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Abstract: In some geological formations, borehole resistivity measurements can be simulated using a
sequence of 1D models. By considering a 1D layered media, we can reduce the dimensionality of
the problem from 3D to 1.5D via a Hankel transform. The resulting formulation is often solved via a
semi-analytic method, mainly due to its high performance. However, semi-analytic methods have
important limitations such as, for example, their inability to model piecewise linear variations on the
resistivity. Herein, we develop a multi-scale finite element method (FEM) to solve the secondary field
formulation. This numerical scheme overcomes the limitations of semi-analytic methods while still
delivering high performance. We illustrate the performance of the method with numerical synthetic
examples based on two symmetric logging-while-drilling (LWD) induction devices operating at
2 MHz and 500 KHz, respectively.

Keywords: logging-while-drilling (LWD); resistivity measurements; finite element method; Hankel
transform; multi-scale method; secondary field

1. Introduction

There exist a wide variety of geophysical prospection methods. In this work, we focus on resistivity
methods. We categorize these resistivity prospection methods according to their acquisition location
as (a) on surface, such as the ones obtained using controlled sources electromagnetics (CSEM) [1–3]
and magnetotelluric [4], and (b) in the borehole, such as the ones obtained using logging-while-drilling
(LWD) devices. LWD is a technology that conveys borehole logging tools (e.g., gamma ray, resistivity,
density, and sonic) downhole, record measurements, and transmit them to the subsurface for real time
interpretation while the hole is being drilled [5–12]. These tools provide two pieces of information:
(a) real-time data, which is processed on the field while drilling, and (b) data that is stored in the
device to process after pulling it out from the hole. We use real-time data to evaluate the formation for
geosteering, which is the act of adjusting inclination and azimuth angles of the borehole to reach a
geological target [5–11].
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The first commercial LWD device appeared in the 1970s. They were commercially used for
formation evaluation, especially in high-angle wells. Nowadays, LWD devices are used both for
reservoir characterization [6–8] and geosteering applications [9–11]. Modern borehole resistivity
instruments can measure all nine couplings of the magnetic field, namely xx, xy, xz, yx, yy, yz, zx,
zy and zz couplings (the first letter indicates the orientation of the transmitter and the second one
indicates the receiver orientation) [13,14].

Since the depth of investigation of LWD resistivity measurements is limited compared to the
assumed thickness of the geological layers, it is common to approximate subsurface models in the
proximity of the logging instrument with a sequence of 1D models [5]. In a 1D model, we reduce the
dimension of the problem via a Hankel or a 2D Fourier transform along the directions over which we
assume the material properties to be invariant [15–17]. The resulting ordinary differential equations
(ODEs) can be solved (a) analytically, leading to a semi-analytic approach after the numerical inversion
of a Hankel transform [15,17–20], or (b) numerically, leading to a numerical approach [16].

Solving the ODEs analytically has some major limitations, for example, (a) the analytical solution
can only account for piecewise constant material properties and other resistivity distributions cannot
be solved analytically, which prevents to properly model, for example, an oil-to-water transitioning
zone when fluids are considered to be immiscible; (b) a specific set of cumbersome formulas has to
be derived for each physical process (e.g., electromagnetism, elasticity, etc.) anisotropy type, etc.;
(c) analytical derivatives of certain models (e.g., cross-bedded formations, or derivatives with respect
to the bed boundary positions) are often difficult to obtain and have not been published to the best of
our knowledge [13].

Solving the resulting ODEs numerically is also possible. The resulting method also exhibits a
linear cost with respect to the discretization size, since it consists of a sequence of independent 1D
problems. An example of this approach can be found in [16], where Davydycheva et al. use a 2D
Fourier transform to reduce the dimension of the problem. Then, they employ a highly accurate 1D
finite difference method (FDM) to solve the resulting ODEs. This method is relatively simple to code.
However, this combined methodology requires a computational cost that is over 1000 times larger
than that observed in semi-analytical methods. This occurs due to the elevated number of unknowns
required to properly discretize the ODEs. If a common factorization of the system matrix based on a
lower and an upper triangular matrix (the so-called LU factorization) would be precomputed for all
source positions, the situation would only worsen: one would need a refined grid to properly model
all sources, and since the cost of backward substitution is also proportional to the discretization size
(as it occurs with the LU factorization), the large computational cost required to perform backward
substitution would significantly increase the total cost of the solver. The use of other traditional
techniques such as a finite element method (FEM) (see, e.g., [21]) to solve the resulting ODEs would
not alleviate those problems. Additionally, in [16], the use of a 2D Fourier transform presents another
burden on the performance of the solver, since the number of ODEs (and the total solver cost) increases
quadratically with respect to the number of integration points of the 1D Inverse Fourier Transform
(IFT), while in the case of a Hankel Transform, the cost only grows linearly with respect to the number
of integration points on the 1D Inverse Hankel Transform (IHT).

The main objective of this work is to overcome the above limitations of both semi-analytic and
existing numerical methods by solving each 1D problem (associated with a Hankel mode) using an
efficient multi-scale FEM. Additionally, we seek a method with the following features: (a) we can
consider arbitrary resistivity distributions along the 1D direction, and (b) we can easily and rapidly
construct derivatives with respect to the material properties and position of the bed boundaries by
using an adjoint formulation, which allows us to compute numerically the derivatives forming the
Jacobian matrix needed by the Gauss-Newton inversion method at (almost) no additional cost. Despite
these advances, presently our proposed multi-scale method is slower than the semi-analytic one.
However, it is approximately two orders of magnitude faster than a traditional 1D FEM or a 1D FDM,
like the one presented in [16]. This speedup is essential for practical applications since one often needs
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to simulate thousands of logging positions and estimate millions of derivatives to solve a real-time
inversion problems in the field for geosteering operations. Additionally, we employ a 1D Hankel
transform rather than a 2D Fourier transform. This leads to a more complex mathematical formulation,
but the resulting method exhibits a superior performance due to the lower number of ODEs that need
to be solved.

In this work, we consider two traditional symmetric LWD tools available from oil service
companies. Each of them contains two transmitters and two receivers. The receivers are symmetrically
located at different sides of the transmitters [22].

2. 3D Formulation

In this section, we describe the strong and weak formulations for our three dimensional (3D)
electromagnetic (EM) problem.

2.1. Strong Formulation

Let σ(x, y, z) be the real-valued conductivity tensor with positive determinant. Let J be a
volumetric current source density and M a magnetic volumetric current source. Then, the EM fields
satisfy Maxwell’s equations in 3D space [23]:

∇×H = (σ − iωε) E + J, (1)

∇× E = iωµH+ iωµM, (2)

where E and H are the time-harmonic (sinusoidal) complex-valued electric and magnetic fields,
respectively, ω = 2π f is the angular frequency, where f > 0 is the frequency of the transmitter, ε and µ

are the permittivity and magnetic permeability tensors of the media, respectively, and i is the imaginary
unit, i2 = −1. The problem domain is Ω = R3. By pre-multiplying (1) by σ̃−1 = (σ− iωε)−1, applying
the curl operator, and substituting (2) into the result, we arrive at the following reduced wave equation
for the magnetic field:

∇× σ̃−1∇×H− iωµH = R, (3)

where the right-hand-side is:
R = iωµM +∇× σ̃−1J.

