metasomatically formed after pyroxenites. The orientation and morphology of
the above carbonatite bodies are close to those of calcite carbonatites (soevites) from the Petyayan-Vara
surroundings. However, the carbonatite bodies differ from these rocks with their wide range of
mineralogical parageneses and a scope of mineralization, making them unique both for the Vuoriyarvi
massif and for the Kola Alkaline Province in general. Magnesiocarbonatites are widespread within the
Petyayan-Vara field (Figure 2), but unaltered primary magmatic dolomite carbonatites are rare.
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Titaniferous carbonatites are also common and spatially close to the marginal parts of veins. 
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grained structure (Figure 3a) and by their mineralogical-geochemical characteristics. It is not clear at 
present whether magnesiocarbonatites were their protolith or if they formed (auto)metasomatically 
after carbonatites of an additional intrusion phase, or after host aluminosilicate rocks. The key role of 
metasomatism in the evolution of titaniferous carbonatites is undoubted, as indicated by a widely 
distributed streaky mineralization, corrosion structures, amoeboid xenomorphic forms, and their 
loose spongy texture (Figure 3b). This is also confirmed by the pseudomorphic substitution of some 
minerals by others, e.g., phlogopite by potassium feldspar (Figure 3c). Metasomatic recrystallization 
that made the rocks fine-grained and, as a result, poorly permeable by fluids. Later associations, 
including Ba-Sr-REE, occur in titaniferous carbonatites only along cracks in veinlets and in the cement 
of brecciated areas. 

Figure 2. Composition points of the “titaniferous” carbonatites (blue triangles) and silicocarbonatites
(red squares), as well as all other carbonate rocks of the Petyayan-Vara area (green
circles) on the classification diagrams from (a) Woolley and Kempe [2] and (b) Gittins and
Harmer [34]. Symbols: Cc—calcicocarbonatites, Mc—magnesiocarbonatites, Fc—ferrocarbonatites, and
Fcc—ferruginous calciocarbonatites.

Specific varieties of carbonatites are more common in the investigated carbonatite bodies.
These are:

(1) Fine-grained dolomitic carbonatites and silicocarbonatites with microcline and/or phlogopite
(hereinafter called titaniferous carbonatites), locally enriched with apatite (carbonatites with
K-Al-Si-Ti-Fe ± P specialization);

(2) Medium-grained dolomitic carbonatites with barite, strontianite, and ancylite-(Ce)
(Ce,La)Sr(CO3)2(OH)×H2O ± bastnaesite-(Ce) (Ce,La)(CO3)F (carbonatites with Ba-REE-Sr
specialization); and

(3) Breccias of dolomitic carbonatites with cement consisting of fine-grained quartz and
hydroxylbastnaesite-(Ce) (Ce,La)(CO3)(OH) (carbonatites with REE-Si specialization).

In the structure of carbonatite bodies, these varieties are closely intertwined with each other,
as well as with primary dolomitic carbonatites and glimmerites. The most widespread are
medium-grained dolomitic carbonatites with baryte, strontianite, and ancylite-(Ce). All these minerals
either corrode the primary magmatic dolomitic carbonatites or form cement in their breccias. In the
latter case, the texture of the rocks is similar to that of breccias of dolomitic carbonatites with
fine-grained quartz-hydroxylbastnaesitic-(Ce) cement. Thus, most of the Petyayan-Vara carbonatites
are typical Ba-Sr-REE-carbonatites with contents of BaO up to 17 wt %, SrO up to 9 wt %, and REE2O3

up to 14 wt %. Just like their protolith (magnesiocarbonatites), they are almost completely depleted
in HFSE.

Titaniferous carbonatites are also common and spatially close to the marginal parts of veins.
They stand out both macroscopically owing to their specific reddish-brown color and dense
fine-grained structure (Figure 3a) and by their mineralogical-geochemical characteristics. It is not clear
at present whether magnesiocarbonatites were their protolith or if they formed (auto)metasomatically
after carbonatites of an additional intrusion phase, or after host aluminosilicate rocks. The key role
of metasomatism in the evolution of titaniferous carbonatites is undoubted, as indicated by a widely
distributed streaky mineralization, corrosion structures, amoeboid xenomorphic forms, and their
loose spongy texture (Figure 3b). This is also confirmed by the pseudomorphic substitution of some
minerals by others, e.g., phlogopite by potassium feldspar (Figure 3c). Metasomatic recrystallization
that made the rocks fine-grained and, as a result, poorly permeable by fluids. Later associations,
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including Ba-Sr-REE, occur in titaniferous carbonatites only along cracks in veinlets and in the cement
of brecciated areas.Geosciences 2018, 8, x FOR PEER REVIEW  5 of 19 
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amount of silica. Among titaniferous rocks, some samples are highly rich in Th-Y-apatite (P2O5 up to 
7.5 wt%), though the phosphorous content in most of these rocks is not that high (Me 0.5 wt%). The 
contents vary since the apatitization is imposed on the Ti-alkaline alumosilicate association. 
Compared to the Petyayan-Vara Ba-Sr-REE-carbonatites, Ti-rich varieties have low concentrations of 
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Figure 3. (a) The relationship of Ba-Sr-rare earth elements (REE) (dark brown) carbonatites and
titaniferous (reddish-brown) carbonatites, as well as ancylite-rich (red) areas; (b) groundmass texture
of the typical titaniferous carbonatite, amoeboid xenomorphic forms of minerals, and their loose
spongy texture; (c) substitution of microcline by phlogopite; and (d) TiO2-carbonate (dolomite + calcite)
veinlets in the dolomite carbonatite. Image (b) in backscattered electrons (BSE), (c,d) are in transmitted
light [top—in plane-polarized light, bottom—in cross-polarized light]; Cal: calcite, Dol: dolomite
(the numbers correspond to the generations, see explanation in the text), Mc: microcline, Qz: quartz,
Phl: phlogopite, Ti ox.: titanium oxides (anatase, brookite and/or rutile), and Fe ox.: oxides-hydroxides
of Fe. Scale rulers are 200 µm in length.

