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Abstract: The lakes across China’s middle and lower reaches of the Yangtze River system have a long
history of sustaining human pressures. These aquatic resources have been exploited for fisheries and
irrigation over millennia at a magnitude of scales, with the result that many lakes have lost their
ecological integrity. The consequences of these changes in the ecosystem health of lakes are not fully
understood; therefore, a long-term investigation is urgently needed. Gastropods (aquatic snails) are
powerful bio-indicators that link primary producers, herbivores, and detritivores associated with
macrophytes and grazers of periphyton and higher-level consumers. They are sensitive to abrupt
environmental change such as eutrophication, dehydration, flooding, and proliferation of toxicity
in floodplain lake systems. The use of the remains of gastropod shells (subfossils) preserved in the
sedimentary archives of the floodplain lakes of the middle and lower reaches of the Yangtze River
system holds high significance, as their potential in environmental change has not been studied in
detail in the past. Here, we aim to test the hypothesis that modern and sub-fossil gastropods in the
sediments of the middle and lower reaches of the Yangtze River floodplains systems have significant
value as bioindicators, as they have the ability to reveal health-gradients of lake-ecosystem change
in the region.

Keywords: gastropods; freshwater snails; ecosystem health; lower Yangtze River lakes;
China; bioindicators

1. Introduction

“Ecologically healthy” lake systems must possess three basic characteristics to conserve in
their ability to maintain structure, function, and resilience [1]. Broadly, how biological diversity
and assemblages, and their potential interactions with the environment (vigor or processes),
are changing over a period of time (resilience) determine ecosystem health is crucial to understand.
Hence, the concept of a healthy ecosystem relies on the sustainability of the assemblage structure,
function, and resilience of the biota present in a lake, as it usually occurs in natural conditions.
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In natural conditions, when lakes experience water level and thermal variations, biological assemblages
are able to adapt to the change through their evolutionary ontogenetic behavior. Healthy and
sustainable lake ecosystems play an integral role in generating important ecosystem services including
clean water, fisheries, and aesthetic values. However, the number of lakes with high ecological integrity
has substantially declined, as many lakes and wetlands are profoundly embedded within the complex
socio-ecological system, where human domination of the environment has caused unprecedented
perturbations [2]. As human activities have also driven the significant loss of biodiversity and the
extinction of species, the application of the concept of healthy ecosystems in lake restoration should
maintain the system as “natural” if possible or return the system to its “pre-disturbance” condition [3,4].

China’s middle and lower reaches of the Yangtze River system hold one of the oldest civilizations,
where humans have interacted with lakes for millennia [5,6]. The vast areas of productive Yangtze
River floodplain lakes have been used since the Neolithic Period (7700 cal a BP) for water resource
development, including paddy culture, fisheries, irrigation, and navigation [7]. The exploitation for
land reclamation, urbanization, and industrialization is at such a magnitude of scales that most lakes
have lost their ecological integrity [8,9]. Some lakes have either disappeared, or their areas have been
considerably reduced due to reclamation, resulting in unprecedented ecosystem and biodiversity loss
in the area, risking the demise of ecological productivity and genetic exchanges of natural populations.
For example, poor dispersal abilities of molluscs have already been reported [10,11].

The water quality required to maintain ecologically healthy lake ecosystems has been perturbed
by the release of large quantities of commercial fertilizers (nutrients), toxic compounds from adjacent
agriculture, and heavy metals from domestic and industrial sewage systems [8,12,13]. To some
extent, the socio-economic developments in the basin have brought about a catastrophic failure in
the maintenance of the lakes’ ecosystem health [8]. Eutrophication has become prevalent in many
economically viable lakes in the region, including the Taihu and Chaohu, causing a significant loss of
restoration investments [14,15].

Yet, the complex lake ecosystems in the middle and lower reaches of the Yangtze River system
have shown disparity in their state of health. The degree of human disturbance in these lakes has
been found to vary largely. Some lakes remain in relatively “good condition”, reflecting a more stable
community structure, function, and resilience [6,8]. Some of the most productive lakes contain diverse
fish communities (> 70 species), abundant invertebrate resources, and dense submerged macrophyte
beds, forming one of the most important fishery bases of this economically viable region [16].
Further, increased conservation efforts, together with a strong partnership among governmental
and non-governmental agencies and local communities, have improved the ecological resilience of
some lakes [17,18].