In order to ensure the uniqueness of the magnetic field, we use the Silver-Müller radiation
condition [21,24–26].

2.2. Weak Formulation

Let F be an arbitrary test function and F ∗ its conjugate transpose. Pre-multiplying Equation (3)
by F ∗ and integrating over the domain Ω, we obtain the following equation:∫

Ω
F ∗(∇× σ̃−1∇×H)dΩ− iω

∫
Ω
F ∗µHdΩ =

∫
Ω
F ∗RdΩ. (4)

In the above, as a sufficient condition to ensure integrability, we select F ∈ H(curl; Ω), where:

H(curl; Ω) = {F ∈ (L2(Ω))3 : ∇×F ∈ (L2(Ω))3}.

Using integration by parts assuming that the solution and its flux are continuous, and considering
the radiation condition, we obtain the following variational formulation:∫

Ω
(∇×F )∗(σ̃−1∇×H)dΩ− iω

∫
Ω
F ∗µHdΩ =

∫
Ω
F ∗RdΩ. (5)
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3. 1.5D Formulation

In our model problem, we consider the 3D Maxwell’s equations in a 1D transversely isotropic (TI)
layered formation. That is, the formation conductivity is constant along the x and y directions, and the
conductivity tensor is defined as:

σ(z) =

 σh(z) 0 0
0 σh(z) 0
0 0 σv(z)

 , (6)

where σh > 0 is the conductivity of the media along the x and y directions, and σv > 0 is the
conductivity along z direction. Our formulation allows for parameter variations in the parameters
along the z-axis. Analogously, ε(z) and µ(z) are considered to be transversely isotropic tensors.

Since material properties are uniform in the xy-plane, it is convenient to use a Hankel transform
to represent the magnetic field along x and y directions.

3.1. Hankel Transform

We consider Ĥ to be the 2D Fourier transform of H along x and y directions, where the material
properties are homogeneous. We have:

H(x, z) =
1

4π2

∫ +∞

−∞

∫ +∞

−∞
Ĥ(k, z)eik·xdk, (7)

where x = (x, y) and k = (kx, ky) (see Figure 1). We switch from the Cartesian system of coordinates
to a cylindrical one according to the following transformations:

x = ρ · cos φ, y = ρ · sin φ,

kx = ξ · cos θ, ky = ξ · sin θ.
(8)

Substituting (8) into (7) and applying the change of coordinates under the integral signs, we obtain:

H(ρ) =
1

4π2

∫ +∞

0

∫ 2π

0
Ĥ(ξ, θ, z)eiξρ(cos θ cos φ+sin θ sin φ)dθξdξ, (9)

where ρ = (ρ, φ, z). Using the trigonometric identity:

cos(φ− θ) = cos θ cos φ + sin θ sin φ, (10)

x

y

ρ
=

x ·
co

s φ
+

y ·
sin

φ

φ

Physical domain

Fourier transform

kx

ky

ξ
=

k x
· co

s θ +
k y
· si

n θ

θ

Spectral domain

Figure 1. Cartesian and cylindrical systems of coordinates.
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We obtain:

H(ρ) =
1

4π2

∫ +∞

0

∫ 2π

0
Ĥ(ξ, θ, z)eiξρ cos(φ−θ)dθξdξ. (11)

We now use the following relation between exponentials and Bessel functions:

eiξρ cos(φ−θ) =
∞

∑
m=−∞

im Jm(ξρ)e−im(φ−θ) (12)

to obtain

H(ρ) =
1

2π

∞

∑
m=−∞

∫ +∞

0
Hm(ξ, z)Jm(ξρ)e−imφξdξ, (13)

where

Hm(ξ, z) =
1

2π

∫ 2π

0
Ĥ(ξ, θ, z)imeimθdθ. (14)

We compute the cylindrical components of the magnetic field as follows:

Hm
ρ = cos φ · Hm

x + sin φ · Hm
y

= eiφ(
Hm

x − iHm
y

2
) + e−iφ(

Hm
x + iHm

y

2
)

= eiφHm
+ + e−iφHm

− ,

(15)

where

Hm
+ =

Hm
x − iHm

y

2
,

Hm
− =

Hm
x + iHm

y

2
.

(16)

Similarly forHφ, we have:

Hm
φ = − sin φ · Hm

x + cos φ · Hm
y = i

(
eiφ Hm

+ − e−iφHm
−

)
. (17)

By substituting (15) and (17) into (13), the Hankel representation of the magnetic field becomes:

Hρ(ρ) =
1

2π

+∞

∑
m=−∞

e−imφ
∫ +∞

0

(
Hm
+(ξ, z)Jm+1(ξρ) + Hm

−(ξ, z)Jm−1(ξρ)
)

ξdξ,

Hφ(ρ) =
i

2π

+∞

∑
m=−∞

e−imφ
∫ +∞

0

(
Hm
+(ξ, z)Jm+1(ξρ)− Hm

−(ξ, z)Jm−1(ξρ)
)

ξdξ,

Hz(ρ) =
1

2π

+∞

∑
m=−∞

e−imφ
∫ +∞

0
Hm

z (ξ, z)Jm(ξρ)ξdξ.

(18)

The curl of the magnetic field in cylindrical coordinates is:

∇×H =

(
1
ρ

∂Hz

∂φ
−

∂Hφ

∂z

)
ρ̂ +

(
∂Hρ

∂z
− ∂Hz

∂ρ

)
φ̂ +

1
ρ

(
Hφ + ρ

∂Hφ

∂ρ
−

∂Hρ

∂φ

)
ẑ. (19)

By substituting (18) into (19), the first component of the curl becomes:

(∇×H)ρ =
−i
2π

+∞

∑
m=−∞

e−imφ
∫

ξ

(
m
ρ

Hm
z (ξ, z)Jm(ξρ)

+
∂Hm

+(ξ, z)
∂z

Jm+1(ξρ)−
∂Hm
−(ξ, z)
∂z

Jm−1(ξρ)

)
ξdξ.

(20)
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By using the property of Bessel functions given by Equation (A6) of Appendix A, we obtain:

(∇×H)ρ =
−i
2π

+∞

∑
m=−∞

e−imφ
∫

ξ

[
Hm

z (ξ, z)
(

ξ Jm−1(ξρ)− ξ
∂Jm(ξρ)

∂ (ξρ)

)
+

∂Hm
+(ξ, z)
∂z

Jm+1(ξρ)−
∂Hm
−(ξ, z)
∂z

Jm−1(ξρ)

]
ξdξ.