Titanium oxides are rock-forming minerals of titaniferous carbonatites. Geochemically, their presence
reflects highly TiO2-enriched rocks (0.9–4.4 wt % with median [Me] of 2.3 wt % for 11 samples).
Titanium varieties are also rich in SiO2 (8.1–35.1 [Me 21.8] wt %), Al2O3 (2.6–7.7 [Me 3.9] wt %),
and K2O (2.0–5.9 [Me 3.5] wt %), which is not typical of carbonatites. At the mineralogical level,
these geochemical characteristics are reflected by, along with ferruginous dolomite and calcite,
a sodium-free microcline, phlogopite and, in minor amounts, albite, titanium aegirine, and quartz.
Interestingly, sulfides (mainly pyrite) are only widespread in titaniferous carbonatites only, whereas
in later metasomatites, almost all sulphur is sulphate and occurs in barite. According to the current
IUGS classification [1], varieties with more than 20 wt % SiO2 are silicocarbonatites. In the studied
area, silicocarbonatites only occur among titaniferous rocks, with microline containing the greatest
amount of silica. Among titaniferous rocks, some samples are highly rich in Th-Y-apatite (P2O5 up
to 7.5 wt %), though the phosphorous content in most of these rocks is not that high (Me 0.5 wt %).
The contents vary since the apatitization is imposed on the Ti-alkaline alumosilicate association.
Compared to the Petyayan-Vara Ba-Sr-REE-carbonatites, Ti-rich varieties have low concentrations of
BaO (0.1–2.8 [Me 0.2] wt %), SrO (up to 0.9 [Me 0.1] wt %), and REE2O3 (0.2–1.4 [Me 0.3] wt %).
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The concentrations are close to those in dolomite carbonatites. The Petyayan-Vara titaniferous
carbonatites show the highest concentrations of iron, localized in the ankerite component of dolomite
and in Fe oxides-hydroxides, providing the rocks with their specific coloring. As a result, in CMF
classification charts (CaO − MgO − FeOT + MnO) [2,34], figurative points of titaniferous carbonatites
shift toward the field of ferrocarbonatites (Figure 2).

At a distance of a few meters from titaniferous varieties, “ordinary” dolomite carbonatites
there have fine TiO2-carbonate (dolomite and calcite) veinlets that formed along joints (Figure 3d).
The only feature that differentiates dolomite carbonatites with such veinlets from unaltered dolomite
carbonatites is an increased TiO2 content (up to 1.1 wt %). The veinlets per se indicate the mobility
of titanium in late stage fluids. In isolated instances, in dolomite carbonatites from the rimming
of titaniferous varieties, jointing controls the pyrochlore mineralization without TiO2-associated
enrichment. In this case, the concentration of Nb increased up to 1500 ppm with the average content of
400–800 ppm in titaniferous varieties and 10–100 ppm in other carbonatites of the Petyayan-Vara.

3. Research Material and Analytical Methods

Eleven samples of K-feldspar- and/or phlogopite-bearing titaniferous carbonatites and
silicocarbonatites were sampled from three carbonatite bodies of the Petyayan-Vara as a study material.
Several samples of dolomite carbonatites from the rimming of titaniferous varieties were studied that
contained the titanium and niobium veinlet mineralization.

Titanium oxides (anatase, brookite, and rutile) are barely discernible both optically and in
terms of their chemical composition. Therefore, we have studied them using methods based
on structural characteristics of minerals: Raman spectroscopy (RS) and electron back scattered
diffraction (EBSD). The former method is efficient due to differences in the Raman spectra of TiO2

polymorphs [35]. The Raman spectra were recorded on a HORIBA Jobin-Yvon LabRam HR800 laser
Raman spectrophotometer (Horiba, Kyoto, Japan) on the Olympus confocal microscope (100× lens)
in the range of 50–4000 cm−1 with a spectral resolution of 2 cm−1. The Raman scattering signal was
excited by a green laser (514.5 nm) with the power of 50 mW (acquisition time 4–5 s, 10–15 acquisitions).
The calibration was checked using a Raman line of silicon at 521 cm−1. Being highly productive, RS has
been used for express identification of microprobe test points.

Using the electron backscatter diffraction (EBSD) allowed for the visualization of the TiO2

polymorphs ratios and defining boundaries of individual grains in intergrowths, where grains
are constrained by mineral sections with a single crystallographic orientation in space. For EBSD
measurements, a Hitachi S-3400N scanning electron microscope equipped with Oxford HKLNordlys
EBSD detector was used. Operating conditions were as follows: accelerating voltage 20 kV, beam
current 1 nA, acquisition time 16 s, and step 2 µm for one EBSD during mapping. Oxford Instruments
AZtecHKL analysis software was used to identify the crystal orientation from the Kikuchi pattern,
using the crystal structures of rutile, anatase and brookite from the Inorganic Crystal Structure Database.
In order to obtain the flattest surface possible for an EBSD analysis, a sample was polished with an
ending stage of Ar-ion etching for 10 min (Oxford IonFab 300).