Despite their high indicator values, subfossil gastropods of the middle and lower reaches of the
Yangtze River system have rarely been explored for their potential to track ecological health [19,20].
Gastropods play a central role in linking primary producers, herbivores, and detritivores associated
with macrophytes and grazers of periphyton and higher level consumers [21,22]. They graze on
periphyton, enhance macrophyte growth, and transfer energy to higher trophic levels, such as
molluscivorous fish [23,24]. Lake nutrient conditions and the variability in grazing behaviour of
epiphytic gastropods also affect the species composition, biomass, and productivity of epiphytes and
stimulate macrophyte growth [19]. While submerged macrophytes provide gastropod habitats for
oviposition, cascading effects of fish predation at different nutrient levels determine the dynamics
of gastropods and macrophyte communities [25]. Gastropods show both species-specific and
community level responses to a range of environmental factors, such as macrophyte and epiphyte
dynamics, eutrophication, dehydration, flooding, sedimentation, and the proliferation of toxic
compounds [21,26–28].

Individual responses of gastropods to anthropogenic impacts have been reported to be of a
higher sensitivity to ecosystem health than that of the community level responses [29]. For example,
pulmonate Lymnaea peregra and prosobranch Valvata piscinalis snails strongly reflect the dynamics
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of submerged macrophytes, while other pulmonate species, Planorbis vortex, and prosobranch
Bithynia tentaculata species, may in certain cases, reflect the presence of emergent macrophytes [30].
Similarly, Radix swinhoei strongly responds to microcystin toxicity in its tissues during cyanobacterial
blooms [31,32]. Other major components of essential minerals for gastropod growth and development
are phosphates, calcium, and bicarbonate ions [33]. While epiphytes are a major component of the
diet of gastropods, the silicon (Si) from these algae can also influence their dynamics, as Si keeps
aquatic ecosystems healthy through viable plant production [34]. In addition, several studies focus
on the effects of carbon, nitrogen, and phosphorous (CNP) stoichiometry on snails [35], including
physiological responses to stoichiometric constraints: nutrient limitation and compensatory feeding in
a freshwater snail [36,37].

Given their significant response to environmental change in lakes, gastropods are used as
bioindicators of ecosystem health [38]. For example, gastropods utilize epiphytic macrophytes as a
source of food. Any loss of macrophytes due to disturbances can have direct impacts on the food habits
of gastropods and subsequent reductions in abundance and assemblage diversity [19]. The population
structure of epiphytic gastropods across many shallow lakes of the middle and lower reaches of the
Yangtze River system has been significantly altered over the recent past due to increased human
impacts [19]. Basin-wide habitat fragmentation has led to the loss of macrophytes and consequent
changes in epiphytic gastropod communities. Apart from macrophyte density, other biotic (fish,
parasitism) and abiotic (e.g., temperature, lake depth, and minerals) factors have also had an effect
on gastropod distribution [21,39]. Hence, the remains of gastropods have become increasingly useful
for the long-term study of the ecological health of these lakes. Gastropod assemblage composition
and diversity archived in lake sediments can act as strong biological indicators for both ecological
and hydrological changes [40]. The shells of gastropods reflect the lakes’ past hydrology and food
web dynamics [41,42]. The chemical components of gastropod shells, as well as the structure and
shape of the shells, can provide indications of past conditions in lakes, including water quality and
predator-prey interactions. For example, the available calcium and other inorganic and organic
compounds in water are revealed by shell biogeochemistry [43–45]. Gastropods use carbon and
mineral ions during metabolism, and the signature of carbon and ions are also preserved in their shells.
The use of sedimentary remains of gastropods in the middle and lower reaches of the Yangtze River
holds significance to understand the temporal and spatial variability of ecosystem health. Even though
the region is exposed to a wide range of anthropogenic impacts, recent environmental regulations
have mitigated the impacts. As a result, some lakes display improved water quality and ecosystem
health. However, the differences between lake responses to recent environmental changes have not
yet been examined using gastropod subfossils. Here, we test the hypothesis that gastropod remains
retrieved as individuals or as assemblages from the sediments of the middle and lower reaches of the
Yangtze River lake system have the ability to reveal gradients of lake-ecosystem health in the region.
A study of this kind will potentially help environmental resource managers to better allocate resources
and efforts for lake conservation and management in the region.