(21)

Using the formula of the derivative of the Bessel function given by Equation (A4) of Appendix A,
we have:

(∇×H)ρ =
−i
2π

+∞

∑
m=−∞

e−imφ
∫

ξ

[
Hm

z (ξ, z)
(

ξ Jm−1(ξρ)− ξ

2
Jm−1(ξρ) +

ξ

2
Jm+1(ξρ)

)
+

∂Hm
+(ξ, z)
∂z

Jm+1(ξρ)−
∂Hm
−(ξ, z)
∂z

Jm−1(ξρ)

]
ξdξ.

(22)

For an arbitrary function g(ξ, z) = (g−(ξ, z), g+(ξ, z), gz(ξ, z)) in the spectral domain, we
introduce the following notation to simplify computations:

Π
ξ
+ (g(ξ, z)) =

∂g+(ξ, z)
∂z

+
ξ

2
gz(ξ, z),

Π
ξ
− (g(ξ, z)) =

∂g−(ξ, z)
∂z

− ξ

2
gz(ξ, z),

Π
ξ
z (g(ξ, z)) = ξ (g−(ξ, z) + g+(ξ, z)) .

(23)

Using (23), we obtain:

(∇×H)ρ = − i
2π

+∞

∑
m=−∞

e−imφ
∫

ξ

(
Π

ξ
+ (Hm(ξ, z)) Jm+1(ξρ)−Π

ξ
− (Hm(ξ, z)) Jm−1(ξρ)

)
ξdξ. (24)

For the second component of (19), using (18), we have:

(∇×H)φ =
1

2π

+∞

∑
m=−∞

e−imφ
∫

ξ

[(
∂Hm

+(ξ, z)
∂z

Jm+1(ξρ)

+
∂Hm
−(ξ, z)
∂z

Jm−1(ξρ)

)
− Hm

z (ξ, z)
∂Jm+1(ξρ)

∂ (ξρ)
ξ

]
ξdξ.

(25)

Using the property of the Bessel functions given by Equation (A4) of Appendix A and (23), we obtain:

(∇×H)φ =
1

2π

+∞

∑
m=−∞

e−imφ
∫

ξ

(
Π

ξ
+ (Hm(ξ, z)) Jm+1(ξρ) + Π

ξ
− (Hm(ξ, z)) Jm−1(ξρ)

)
ξdξ. (26)

The third component of (19), becomes after using (18):

(∇×H)z =
i

2π

+∞

∑
m=−∞

e−imφ ·
∫

ξ

[(
Jm+1(ξρ)

ρ
+ ξ

∂Jm+1(ξρ)

∂ (ξρ)
+

m
ρ

Jm+1(ξρ)

)
Hm
+(ξ, z)

−
(

Jm−1(ξρ)

ρ
+ ξ

∂Jm−1(ξρ)

∂ (ξρ)
− m

ρ
Jm−1(ξρ)

)
Hm
−(ξ, z)

]
ξdξ.

(27)
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For the derivative of Jm+1, we use Equation (A6) of Appendix A, and for the derivative of Jm−1,
we use Equation (A4) of the same appendix. Then,

(∇×H)z =
i

2π

+∞

∑
m=−∞

e−imφ
∫

ξ

[(
Jm+1(ξρ)

ρ
+ ξ Jm(ξρ)− m + 1

ρ
Jm+1(ξρ) +

m
ρ

Jm+1(ξρ)

)
Hm
+(ξ, z)

−
(

Jm−1(ξρ)

ρ
+

ξ

2
Jm−2(ξρ)− ξ

2
Jm(ξρ)− m

ρ
Jm−1(ξρ)

)
Hm
−(ξ, z)

]
ξdξ.

(28)

We use Equation (A1) of Appendix A to simplify Jm−2. As a result, we obtain:

(∇×H)z =
i

2π

+∞

∑
m=−∞

e−imφ
∫

ξ
Π

ξ
z (Hm(ξ, z)) Jm(ξρ)ξdξ. (29)

3.2. Hankel Finite Element (HFE) Full Field Formulation

L2-orthogonality holds for Bessel functions of with the same order (see Equation (A3) of
Appendix A). Hence, in order to simplify the terms of the variational formulation containing Bessel
functions, we introduce the following matrix:

Q =
1√
2

 1 i 0
i 1 0
0 0

√
2

 . (30)

Q is a unitary matrix, since:
QQ∗ = Q∗Q = I.

Hence, the change of coordinates implied by Q preserves the inner product. In particular, for
arbitrary vector-valued functions U and V, we have:

V∗U = (QV)∗(QU).

By using the above matrix, we obtain the following equalities:

(
Qσ̃−1(z)∇×H

)
ρ
=

i√
2π

+∞

∑
m=−∞

e−imφ
∫ +∞

0
σ̃−1

h (z) ·Πξ
− (Hm(ξ, z)) Jm−1(ξρ)ξdξ,

(
Qσ̃−1(z)∇×H

)
φ
=

1√
2π

+∞

∑
m=−∞

e−imφ
∫ +∞

0
σ̃−1

h (z) ·Πξ
+ (Hm(ξ, z)) Jm+1(ξρ)ξdξ,

(
Qσ̃−1(z)∇×H

)
z
=

i
2π

+∞

∑
m=−∞

e−imφ
∫ +∞

0
σ̃−1

v (z) ·Πξ
z (Hm(ξ, z)) Jm(ξρ)ξdξ,

(31)

where σ̃h = σh − iωεh and σ̃v = σv − iωεv. For the L2 terms, we obtain:

(QH)ρ =
1√
2π

+∞

∑
m=−∞

e−imφ
∫ +∞

0
Hm
−(ξ, z)Jm−1(ξρ)ξdξ,

(QH)φ =
i√
2π

+∞

∑
m=−∞

e−imφ
∫ +∞

0
Hm
+(ξ, z)Jm+1(ξρ)ξdξ,

(QH)z =
1

2π

+∞

∑
m=−∞

e−imφ
∫ +∞

0
Hm

z (ξ, z)Jm(ξρ)ξdξ.

(32)

For a specific Hankel mode ξq > 0 and an exponential order t, we select a mono-modal test
function of the form:
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F q,t(ρ) = F q,t
ρ (ρ)ρ̂ +F q,t

φ (ρ)φ̂ +F q,t
z (ρ)ẑ, (33)

where:

F q,t
ρ (ρ) = e−itφ

(
Ft
+(ξq, z)Jt+1(ξqρ) + Ft

−(ξq, z)Jt−1(ξqρ)
)

,

F q,t
φ (ρ) = ie−itφ

(
Ft
+(ξq, z)Jt+1(ξqρ)− Ft

−(ξq, z)Jt−1(ξqρ)
)

,

F q,t
z (ρ) = e−itφFt

z(ξq, z)Jt(ξqρ).