The chemical heterogeneity of minerals was analyzed using BSE-images and maps of element
distribution provided by scanning electron microscopes (SEM). The chemical composition of the
minerals was detected using SEM Hitachi S-3400N with Oxford X-Max 20 energy dispersive X-ray
spectrometer (EDS) (20 kV, 1 nA, 30 s per exposure) and a wavelength-dispersive spectrometer (WDS)
Cameca MS-46 electron microprobe (22 kV, 30 nA, 50 s per exposure). EDS data were gathered with
no standards and WDS data were calibrated using natural and synthetic standards. Two phases and
lines were selected to calibrate the data: wollastonite (SiKα, CaKα), anatase (TiKα), hematite (FeKα),
apatite (PKα), lorenzenite (NaKα), wadeite (KKα), zircon (ZrLα), thorite (ThMα), metallic Nb (NbLα),
metallic Ta (TaLα), metallic U (UMα), SrSO4 (SrLα), BaSO4 (BaLα), PbMoO4 (PbLα), Y3Al5O12 (YLα),
(La,Ce)S (LaLα), CeS (CeLα), LiNd(MoO4)2 (NdLα), SmFeO3 (SmLα). The detection limit for Si, Ti, Ca,
Fe, K, and Cl was 0.02%; 0.05% for P, Na, Sr, Ba, Ta, Y, La, Ce, Nd, Pr, and Sm; and 0.1% for Zr, Nb, U,
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Th, and Pb. The data were reduced using the original matrix correction technique [36]. The fluorine
content was detected using a LEO-1450 SEM equipped with an XFlash-5010 Bruker Nano GmbH EDS
(20 kV, 0.5 nA, 200 s per exposure). Data reduction was performed using standard-free analysis based
on the P/B-ZAF method of the QUANTAX system. The comparison of the results obtained from
WDS (with standards) and EDS (without standards) on pyrochlores and titanium oxides showed that
normalized results were close for both minerals, though the EDS analyses indicated underweight.

The value of Ti + Nb + FeT is given as 1.00 atom per formulae unit (a.p.f.u.), when crystallochemical
formulas of titanium oxides are calculated [23]. Fe2+ and Fe3+ ratios were not evaluated for the reason
provided in Section 4.1. Crystallochemical formulas of the pyrochlore group minerals share a common
view: A2−m B2 X6−wY1−n, where A = Na, Ca, Sr, Ba, Fe2+, Pb2+, Sn2+, Sb3+, Y, Ce (and other REE), U,
Th, � or H2O; B = Ta, Nb, Ti, Sb5+, W, V5+, Sn4+, Zr, Hf, Fe3+ and Si; X typically is O, but can include
subordinate OH and F; Y typically is OH–, F, O, �, H2O [37]. The formulas were calculated based on
the notion that the B-site has no vacancies; therefore, the Nb + Ta + Ti + Zr + Si + FeT sum is 2.00 a.p.f.u.
O and OH were calculated considering the balance of charge and stoichiometry. Since FeT content
increased by 0.05 a.p.f.u. in only in a few probes, like in [28], we have also decided not to divide Fe2+

and Fe3+.

4. Results

4.1. Titanium Minerals

In titaniferous carbonatites, glomeroblast clusters of titanium oxides grains are tightly associated
with xenomorphic individuals of K-feldspar and F-rich phlogopite laths, if the latter are present.
Raman spectroscopy indicated Ti oxides occur as three polymorph modifications: anatase, rutile,
and brookite. Brookite predominates in titaniferous carbonatites, anatase is minor, and rutile produces
paramorphs after both minerals. Brookite is dark brown to yellowish brown in transmitted light,
anatase is indigo, and rutile is brown or blood red. However, these minerals are commonly grouped in
morphologically different muddy brown aggregates that hamper optic diagnostics. Five morphotypes
of titanium oxide isolations were detected in titaniferous carbonatites: segregations of elongated
crystals (I type), xenomorphic rims of carbonatite grains overgrowths (II type), amoeboid isolations
(III type), specific “cementing” intergrowths with sulfides (IV type), and small idiomorphic individuals
of brookite (V type) (Figure 4a–e, respectively). I–IV type isolations occur mostly in a rock tissue or
less frequently within K-feldspatized carbonate veinlets. These transformed veinlets are often visible
only due to their shady structure accentuated by relic areas of late dolomite adjacent to selvages.
This dolomite differs from the muddy spongy one of the main rock tissue with its dense structure,
idiomorphic appearance, and fine oscillation zoning. The V type idiomorphic brookite was solely
observed in by-selvage areas of well-preserved cutting calcite veinlets associated with a late generation
of dolomite. Note, I type segregations are also composed preliminary of brookite (Figure 4f), although
elongated crystals are typical for anatase and rutile.