(34)

Using (31) and the test functions defined in (34), we have:

∫
z,φ,ρ

(
Q∇×F q,t)∗

ρ

(
Qσ̃−1(z)∇×H

)
ρ

ρdρdφdz =
1
π

∫
z

(
+∞

∑
m=−∞

∫
ξ,φ,ρ

ei(t−m)φ

·
(

Π
ξq
−
(
Ft))∗ σ̃−1

h (z)Πξ
−(H

m) · Jt−1(ξqρ)Jm−1(ξρ)ρdρdφξdξ

)
dz,

(35)

where Ft = (Ft
+, Ft

−, Ft
z). Separating the integrals according to each variable and using the

L2-orthogonality property of exponential functions, we have:∫
z,φ,ρ

(
Q∇×F q,t)∗

ρ

(
Qσ̃−1(z)∇×H

)
ρ

ρdρdφdz

= 2
∫

z

[ ∫
ξ

((
Π

ξq
−
(
Ft))∗ σ̃−1

h (z)Πξ
−(H

t) ·
∫

ρ
Jt−1(ξqρ)Jt−1(ξρ)ρdρ

)
ξdξ

]
dz.

(36)

By the orthogonality property of the Bessel functions given by Equation (A3) of Appendix A,
we obtain:∫

z,φ,ρ

(
Q∇×F q,t)∗

ρ

(
Qσ̃−1(z)∇×H

)
ρ

ρdρdφdz = 2
∫

z

(
Π

ξq
−
(
Ft))∗ σ̃−1

h (z)Π
ξq
− (H

t)dz. (37)

Similarly, for the other components of the curl, we have:∫
z,φ,ρ

(
Q∇×F q,t)∗

φ

(
Qσ̃−1(z)∇×H

)
φ

ρdρdφdz = 2
∫

z

(
Π

ξq
+

(
Ft))∗ σ̃−1

h (z)Π
ξq
+ (Ht)dz, (38)

∫
z,φ,ρ

(
Q∇×F q,t)∗

z

(
Qσ̃−1(z)∇×H

)
z

ρdρdφdz =
∫

z

(
Π

ξq
z
(
Ft))∗ σ̃−1

v (z)Π
ξq
z
(
Ht) dz. (39)

For the L2 terms, using (32) and the test functions defined in (34), and using L2-orthogonality
property of exponentials and orthogonality property of the Bessel functions given by (A3) of
Appendix A, we obtain:∫

z,φ,ρ

(
QF q,t

)∗
ρ

(
QµH

)
ρ
ρdρdφdz = 2

∫
z

(
Ft
−(ξq, z)

)∗
µh(z)Ht

−(ξq, z)dz,∫
z,φ,ρ

(
QF q,t

)∗
φ

(
QµH

)
φ

ρdρdφdz = 2
∫

z

(
Ft
+(ξq, z)

)∗
µh(z)Ht

+(ξq, z)dz,∫
z,φ,ρ

(
QF q,t

)∗
z

(
QµH

)
z
ρdρdφdz =

∫
z

(
Ft

z(ξq, z)
)∗

µv(z)Ht
z(ξq, z)dz.

(40)

Using (37)–(40), for each Hankel mode ξq > 0 and exponential order t, the stiffness
matrix becomes:
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b(F q,t,H) = b(Ft, Ht) = b1(Ft, Ht)− b2(Ft, Ht), (41)

where

b1(Ft, Ht) =2〈Πξq
−
(
Ft) , σ̃−1

h Π
ξq
−
(
Ht)〉L2 + 2〈Πξq

+

(
Ft) , σ̃−1

h Π
ξq
+

(
Ht)〉L2 + 〈Πξq

z
(
Ft) , σ̃−1

v Π
ξq
z
(
Ht)〉L2 ,

b2(Ft, Ht) =iω
(
2〈Ft
−, µh Ht

−〉L2 + 2〈Ft
+, µh Ht

+〉L2 + 〈Ft
z , µv Ht

z〉L2
)

.
(42)

Symbol < ., . >L2 represents the L2 inner product given by:

〈 f , g〉L2 =
∫

z
f ∗gdz.

A sufficient condition to guarantee that the above integrals are finite is to require Ht, Ft ∈ V(R),
where V(R) = H1(R)× H1(R)× L2(R), and

H1(R) = {v ∈ L2(R) :
∂v
∂z
∈ L2(R)}. (43)

In (43), the weak derivative of the function is considered.

Load vector

In 1D layered medium, we consider (0, 0, zTx) to be the general representation of a
point source location. We use the following identities to describe the right-hand-side vector in
cylindrical coordinates:

x̂ = cos(φ)ρ̂− sin(φ)φ̂ =
e−iφ

2
(ρ̂− iφ̂) +

eiφ

2
(ρ̂ + iφ̂),

ŷ = sin(φ)ρ̂ + cos(φ)φ̂ =
e−iφ

2
(iρ̂ + φ̂)− eiφ

2
(iρ̂− φ̂),

ẑ = ẑ,

(44)

where x̂, ŷ and ẑ are the unitary vectors in Cartesian coordinates. The right-hand-side of (3) in
cylindrical coordinates for a z-oriented point source is:

Rz = iωµv(z)
1

2πρ
δ(ρ, 0)δ(z, zTx)ẑ,

where δ is the Dirac delta distribution. We consider l to be the right-hand-side of (5). Using F q,t as our
test function and separating the integrals according to each variable, we obtain:

l(Ft) =
iω
2π

∫ 2π

φ=0
eitφdφ

∫ +∞

ρ=0
Jt(ξqρ)δ(ρ, 0)ρdρ

·
∫ +∞

z=−∞
µv(z)

(
Ft

z(ξq, z)
)∗

δ(z, zTx)dz.
(45)

By L2-orthogonality of the exponentials, the load vector is non-zero when t = 0. Since J0(0) = 1,
for a z-oriented point source, the right-hand-side becomes:

l(F0) = iωµv(zTx)
(

F0
z (ξq, zTx)

)∗
. (46)

Hence, we obtain the field by solving the following variational formulation:

b(F0, H0) = l(F0), for all F0 ∈ V(R). (47)
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Lets consider Rx and Ry to be the right-hand-sides of (3) for x and y-oriented sources, respectively.
By using (44), we obtain:

Rx = lim
ρTx→0+

iωµh(z)
2πρ

δ(ρ, ρTx)δ(z, zTx)

(
e−iφ

2
(ρ̂− iφ̂) +

eiφ

2
(ρ̂ + iφ̂)

)
,

Ry = lim
ρTx→0+

iωµh(z)
2πρ

δ(ρ, ρTx)δ(z, zTx)

(
e−iφ

2
(iρ̂ + φ̂)− eiφ

2
(iρ̂− φ̂)

)
.

(48)

Similarly to (46), the right-hand-side of the variational formulation is non-zero only when t =
−1, 1. For those values of t, and for each Hankel mode, we have:

b(Ft, Ht) = lim
ρTx→0+

l(Ft), for all Ft ∈ V(R), (49)

where,

l(Ft) =iωµh(zTx)

[
Ft
+(ξq, zTx)

2
Jt+1(ξqρTx) +

Ft
−(ξq, zTx)

2
Jt−1(ξqρTx)

− t

(
Ft
+(ξq, zTx)

2
Jt+1(ξqρTx)−

Ft
−(ξq, zTx)

2
Jt−1(ξqρTx)

)]∗

=iωµh(zTx)J0(ξqρTx)

{(
Ft
+(ξq, zTx)

)∗ , t = −1,(
Ft
−(ξq, zTx)

)∗ , t = 1.

(50)

Based on (18), we define the following notation:

Ht
ρ(ρ) =

1
2π

e−itφ
∫ +∞

ξ=0

(
Ht
+(ξ, z)Jt+1(ξρ) + Ht

−(ξ, z)Jt−1(ξρ)
)

ξdξ,

Ht
φ(ρ) =

i
2π

e−itφ
∫ +∞

ξ=0

(
Ht
+(ξ, z)Jt+1(ξρ)− Ht

−(ξ, z)Jt−1(ξρ)
)

ξdξ,

Ht
z(ρ) =

1
2π

e−itφ
∫ +∞

ξ=0
Ht

z(ξ, z)Jt(ξρ)ξdξ.

(51)

We have Ht = (Ht
ρ,Ht

φ,Ht
z). Therefore, the magnetic field for the x-oriented source is:

H = H1 +H−1. (52)

For a y-oriented source, the field is computed as:

H = iH1 − iH−1. (53)

4. Multi-Scale Hankel Finite Element Method (Ms-HFEM)

We now describe our multi-scale FE method in the Hankel domain. In order to make the
computational problem tractable, we truncate our domain along the z direction. We consider
Ωz = (z0, zN) to be our problem domain along z direction and we have −∞ < z0 and zN < ∞.
Moreover, we consider our solution to satisfy a zero Dirichlet boundary condition at both ends,
since the waves amplitude rapidly decreases as we move away from the source. Thus, we have
Hm, Fm ∈ V0(Ωz), where V0(Ωz) = H1

0(Ωz)× H1
0(Ωz)× L2(Ωz), with:

H1
0(Ωz) = {v ∈ H1(Ωz), v(zi) = 0 for zi ∈ ∂Ωz}. (54)

In the following, for simplicity, we shall remove symbols ξq and t from the notation. For each
Hankel mode, we need to solve three problems associated with t = −1, 0, 1. The curl operator is the
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one defined in (24), (26) and (29). Similarly, Π+, Π−, and Πz are the symbols defined in Equation (23),
and l is the right-hand-side of the variational formulation described in Equations (46) and (50) for
t = −1, 0, 1. Our multi-scale approach consists of the following steps for each Hankel mode:

1. Divide the domain into a finite number of sub-domains. We consider z0, z1, z2, · · · , zN−1, zN ,
where z1, z2, · · · , zN−1 are arbitrary real numbers and z0 < z1 < · · · < zN (see Figure 2). We call
them decomposition points. We define each sub-domain as Ωi = (zi−1, zi), and we have:

Ωz =
N⋃

i=1

Ωi. (55)

z0 z1 z2 z3 zN−3 zN−2 zN−1 zN

Ω1 Ω2 Ω3 ΩN−2 ΩN−1 ΩN

Figure 2. Selected decomposition points z1, · · · , zN−1 in the domain (z0, zN). Ω1, Ω2, · · · , ΩN are the
sub-domains associated to the decomposition points.

2. Decompose the magnetic field into primary and secondary fields. For each Hankel mode, we
decompose our magnetic field as follows:

H(z) = HP(z) + HS(z), (56)

where HP and HS are primary and secondary fields, respectively.
3. Find a local primary field. Lets assume that zTx ∈ Ωp (see Figure 3). We define our local primary

field HP ∈ V0(Ωp) as the one that satisfies:

b(F, HP) = l(F), F ∈ V0(Ωp). (57)

Extending the local primary field to the entire domain with zero, we have HP ∈ V0(Ωz). The local
primary field has a discontinuous flux at zp−1 and zp. For the special case when the source is
located at one decomposition point, we consider zTx = z′p, where

z′p =

{
zTx + 10−5meters zTx = zp−1,

zTx − 10−5meters zTx = zp.
(58)

The 10−5 displacement is an arbitrary choice. We use a small number compatible with our grid
size, but other values are also valid.

Ωp

ψ1,1 ψ2,1HP

ztx

ψN−2,1 ψN−1,1

z0 z1 z2 z3 zN−3 zN−2 zN−1 zN

Figure 3. Multi-scale basis functions ψ1,1, ψ2,1, · · · , ψN−1,1 and local primary field HP. Ωp is the
domain of the local primary field.
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4. Solve (N− 1) pairs of local problems. We consider ΩM
i = Ωi ∪Ωi+1 ∪ {zi}, i = 1, · · · , (N− 1).

For each sub-domain ΩM
i , we solve a pair of local problems which correspond to a discontinuous

flux at the node z = zi. Specifically, the flux of the first local problem has a jump equal to
11 = (1, 0, 0), and the flux of the second local problem has a jump equal to 12 = (0, 1, 0). The local
functions ψi,k ∈ V0(Ω

M
i ) solve the following variational problems:

b(F, ψi,k) = lM,k(F), F ∈ V0(Ω
M
i ), i = 1, · · · , (N − 1), k = 1, 2, (59)

where ψi,k(z) = (ψi,k
− (z), ψi,k

+ (z), ψi,k
z (z)), and lM,k corresponds to the jump of the flux of the

solutions at z = zi. Specifically:

lM,1(F) = 2 (F−(zi))
∗ ,

lM,2(F) = 2 (F+(zi))
∗ ,

for i = 1, · · · , (N − 1).

(60)

Similarly to the local primary field, we consider the extension by zero of the local solutions on
Ωz, and we have ψi,k ∈ V0(Ωz). We denote the solutions of these local problems as multi-scale
basis functions. We define the following space of multi-scale basis functions:

VM = span

{{
ψi,k(z) =

(
ψi,k
− (z), ψi,k

+ (z), ψi,k
z (z)

) }N−1

i=1

}2

k=1

. (61)

5. Solve the secondary field formulation using the multi-scale basis functions. Since the flux
components of the local primary field are discontinuous, we need our secondary field to balance
these artificial discontinuities. Thus, by combining the primary and secondary fields, we recover
a continuous flux for the full field. From (56), we obtain:

b(F, HS) = b(F, H)− b(F, HP) = l(F)− b(F, HP), F ∈ V0(Ωz). (62)

We describe our secondary field as follows:

HS(z) =
N−1

∑
i=1

2

∑
k=1

αi,kψi,k(z), (63)

where HS = (HS
−, HS

+, HS
z ), and ψi,k ∈ VM. By the definition of the multi-scale basis functions, (63)

satisfies the reduced wave equation. Moreover, we consider F ∈ VM. Therefore, by substituting
(63) into (62), we have:

N−1

∑
i=1

2

∑
k=1

αi,kb(ψm,n, ψi,k) = l(ψm,n)− b(ψm,n, HP), m = 1, · · · , (N − 1), n = 1, 2. (64)

Finally, we add the local primary field and the secondary field to evaluate the full field.