Amoeboid isolations of TiO2 (III type) are the most widespread. They provide a full view of the
mineral genesis as they include three polymorphs in their structure. Anatase grains occur as fragments,
with the biggest ones in the brookite mass and the smaller ones occurring outside as constellations
(Figure 5a). Brookite constitutes more than 80 vol% of isolations, which corresponds with its share
in the balance of TiO2 for titaniferous carbonatites. Brookite is found to have formed in at least two
stages. Earlier generation brookite, Brk-1 is chemically homogenous (Figure 5b) upon which radial
paramorphs of rutile developed. Rutile is likely to have a cell structure (Figure 5c) due to different
densities of brookite (4.08–4.18 g sm−3) and rutile (4.23–5.50 g sm−3) [38] which as a result, decrease
in its volume. Rutile differs from other titanium oxides with an increased content of admixtures: Ca,
Si, as well as P and Na (according to a number of analyses). We presumed it to result from calcite,
aegirine, and apatite filling extra volume that occurred in the paramorph substitution. The above
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minerals compose the paragenetic association of the apatitization. The latter, as stated, is imposed on
the rock-forming association of titaniferous carbonatites.
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Figure 4. Morphotypes of titanium oxide isolations: (a) I type—segregations of elongated crystals,
(b) II type—xenomorphic rims of carbonatite grains overgrowths, (c) III type—amoeboid isolations,
“bright” mineral is monazite (Mnz), (d) IV type—specific “cementing” intergrowths with pyrite (Py),
and (e) V type—small idiomorphic individuals of brookite. (f) Electron back scattered diffraction (EBSD)
phases map of the I type of titanium oxide isolations, hereinafter on EBSD phases maps (Figure 5a,b
and Figure 6b): green—dolomite (Dol), yellow—brookite (Brk), red—anatase (Ant), blue—rutile (Rt).
Images (4a–e) are in backscattered electrons (BSE). Scale rulers are 200 µm long.
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Figure 5. (a,b) Anatomy of amoeboid isolations of TiO2 (III type), contrasting BSE-images. On the
inserts are phase distribution maps within the same sections, obtained by the EBSD; (c) substitution of
brookite by rutile; and (d) Euler angle coloring orientation map for the (b) section, colors reflect the
proximity of the orientation of crystals. Scale rulers are 200 µm long.
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Later generation brookite, Brk-2 overgrowths both Brk-1, and the rutile developed on it. Its Nb
content also varies, providing the mineral with a mosaic appearance in BSE-images. However,
according to the EBSD results (Figure 5d), despite the block structure of amoeboid isolations, they are
composed of individual monocrystals, where brookites of both generations are jointed.

The content of Nb2O5 varied from 0.7 to 5.2 wt % in the studied grains of titanium oxides.
Given the maximum distribution, brookite is the main concentrator of niobium in the Petyayan-Vara
carbonatites. The distribution of niobium in the studied sampling was bimodal with clear maximums of
2.2 wt % and 4.3 wt % (Figure 6a). As showed Werner and Cook [23], in rocks similar to the Petyayan-Vara
carbonatites, titanium oxides included Nb and Fe under two related schemes of isomorphism:
2Ti4+ � Nb5+ + Fe3+ and 3Ti4+ � 2Nb5+ + Fe2+. In chart at coordinates Nb a.p.f.u. − Fe a.p.f.u.
(Figure 6b) the field indicating combined impacts of the above schemes is bounded by lines with 0.5 and
1.0 inclines. Less than one-third of figurative points were found in this field; the rest were divided into
equal groups of those with “excessive Fe” (higher than the line with incline 1) and those with “excessive
Nb” (lower than the line with incline 0.5). The appearance of excessive iron is a common feature that
can be explained by mechanically included Fe oxides-hydroxides. Examples include brookite and rutile
from the Nb (Ti, REE) deposit Morro dos Seis Lagos ([25]; see their Figure 12). The unusual pattern of
the excessive Nb entry that is not compensated by Fe requires further research [39]. Thus, attempts
at balancing Fe2+ and Fe3+ according to the scheme Fe2+/(Fe2+ + Fe3+) ≈ 1 − (Nb/Fe) suggested by
Werner and Cook [23] have failed and need further refinement.
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oxides of the Petyayan-Vara titaniferous carbonatites.

Titaniferous carbonatites demonstrated a steady trend in the Nb-enrichment of the later generation
of brookite. In the surrounding primary dolomite carbonatites, the TiO2-dolomite-calcite veinlets
contains titanium oxides with a different distribution of Nb. Unlike titaniferous carbonatites,
these phases were easily optically detected here (Figure 7a). In such veinlets, anatase and brookite
occured in equal shares and are grouped in glomeroblast isolations, whereas rutile was scarce
(Figure 7b). Morphologically, these glomers are close to the I type isolations of TiO2 from titaniferous
carbonatites (cf. Figures 4a and 7c). Anatase produces well-facetted fusiform crystals, whereas brookite
either includes it with a poikilitic texture, or co-exists as idiomorphic isometric grains. BSE-images
of the discussed glomers provided a clear picture of rims impregnating the edges of both anatase
and brookite (Figure 7d). When untouched by these rims, anatase and brookite are low in niobium,
and earlier anatase was poorer than brookite (on average, 0.2 wt % and 0.5 wt % Nb2O5 respectively).
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In rimmings of both minerals, the Nb content dramatically increased up to 2.5 wt % Nb2O5 in anatase
and 5.0 wt % in brookite.Geosciences 2018, 8, x FOR PEER REVIEW  10 of 19 
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4.2. Niobium Minerals