In the next sections, we further describe the formulation for each step.

4.1. Local Primary Field

We consider the local primary field defined in Equation (57). We further decompose our primary
field as follows:
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HP = HF
∣∣∣
Ωp

+ HC, (65)

where HF is the fundamental solution of the electromagnetic reduced wave equation, and HC is a
correction field.

Since the fundamental field has no boundary condition at the boundaries of Ωp, the correction
field is intended to enforce the zero Dirichlet (tangential) boundary condition on HP (see Figure 4).
We define our correction field as follows:

HC =
p

∑
i=p−1

2

∑
k=1

βi,kHC,i,k, (66)

where HC,i,k (i = p− 1, p and k = 1, 2) are the correction basis functions. To define them, we perform
the following decomposition:

HC,i,k = HC,i,k
0 + HC,i,k

1 , i = p− 1, p, k = 1, 2, (67)

where HC,i,k
0 ∈ V0(Ωp), and HC,i,k

1 ∈ V j(Ωp), for j 6= i, is a lift of the correction field at zi to impose
the non-zero Dirichlet boundary condition. Vi(Ωp) ⊂ V(Ωp), for i = p − 1, p, is the space of all
vector-valued functions F ∈ V(Ωp) satisfying a zero Dirichlet (tangential) boundary condition at
z = zi. By substituting (67) into variational formulation (41), we arrive at:

b(F, HC,i,k
0 ) = −b(F, HC,i,k

1 ), HC,i,k
0 , F ∈ V0(Ωp), i = p− 1, p, k = 1, 2. (68)

HP

HF

HC

ztx

z0 zp−1 zp zN

Figure 4. Fundamental, correction and local primary fields.

In order to impose a zero Dirichlet (tangential) boundary condition for our local primary field,
we enforce the following conditions:

nj ×HC(zj) = −nj ×HF(zj), j = p− 1, p, (69)

where np−1 = −ẑ and np = ẑ are the outward unit normal vectors at zp−1 and zp, respectively.
Using (66), we obtain:

p

∑
i=p−1

2

∑
k=1

βi,knj ×HC,i,k(zj) = −nj ×HF(zj), j = p− 1, p. (70)

4.2. Secondary Field Formulation

We define the secondary field to be the difference between the full field and the local primary
field. Therefore, we have:

HS = H−HP. (71)
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Since the flux of the local primary field may be discontinuous on the boundaries of its domain, the
flux of the secondary field should be discontinuous on the boundaries of the primary field’s domain
as follows:

[ni ×∇×HS]zi = −[ni ×∇×HP]zi , i = p− 1, p, (72)

where np−1 = −ẑ and np = ẑ. Thus, the full field has a continuous flux on Ωz, since the secondary
field satisfies (72). Hence, the secondary field formulation is:

b(F, HS) =−
(
Q · F(zp−1)

)∗ Q · [np−1 × σ̃−1(z)∇×HP]zp−1

−
(
Q · F(zp)

)∗ Q · [np × σ̃−1(z)∇×HP]zp .
(73)

We have:
ẑ×∇×HP = −

(
∇×HP

)
φ

ρ̂ +
(
∇×HP

)
ρ

φ̂. (74)

Using the fact that HP(z−p−1) = 0, and considering (74), we obtain:

−
(
Q×

[
ẑ× σ̃−1(z)∇×HP

]
zp−1

)
ρ

=

−1√
2π

σ̃−1
h (z+p−1) ·

+∞

∑
m=−∞

e−imφ
∫ +∞

0
Π−

(
HP
)
(z+p−1)Jm−1(ξρ)ξdξ.

(75)

Using the first component of the curl (24), we have:

−
(

Q
[

ẑ× σ̃−1(z)∇×HP
]

zp−1

)
φ

=

−i√
2π

σ̃−1
h (z+p−1) ·

+∞

∑
m=−∞

e−imφ
∫ +∞

0
Π+

(
HP
)
(z+p−1)Jm+1(ξρ)ξdξ.

(76)

Similarly, since HP(z+p ) = 0, the jump on the right boundary of primary field’s domain is equal to:

(
Q
[

ẑ× σ̃−1(z)∇×HP
]

zp

)
ρ

=
1√
2π

σ̃−1
h (z−p ) ·

+∞

∑
m=−∞

e−imφ
∫ +∞

0
Π−

(
HP
)
(z−p )Jm−1(ξρ)ξdξ, (77)

(
Q
[

ẑ× σ̃−1(z)∇×HP
]

zp

)
φ

=
i√
2π

σ̃−1
h (z−p ) ·

+∞

∑
m=−∞

e−imφ
∫ +∞

0
Π+

(
HP
)
(z−p )Jm+1(ξρ)ξdξ. (78)

By using the orthogonality of the Bessel functions and the exponentials, similar to the
computations for (41), we obtain:

b(F, HS) = lS,−
p (F, HP) + lS,+

p (F, HP), for all F ∈ V0(Ωz), (79)

where

lS,+
p (F, HP) =2σ̃−1

h (z−p )
(

F∗−Π−
(

HP
)
+ F∗+Π+

(
HP
))

(z−p ),

lS,−
p (F, HP) =− 2σ̃−1

h (z+p−1)

(
F∗−Π−

(
HP
)
+ F∗+Π+

(
HP
))

(z+p−1).
(80)

Similarly, by considering the jump condition of the flux of multi-scale basis functions, they are
computed using (60).
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4.3. Global Problem

Using (63), (79), and the definition of the multi-scale basis functions, we obtain:

b(F, HS) =
N−1

∑
i=1

2

∑
k=1

αi,km(F, ψi,k), (81)

where, for an arbitrary test function F and a multi-scale basis function ψi,k:

m(F, ψi,k) = 2
i+1

∑
l=i−1

(Q · F)∗
[

Q · nl × σ̃−1(z)∇×ψi,k
]

zl
. (82)

We consider test functions F ∈ VM. Hence, by using (80), we have:

N−1

∑
i=1

2

∑
k=1

αi,km(ψm,n, ψi,k) = lS,−
p (ψm,n, HP) + lS,+

p (ψm,n, HP), m = 1, · · · , (N − 1), n = 1, 2. (83)

By using (23), we can further simplify m(., .) to:

m(ψm,n, ψi,k) =
N−1

∑
l=1

∑
s=−,+

(ψm,n
s (zl))

∗
[
σ̃−1

h (z)Πs(ψ
i,k)
]

zl
. (84)

5. Implementation

For simplicity and to compare our numerical method directly with the state-of-the-art analytic
implementations [15], we assume µ = µ0I3 and ε = ε0I3 (I3 is the 3D identity matrix) to be constant in
each layer. ε0 is set to 8.85× 10−12(F/m), which corresponds to the free-space permittivity, while µ0 is
set to 4π × 10−7(H/m), i.e., the magnetic permeability constant.

We consider each layer as a sub-domain. Therefore, the decomposition points are the boundaries
of our layers. By doing so, we can evaluate the local primary fields in sub-domains which have
smoothly varying materials. In particular, if we assume that the layer properties are homogeneous,
the fundamental solution in (65) is independent of the tool position. Moreover, the correction basis
functions are independent of the tool position. Consequently, instead of solving one primary field
for each tool position, we find one fundamental field and four correction basis functions per layer.
This simplification allows us to increase the speed of the method almost by a factor equal to the number
of tool positions.

In our model problem, we consider two different Cartesian coordinate systems: (a) a system of
coordinates related to the Earth, and (b) a system of coordinates related to the logging device, which
consists of a rotation of the Earth system of coordinates in a way that the logging device extends along
the z direction. We denote the angle between the logging instrument and the z direction of the Earth
system of coordinates as α (relative dip angle). β is the azimuthal angle (see Figure 5). Therefore, the
transformation between the systems of coordinates of the Earth and the tool is given by the following
rotation matrix:

Hb = R−1HeR, (85)

where rotation R is defined by the following composition of rotations:

R =

cos β − sin β 0
sin β cos β 0

0 0 1

 ·
 cos α 0 sin α

0 1 0
− sin α 0 cos α

 .
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In this notation, subscripts e and b denote the Earth system of coordinates and the logging
instrument system of coordinates, respectively. If the logging instrument is perpendicular to the
layering of the medium, we have α = 0.

In this work, for simplicity, we consider β = 0. Hence, the possibly non-zero couplings of the
magnetic field can only be xx, xz, yy, zx and zz, where the first and the second letters in the subscript
indicate the transmitter and receiver directions, respectively.

In this work, we consider LWD tools equipped with magnetic dipoles sources. We consider a
traditional symmetric LWD instrument, which is a standard tool similar to those offered by oil service
companies containing two transmitters and two receivers. In the aforementioned instrument, the
receivers are located symmetrically around the transmitters (see Figures 6 and 10) [22].

To analyze the result of our experiments and compare them against those typically obtained in
borehole resistivity applications, we further postprocess the values of the magnetic field. First, we
evaluate the zz coupling (Hzz) of the magnetic field at two different receivers. We denote these values
asHzz(Rx1) andHzz(Rx2), which correspond to the first and the second receiver, respectively. Then,
we compute:

ln
Hzz(Rx1)

Hzz(Rx2)
= ln

| Hzz(Rx1) |
| Hzz(Rx2) |︸ ︷︷ ︸
attenuation

+i (ph(Hzz(Rx1))− ph(Hzz(Rx2)))︸ ︷︷ ︸
phase difference

, (86)

where ph denotes the phase of a complex number. Often, the attenuation is defined in the decibel scale
(which corresponds to the above number multiplied by 20). Subsequently, we compute the relation
between attenuation and resistivity in a homogeneous media. This transformation, when applied to
a heterogeneous media, delivers the apparent resistivity based on attenuation (see [5]). We similarly
define the apparent resistivity based on the phase difference.

For the inverse Hankel transform, we use a fast Hankel transform algorithm based on digital
filters (see [19] for details).

The entire Hankel Finite Element method has been implemented using FORTRAN 90.

xe

ye

ze

xb

yb

zb

α

β

Figure 5. xe, ye and ze are the axes of the Cartesian coordinates. xb, yb and zb are the axes of the borehole
coordinates. α and β are the dip and azimuthal angles, respectively.

6. Numerical Examples

6.1. Model Problem 1: Two Layers with 1 Ω ·m and 100 Ω ·m

We consider the logging instrument described in Figure 6. Figure 7 through Figure 9 show
the apparent resistivities (logs) for different dip angles. The distance between two consecutive
logging points is half a foot (0.1524 m), as this is the resolution provided by most commercial
logging-while-drilling (LWD) devices. In all cases, our simulation framework delivers a perfect
agreement with the semi-analytic solutions. The large apparent resistivity values observed in
Figures 8 and 9 form the so-called horns. They are a typical artifact that appears due to the employed
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post-processing method [10,16]. Moreover, they do not affect significantly to the interpretation of
the results.

2 MHz

Tx1 Tx2Rx1 Rx2

0.40 m

2.0 m

Figure 6. Logging instrument for model problem 1. Tx1 and Tx2 are the induction transmitters, and
Rx1 and Rx2 are the receivers.
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(a) Apparent resistivity based on attenuation

100 101 102

0

2

4

6

8

10

True resistivity

Multi-scale vs
Semi-analytic

Resistivity (Ω ·m)

Tr
ue

ve
rt

ic
al

de
pt

h
(m

)

(b) Apparent resistivity based on phase difference

Figure 7. Model problem 1. Apparent resistivities for the zz coupling for a vertical well (dip angle = 0◦).

6.2. Model Problem 2: Multilayered Formation

Figure 10 describes the logging instrument employed for this example. As in our previous
examples, the distance between two consecutive logging points is half a foot (0.1524 m). The main
result in terms of apparent resistivities for this model problem for a vertical well is shown in Figure 11.
The attenuations and phase differences for this case are shown in Figures 12 and 13, respectively.
As before, the numerical solutions coincide with the semi-analytic ones.
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Figure 8. Model problem 1. Apparent resistivity for the zz coupling for a 70◦ deviated well.

Figure 14 compares the average computational time needed to solve one tool position using:
(a) a traditional FE method, (b) a traditional FE method when we reuse the LU factorization, and
(c) our proposed multi-scale method. As shown in the figure, reusing the LU factorization worsens
the situation since we need a more refined grid to model for all source positions accurately. Table 1
shows a time comparison between a semi-analytic method and the proposed numerical method.
For one tool position, computing the local primary field and pre-computing the multi-scale basis
functions is computationally expensive and we observe a significant discrepancy between numerical
and semi-analytic solutions. However, as expected, by increasing the number of tool positions, the ratio
between the time of the proposed numerical method and the semi-analytic one is decreasing. Figure 15
shows the average time used to solve one tool position. Using a multi-scale method, the average time
per position rapidly decreases as we augment the total number of tool positions. This occurs because
the pre-computed multi-scale basis functions, fundamental fields, and correction basis functions only
need to be computed once for any number of tool positions.
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Figure 9. Model problem 1. Apparent resistivity for the zz coupling for a 89◦ deviated well.

The results in terms of apparent resistivities for this model problem for 60◦ and 89◦ deviated wells
are shown in Figures 16 and 17, respectively. Again, the numerical and semi-analytic solutions coincide.

500 kHz

Tx1 Tx2Rx1 Rx2

0.20 m

2.0 m

Figure 10. Logging instrument for model problem 2. Tx1 and Tx2 are the induction transmitters, and
Rx1 and Rx2 are the receivers.
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Figure 11. Model problem 2. Apparent resistivity for the zz coupling for a vertical well (dip angle = 0◦).
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Figure 12. Model problem 2. Attenuations for the non-zero couplings (xx and yy couplings) of the
magnetic field for a vertical well (dip angle = 0◦).