Niobium minerals in the Petyayan-Vara carbonatites are represented solely by members of
the pyrochlore group. In titaniferous varieties individual idiomorphic grains of well-preserved
honey-yellow pyrochlore were detected in the by-selvedge areas of cutting calcite veinlets associated
with a later generation of dolomite. Namely, pyrochlore maintains the same structural position, as
V-type idiomorphic brookite, which is commonly associated with the latter. Most grains are zonal: (1)
Th-variety with excessive Si and no F that compose the submicron embryos in a crystal core, (2) the main
volume is occupied by Ca-F-pyrochlore substituted along rims and cracks, and (3) by Pb-pyrochlore
without fluorine (Figure 8a,b). Both embryos and rims were not detected in every single crystal. Rims
obviously tended toward the latest minerals, such as monazite. According to the IMA nomenclature,
cores, intermediate areas, and rims of pyrochlore, the compositions of which are provided in Table 1,
refer to U-Th-rich hydroxycalciopyrochlore (Ca,Sr,Th,U,�)2(Nb,Ti)2O6(OH), fluorcalciopyrochlore
(Ca,Na)2(Nb,Ti)2O6(F,OH), and kenoplumbopyrochlore (Pb,�)Nb2O6(�,O), respectively [37]. Studying
U-Th- and Pb-varieties (in cores and rimes, respectively) with the WDS method has failed because of
their small sizes. Their compositions were only evaluated with EDS, which was still rather accurate.
First, the measurements did not include neighboring Ca-F-pyrochlore, as testified by the absence of F
in both analyses and the absence of Ca in that of Pb-pyrochlore. Second, the measured compositions
were close to pyrochlores from other similar complexes, as will be highlighted in Section 5. We could
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not explain the excessive silica in the composition of the U-Th-rich variety. As shown by the study of
the silicified pyrochlore from the Narssârssuk, Julianehaab district, Greenland, conducted by Bonazzi
et al. [39], “50–70% of the total silicon detected is incorporated in the radiation-damaged portions of
pyrochlore”. In our case, we consider thorium responsible for the radiation-damaged portions.
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Figure 8. (a) U-Th-rich hydroxycalciopyrochlore (U-Th-OH Pcl) submicron embryos, surrounded by
fluorcalciopyrochlore, (Ca-F Pcl); (b) euhedral crystals of fluorcalciopyrochlore in association with small
idiomorphic individuals of brookite (V type of TiO2), rims of kenoplumbopyrochlore (Pb Pcl) around
fluorcalciopyrochlore; (c) chain-like pyrochlore mineralization associated with sulphides, Fe-oxides,
and phlogopite in pyrochlore-rich areas near titaniferous varieties in dolomite carbonatites; and (d)
resorption of euhedral pyrochlore on contact with phlogopite and substitution of fluorcalciopyrochlore
(near the contact) by kenoplumbopyrochlore, associated with monazite.

As mentioned in Section 2, pyrochlore-rich areas were found near the titaniferous varieties
in dolomite carbonatites. Here, pyrochlore was compositionally similar with fluorcalcio- and
kenoplumbopyrochlore from titaniferous rocks (Table 1). Judging by the structural features, these areas
dinamometamorphically changed before the pyrochlore mineralization. As a result, they formed
a schistose fine-grained cataclastic structure enriched by magnetite. The pyrochlore mineralization
was distributed in a chain-like manner and constrained by cracks cutting the schistosity (Figure 8c).
Sulfides (pyrite) and Fe oxides-hydroxides developed along these cracks. Xenomorphic laths of
phlogopite, which seemed to have occurred after pyrochlore, spatially tended toward small areas of
the pyrochlore mineralization. At the contact with mica pyrochlore was clearly resorbed and always
substituted by Pb-pyrochlore at edges. Pb-pyrochlore (Figure 8d) developed inwards along cracks
and, in segregations of pyrochlore grains, crystal boundaries. In dolomite carbonatites with chain-like
pyrochlore mineralization, no anatase, brookite, or rutile was observed. These rocks contained the
Sr-Ba-REE mineralization represented by ancylite, barite, and bastnaesite. The minerals are late in terms
of pyrochlore and phlogopite. Notably, late monazite often occurs in the studied dolomite carbonatites
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with the chain-like pyrochlore mineralization, as well as in titaniferous varieties, in association with
Pb-pyrochlore rims.

Table 1. Chemical compositions of representative pyrochlore crystals from the titaniferous carbonatites
and the adjacent pyrochlore-rich areas in dolomite carbonatites of the Petyayan-Vara.

Components U-Th (1) 1 Ca-F (1) Ca-F (2) Ca-F (2) Pb (1) Pb (1) Pb (2) Pb (2)

BaO b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l.
K2O b.d.l. b.d.l. 0.06 0.04 b.d.l. b.d.l. b.d.l. b.d.l.

Na2O b.d.l. 4.66 6.84 6.73 0.36 b.d.l. b.d.l. b.d.l.
SrO 4.09 1.41 1.19 1.25 1.42 1.80 2.00 3.13
CaO 5.88 15.48 16.49 16.25 4.02 1.05 1.17 1.51
PbO b.d.l. b.d.l. b.d.l. b.d.l. 32.14 31.10 26.81 25.41
UO2 3.18 b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l.
ThO 9.71 b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l.
Y2O3 b.d.l. 0.72 0.43 0.42 b.d.l. b.d.l. b.d.l. b.d.l.
La2O3 0.42 b.d.l. 0.40 0.51 b.d.l. 2.20 2.92 2.55
Ce2O3 2.47 0.66 0.74 0.93 0.54 4.21 5.75 5.29
Nd2O3 0.44 b.d.l. 0.19 0.20 b.d.l. 0.33 0.51 0.21
Sm2O3 b.d.l. b.d.l. 0.20 0.22 b.d.l. b.d.l. b.d.l. b.d.l.

SiO2 3.42 b.d.l. 0.12 0.26 0.47 0.16 0.26 0.60
TiO2 8.94 4.95 4.74 5.12 2.72 3.33 3.21 2.22

Fe2O3 3.24 0.39 0.11 0.17 0.71 0.57 0.73 0.61
ZrO2 b.d.l. b.d.l. 0.30 0.48 b.d.l. b.d.l. b.d.l. b.d.l.

Nb2O5 41.74 57.49 64.39 64.60 42.00 44.09 46.11 48.73
Ta2O5 b.d.l. b.d.l. 0.17 0.10 b.d.l. b.d.l. b.d.l. b.d.l.

F b.d.l. 3.80 2.84 2.85 b.d.l. b.d.l. b.d.l. b.d.l.
Total 83.53 89.56 99.21 100.13 84.38 88.84 89.47 90.26
F=O 0.00 1.60 1.20 1.20 0.00 0.00 0.00 0.00
Total 83.53 87.96 98.01 98.93 84.38 88.84 89.47 90.26

Formula calculated to 2 B-site cations

Ba 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Na 0.00 0.60 0.80 0.77 0.06 0.00 0.00 0.00
Sr 0.15 0.05 0.04 0.04 0.07 0.09 0.10 0.15
Ca 0.40 1.10 1.07 1.03 0.39 0.10 0.10 0.13
Pb 0.00 0.00 0.00 0.00 0.78 0.73 0.60 0.55
U 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Th 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Y 0.00 0.03 0.01 0.01 0.00 0.00 0.00 0.00
La 0.01 0.00 0.01 0.01 0.00 0.07 0.09 0.08
Ce 0.06 0.02 0.02 0.02 0.02 0.13 0.17 0.16
Nd 0.01 0.00 0.00 0.00 0.00 0.01 0.02 0.01
Sm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Σ cat (A) 0.81 1.80 1.96 1.90 1.33 1.13 1.08 1.07
Vac (A) 1.19 0.20 0.04 0.10 0.67 0.87 0.92 0.93

Si 0.22 0.00 0.01 0.02 0.04 0.01 0.02 0.05
Ti 0.42 0.25 0.22 0.23 0.19 0.22 0.20 0.13
Fe 0.17 0.02 0.01 0.01 0.05 0.04 0.05 0.04
Zr 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00
Nb 1.19 1.73 1.76 1.73 1.72 1.73 1.73 1.78
Ta 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Σ cat (B) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
F 0.00 0.80 0.54 0.53 0.00 0.00 0.00 0.00

1 U-Th—U-Th-rich hydroxycalciopyrochlore, Ca-F—fluorcalciopyrochlore, Pb—kenoplumbopyrochlore;
(1)—crystals from the titaniferous carbonatites, (2)—from the pyrochlore-rich areas. b.d.l.: below detection limit.

5. Discussion

The distribution of titanium oxides in all studied rocks was constrained by networks of cracks.
Thus, titanium oxides were deposited at the postmagmatic stage, after the rocks were deformed and
brittle. Several mixed-aged generations of these constraining cracks were observed in titaniferous
carbonatites. The earliest cracks were dampened by imposed processes (K-feldspar formation,
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apatitization, etc.), indicating the first portions of TiO2 to be deposited before the main stage of
the metasomatic reconstruction.

The general order of mineral paragenesis in titaniferous carbonatites is as follows: (1) anatase,
(2) Nb-poor brookite, (3) rutile, and (4) Nb-rich brookite. This sequence is reduced up to the first two
members in TiO2-carbonate veinlets from primary dolomite carbonatites in rimmings of Ti varieties.
As mentioned, brookite-anatase glomers from TiO2-carbonate veinlets and brookite segregations
of I type (associations of elongated crystals) from titaniferous carbonatites were definitely similar.
Obviously, the appearance of dolomite carbonatites with TiO2-carbonate veinlets provides an idea
about how “ordinary” carbonatites turned into titaniferous carbonatites at the earliest stages. Here,
anatase must be more widespread, but the majority was paramorphically transformed into brookite
after fluid processing. Simultaneously, the main amount of brookite from titaniferous carbonatites,
which cemented earlier titanium oxides and other minerals, formed under the K-metasomatism.
The difference in segregation forms and distribution scope of the “cementing” brookite produced a
wide range of TiO2 morphotypes.

Judging by a number of admixtures, rutile was altered during the apatitization imposed on
the K-metasomatism. Considering the structural features, this mineral paramorphically substituted
brookite. As noted above, despite a mosaic distribution of elements (niobium, first of all), amoeboid
isolations of TiO2 included individual monocrystals, where brookites of pre-(Nb-poor) and postrutile
(Nb-rich) generations were intergrown. Recrystallization appears to have occurred when the late
(Nb-rich) generation of brookite formed after rutile.

The stability field of rutile and the limiting P-T conditions for anatase-rutile and brookite-rutile
conversions were reliably determined. However, the stability fields of anatase and brookite overlap
each other ([40]; see their Figure 1). Therefore, during the synthesis of titanium dioxide, obtaining
a mixture of two metastable low-temperature phases (brookite and anatase) is common, whereas
serious efforts are required to selectively obtain anatase or brookite (e.g., [41,42] and many others).
The leading role in the formation of a particular polymorph in chemical synthesis (and, most likely,
in natural systems) acquires the characteristics of the fluid, including chemical composition, Eh, pH, etc.
In this case, a substitution of one metastable phase by another, especially considering the paramorphic
transitions, resulted in a dynamic change in the composition of the fluid in the course of mineral
formation. However, even a short-term increase in temperature should have led to an increase in
the stability of the high-temperature modification and, therefore, to irreversible partial or complete
replacement of metastable brookite and anatase with a stable rutile phase [43]. As such, the sequence
and completeness of conversion into rutile largely depended on the composition of the precursor
(brookite or anatase). For instance, niobium was found to inhibit the brookite-rutile reaction [44],
and Hanaor and Sorrell [45] showed that the anatase-rutile transition is hampered not only by niobium,
but also by many other elements.