Geosciences 2018, 8, 225 21 of 28

0 0.1 0.2 0.3

0

5

10

15

Multi-scale vs
Semi-analytic

Phase difference (radians)

Tr
ue

ve
rt

ic
al

de
pt

h
(m

)

(a) xx coupling

0 0.1 0.2 0.3

0

5

10

15

Multi-scale vs
Semi-analytic

Phase difference (radians)

Tr
ue

ve
rt

ic
al

de
pt

h
(m

)
(b) yy coupling

Figure 13. Model problem 2. Phase differences for the non-zero couplings (xx and yy couplings) of the
magnetic field for a vertical well (dip angle = 0◦).
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Figure 14. Model problem 2. Average time (in seconds) to solve for one tool position as the number of
logging positions varies using (a) a traditional FE approach, (b) a FE approach where we reuse the LU

factorization, and (c) our proposed multi-scale method (
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Figure 15. Model problem 2. Average time (in seconds) to solve for one tool position as the number of

tool positions varies (
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).

Table 1. A time comparison (in seconds) for a vertical well using a semi-analytic method and the
proposed multi-scale FEM as a function of the number of tool positions.

Positions Semi-Analytic Numerical Ratio

1 3.2× 10−2 5.67 177.19
10 5.3× 10−2 12.34 232.83

100 1.4× 10−1 15.60 111.43
200 2.4× 10−1 18.73 76.54
500 4.1× 10−1 23.10 56.34

1000 1.01 35.52 35.16
5000 5.68 115.47 20.65

10,000 11.57 207.61 17.94

6.3. Model Problem 3: Non-Piecewise-Constant Resistivity Distribution

We consider the logging instrument described in Figure 6 and a model problem that exhibits
a sub-domain with a linearly varying resistivity, which is the case of an oil-to-water saturated
transitioning (OWT) zone corresponding to a two phase-flow of immiscible fluids. To compare
our solution to the semi-analytic one in the later case, we approximate our linearly varying resistivity
distribution using multiple piecewise constant resistivity distributions. Figure 18 shows that the
apparent resistivity of the semi-analytic solution is converging to the multi-scale solution as the
number of layers with piecewise constant resistivity distribution increases. With our numerical
method, we can model those arbitrarily varying conductivities without the need of approximating
them. Figure 19 compares the attenuation and phase difference of the ultimate semi-analytic solution
and the multi-scale one for the zz coupling.
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Figure 16. Model problem 2. Apparent resistivity for the zz coupling for a 60◦ deviated well.
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Figure 17. Cont.
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Figure 17. Model problem 2. Apparent resistivity for the zz coupling for a 89◦ deviated well.
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Figure 18. Model problem 3. Convergence of the zz coupling apparent resistivity of the semi-analytic
solution to the multi-scale one for a vertical well (dip angle = 0◦). l is the number of piecewise constant
resistivity distributions that we select to approximate the linearly varying resistivity.
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Figure 19. Model problem 3. Attenuation and Phase difference of the magnetic field for a vertical well
(dip angle = 0◦).

7. Discussion and Conclusions

We propose a multi-scale Hankel FEM for solving Maxwell’s equations in a 1D Transversely
Isotropic media excited by a 3D arbitrarily oriented point dipole. The multi-scale FEM pre-computes
the fundamental fields, and correction and multi-scale basis functions. As a result, this computation is
expensive if only a single logging position is studied, but it becomes competitive as the number of
logging position grows.

The numerical method produces highly accurate solutions, as our numerical validations
experiments show. Additionally, computation of the parametrization derivatives is straightforward by
simply considering the adjoint formulation. By using this method, it is possible to consider arbitrary
resistivity distributions along the z direction, while semi-analytic methods only allow for piecewise
constant material coefficients.

The method we propose is still slower than the semi-analytic one. The most time consuming
part of our method is to compute the primary field. However, in the case of piecewise constant
resistivity distribution, we can obtain the fundamental field analytically, which decreases the cost of
computing the primary field considerably. Nonetheless, this work employs a full FEM implementation
to preserve the generality of the method. This enables us to consider arbitrary resistivity distributions
(other than just piecewise constant ones). Because of the lack of existence of a semi-analytic method
that can model the aforementioned case, our methodology is a viable alternative. In order to use a
semi-analytic method, we can approximate the non-constant resistivity distribution using multiple
constant resistivity distributions. However, this piecewise-constant representation leads to an extensive
error and a bothersome implementation when computing the derivatives to form the Jacobian matrix
to perform the inversion.

As future work, we plan to extend our method to other multi-physics problems e.g. elasto-acoustic
problems and to account for other material parameter distributions, such as, cross-bedded formations.
Also, we will investigate the optimal selection of the primary field. Moreover, we shall also integrate
this simulator on an inversion software platform. A trivial parallelization of this software through
operating frequencies and transmitters of a logging device and logging positions is straightforward.
Additionally, the parallelization of the method through multi-scale basis functions, fundamental fields,
and correction basis functions is under development, which will boost the speed of the method.
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Appendix A. Bessel Functions

Bessel functions are solutions of the following ordinary differential equation:

x2y′′ + xy′ + (x2 −m2)y = 0,

where m is a parameter. Bessel functions exhibit multiple interesting properties (see, e.g., [27]). In this
work, we employ the following ones:

2m
ξρ

Jm(ξρ) = Jm−1(ξρ) + Jm+1(ξρ), (A1)

2
∂Jm(ξρ)

∂ (ξρ)
= Jm−1(ξρ)− Jm+1(ξρ), (A2)

∫ +∞

0
Jm(ξρ)Jm(ξqρ)ρ dρ =

1
ξq

δ(ξ, ξq). (A3)

Using (A2) for the derivative of Jm+1 and multiplying the result by ξ, we obtain:

ξ
∂Jm+1(ξρ)

∂ (ξρ)
=

ξ

2
Jm(ξρ)− ξ

2
Jm+2(ξρ). (A4)

By using (A1) for Jm+2, we have:

Jm+2(ξρ) =
2(m + 1)

ξρ
Jm+1(ξρ)− Jm(ξρ). (A5)

By substituting (A5) into (A4), we obtain:

m + 1
ρ

Jm+1(ξρ) + ξ
∂Jm+1(ξρ)

∂ (ξρ)
= ξ Jm(ξρ). (A6)

Utilizing (A2) for the derivative of Jm+1, we arrive at:

2
∂Jm+1(ξρ)

∂ (ξρ)
= Jm(ξρ)− Jm+2(ξρ). (A7)

By substituting (A7) into (A6), we conclude:

m + 1
ρ

Jm+1(ξρ) =
ξ

2
Jm(ξρ) +

ξ

2
Jm+2(ξρ). (A8)
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