Thus, the change in TiO2 politypes is an evolutionary sequence in which members are closely
related to the changing conditions of associated metasomatic reconstructions in rocks. In the current
sequence, the niobium content reasonably increased, as detected in other similar objects as well [23].
Formed at the peak of niobium stocks in titaniferous carbonatites are (1) the above mentioned
post-rutile Nb-rich generation of brookite in various morphotypes of TiO2-segregations, and (2)
idiomorphic brookite (V type) and pyrochlore in association with dolomite from by-selvedge areas of
cutting carbonatite veinlets. At this stage, niobium rims occur in dolomite carbonatites from edging of
titaniferous varieties. These rims impregnated anatase and brookite that formed earlier. Areas with the
pyrochlore mineralization occurred at that time.

As stated above, many studies of carbonatite objects consider pyrochlore a sensitive indicator
of processes imposed on a rock. Observing, though, the same changes in the pyrochlore chemical
activity in different complexes, we tend to disagree on the nature of these phenomena. First of all,
these phenomena concern the dividing of the late metasomatic and hypergene stages of the pyrochlore
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genesis. Based on an analysis of the literary data, the evolution of the pyrochlore composition could
follow this general order:

(1) Fluorcalciopyrochlore with the fully filled A-sites is the main variety in magmatic
calcite [29,46–48] and dolomite [31,49] carbonatites. Th-U [50] varieties are less frequent, also with
a minor amount of vacancies in A-site and dominant F in Y-site.

(2) Fluorcalciopyrochlore is naturally substituted by varieties, whereas in the A-site (1) Ca
and Na contents decrease, (2) cations become minor up to xenopyrochlores (A-vacancy >
1 a.p.f.u), and (3) Ba, Sr, REE, Th, U, Pb, and H2O become the dominant cations. In the
B-site, a decreasing trend in Nb content isomorphically substituted by Ti and Fe occurs. Y-site
is characterized by F decreasing until it disappears, and OH-groups occur in this position.
Different authors have linked this chemical specific feature of pyrochlores with magmatic [51],
hydrothemal [27,28,31,49,52–54], or supergene [55,56] processes. The “hydrothermal” point of
view prevails.

(3) In pyrochlores that are most reasonably referred to supergenous [17,49,56,57], the same chemical
features are the most manifested. Ba, Sr, REE, Th, U, Pb, H2O, and rarely K remain the dominant
cations in the A-site, but in general, the occupancy rate of this position drops to the lowest
level, down to zero. Ca and/or Na tend to disappear. No fluorine-varieties are detected among
supergenous pyrochlore. They differ from “hydrothermal” pyrochlores with the B-site completely
filled with niobium. With a vacant A-site, it makes supergenous pyrochlores become the richest
in niobium: 75 wt % vs. 50 wt % in other varieties.

U-Th and Ca-F-varieties represent early generations of the Petyayan-Vara pyrochlore and are
commonly interpreted as magmatism products. However, the structural position of the pyrochlore
localized in mineralized veinlets supports its fluid nature, which is also indicated by some of its
chemical features. Thus, the earliest U-Th pyrochlore lacked A-site filling and fluorine. According
to their characteristics, they are similar to pyrochlores from ankerite carbonatites of some Indian
complexes [58–60]. The studied fluorcalciopyrochlore is compositionally identical to magmatic
carbonatites. However, we note that fluorcalciopyrochlore from the well-known Nb-REE Bayan Obo
deposit was originally described as a product of REE-, F-rich postmagmatic hydrothermal solutions
impact on Ca-Mg-carbonatites [61]. Moreover, in exocontact rocks (fenites) of late carbonatites a priori
fluid pyrochlore mineralization is also usually represented by fluorcalciopyrochlore [56,62]. We suggest
both U-Th, and Ca-F-varieties of pyrochlore formed when apatite occurred in titaniferous carbonatites,
which is indicated by the similar chemical features of both minerals (e.g., increased contents of Th, Y,
Sr, etc.).

The pseudomorph substitution of Ca-F-pyrochlore by a rare fluorine-free Pb-variety is a specific
feature of the Petyayan-Vara carbonatites. Commonly, the transition passes through a number of
intermediate areas of Ba-, Sr-, and REE-pyrochlores [28,63]. The pyrochlores reflect the general
pattern of imposed metasomatic processes in such areas, including the Petyayan-Vara ore field rocks.
Direct transitions to Pb-pyrochlore are only present in fenite around the Chilwa Island Carbonatite,
Malawi [64]. An association of Pb-pyroclore and later monazite is typical in both cases, as well as the
mentioned fenites. We presume the absence of transition areas to be a result of specific geological
features of the Petyayan-Vara titaniferous carbonatites. These rocks are supposed to have almost no
imposed Ba-, Sr-, or REE-metasomatic processes due to their dense fine-grained structure obtained
during recrystallization. We think that the peculiar evolution of pyrochlore in titaniferous carbonatites
of the Petyayan-Vara confirms the conception that emerged in our minds during this field study that
was strengthened while analyzing the geochemistry of the rocks. Apparently, within the Petyayan-Vara
carbonatite field (1) there are products of all major processes typical of late carbonatites and (2) these
products are often spatially isolated. Therefore, the Petyaya-Vara rocks provide a unique ground for
the differentiated study of the late carbonatite genesis.



Geosciences 2018, 8, 281 15 of 19

Despite this, the formation mechanism of titaniferous carbonatites is still not completely clear.
Large-scale metasomatic transfer of titanium is assumed to be hardly possible [65]. Therefore,
the probable source of titanium and niobium are the enclosing aluminosilicate rocks. Remobilization
of components from the latter by carbonatite-hosted fluids can also explain other specific geochemical
features of titaniferous carbonatites. For example, their enrichment in such atypical elements for
carbonatitic melts as Al and Si. However, we cannot unequivocally deny the probability of HFSE
introduction by fluid from a remote source. As mentioned before, the rare-earth carbonatites of the
Petyayan-Vara are predominantly ancylitic. This is rather unusual, since in most such complexes,
the main REE-carbonate is bastnaesite [66]. However, this is not unique. The second largest deposit
of rare earths in the U.S. (Bear Lodge alkaline complex, Wyoming) is also ancylitic [67]. Based on
the available information on the geology of the Bear Lodge REE carbonatites [13], the similarity of
the complexes is both mineralogical and geochemical. Within the Bear Lodge complex, zones with
HFSE-mineralization occur but they are larger than those at the Petyayan-Vara. The rocks of one of
such zones, known as the Cole HFSE(+HREE) Occurrence, contains up to 44.9% TiO2, 3.1% Nb2O5,
6.5% Y2O3, 0.8% Dy2O3, 2.6% ThO2, 6.0% P2O5, and 3.7% F. They are composed of K-feldspar (30–40%)
and Nb-rich anatase (30–50%) [68]. In contrast to the Petyayan-Vara, these rocks are located outside
the massif (about two km from the main carbonatite intrusions) among sedimentary rocks poor in
the listed components. Such geological conditions allowed Andersen et al. [ibid.] to conclude that
“ . . . HFSEs and HREEs are transported in highly fractionated F-rich fluids of high-ionic strength
that originated from carbonatite intrusions or associated carbohydrothermal residua”. Considering
the similarity between the massifs in general and the HFSE-rich rocks in particular, we admit the
possibility of Ti-Nb fluid influx from deeper levels of the Petyayan-Vara complex.

Regardless of the source, titanium and niobium apparently migrated together. Complexes with
halogens ([69] and its references) and, to a lesser extent, CO3

2− and PO4
3− ligands [70], played a

decisive role in the transfer of these elements. In our case, the main transfer agent was fluorine. This is
indicated by the presence of fluorapatite, fluorcalciopyrochlore and F-rich phlogopite in the rocks.
The intergrowths of Ti-oxides with sulphides may indicate the involvement of S-bearing ligands.
As with the formation of HFSE-rocks in the Bear Lodge, the deposition of Ti in the Petyayan-Vara’s
titaniferous carbonatites was probably facilitated by a decrease in temperature and fluid-carbonatite
interactions. However, unlike most similar massifs, fluorite was not formed. This preserved niobium in
the fluid phase. Moreover, according to recent studies [71], when the high HF content in solution is high,
a decrease in temperature could lead to an increase in the solubility of Nb as niobium hydroxyl-fluoride
species and its accumulation in the residual fluid. Further migration of this residual fluid to adjacent
dolomite carbonatites formed the chain-like pyrochlore mineralization and Nb-rich rims in anatase
and brookite from TiO2-carbonate veinlets. The apatitization process could trigger niobium deposition
(the formation of the late Nb-rich generation of brookite and fluorcalciopyrochlore) in the titaniferous
carbonatites. Apparently, this process caused the deposition of fluorine from the fluid. Simultaneously,
temperature increased, which caused a paramorphic conversion of brookite into rutile.

6. Conclusions and Perspectives

The peak of niobium stocks in the Vuoriyarvi massif was during the magmatic stage of its genesis,
as found in other carbonatite massifs around the world. It produced the Neske-Vara pyrochlore deposit.
However, titanium concentrated under the formation of late (titaniferous) carbonatites before the
Ba-Sr-REE metasomatism.

Fluids played the main role in the genesis of the studied rocks. Judging by dynamically swapping
titanium oxides and widespread paramorphic transitions, this pre-REE stage was associated with
actively changing physical and chemical parameters.

Niobium accumulated in specific residual fluids, low in titanium at that time. The impact
of this residual fluid led to the formation of pyrochlore, late generation of Nb-rich brookite in
titaniferous carbonatites and Nb-rich rims impregnating early generations of anatase and brookite
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from TiO2-carbonate veinlets. This created the second peak in niobium stocks, but not as large-scale,
as the one occurred during the magmatism.

Along with Mg and Fe, titanium and niobium were the most mobile components in the considered
metasomatic processes. Even the inflow of mobile elements, such as alkali, was a catch-up, as indicated
by pyrochlore resorbed by phlogopite.

Thus, we obtained a general view at the chemical separation of HFSE from other elements
and their isolation. The studied processes occurred at a specific stage of the matter differentiation,
which preceded the formation of rare-earth carbonatites and is likely to be tightly interwoven.
Since almost no publications on late carbonatites (including REE) goes without mentioning Nb-rich
titanium oxides, we consider it important to address the following issues that are both practically,
and theoretically topical: the source of Ti-Nb fluids and the mechanism of their formation.
Unfortunately, the data required to answer these questions are still lacking. We expect that the
answer will be determined through studies of fluid inclusions, as well as radiogenic and stable
isotope systematics.
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