2. Materials and Methods

2.1. Study Area

The research is part of the large Key National Natural Science Foundation of China (NSFC) River
Resilience project. It covers a large number of shallow lakes across the middle and lower reaches of the
Yangtze River. This study focused on 32 lakes with available records of gastropod remains in surface
sediments across the geo-referenced sites extending between 28◦32′27.43′′ North and 113◦23′28.83′′

East (Figure 1). The middle and lower reaches of the 6300 km-long Yangtze River extend from Yichang
and Hukou (Poyang Lake mouth) and Hukou and Yangtze estuary (Shanghai). The region is referred
to as the “Water Realm” of China’s major agricultural district (http://www.cjw.gov.cn/zjzx/cjyl/).
The area contains over 600 large and small lake groups surrounded by medium to large cities, forming
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a prosperous industrial belt [8,46]. These lakes comprise rich floral and faunal diversity, and crop
cultivation generating significant agro-ecosystem services. The gross domestic product of metropolitan
cities in the basin had reached about 20 trillion Yuan by 2014, benefitting more than 320 million people.

Historically, most shallow lake systems in the study area have been in a healthy ecological state,
2–5 m deep, and connected with the main river channel, showing regular flood-pulse events [47–49].
Poyang Lake, for example, one of the largest Yangtze lake systems, has six nature reserves containing
important native species of fish, birds, and molluscs [50]. The ecosystems of these lakes, where plant
growth is determined largely by light intensity and depth, or, clearer and shallower aquatic habitats,
have a greater carrying capacity for submersed vegetation [51]. However, human population growth
coupled with rapid economic development has led to an increased discharge of domestic sewage
and industrial effluents to Yangtze River lakes, causing serious damage to ecological health [5,15].
The study area is also climatically sensitive. Being located in the subtropical zone, it is highly regulated
by the East Asian monsoon system, giving higher exposure to cold and dry winters and hot and wet
summers. The temperature ranges between 15 ◦C and 20 ◦C during summer with rainfall > 1000 mm
annually, where 40–60% of precipitation falls between June and August [52].
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Figure 1. Location of study sites in middle and lower reaches of the Yangtze River system (China)
in anti-clockwise order. (A) Enlargement of the study sites showing the upper section of the reach;
(B) Enlargement of the study sites showing the middle section of the river reach; (C) Enlargement of
the study sites showing the lower section of the river reach; (D) Enlargement of the study sites showing
the sites around the Honge Lake complex. The largest lake among the study sites, the Poyang Lake,
is at the middle section, while the other large lake, Taihu Lake, is at the lower section of river.



Geosciences 2018, 8, 222 5 of 19

2.2. Sediment Collection

Thirty-two lakes were investigated for at least three consecutive seasons on a quarterly basis,
between April 2016 and July 2017. For each lake, two surface sediment samples from each season were
collected from the centre of the lake using a Kajak gravity corer [53]. Each season, the top 1 cm (200 g
wet sediment weight) of one of the cores was extruded in the field. Because gastropod remains were
rare in some cases, samples from two or more seasons were harmonized (mixed) to make a sufficient
mud sample (as high as 600 g) for subfossil gastropod analysis. Sediment cores from Changdang
Lake were taken from the center of the lake using a UWITEC gravity corer (Mondsee, Austria) with a
90-mm-diameter coring tube in July 2016. The core was subsampled in the field at a 1 cm resolution
and samples were transferred to the Nanjing Institute of Geography and Limnology Chinese Academy
of Sciences (NIGLAS) laboratory for further analysis.

2.3. Physico-Chemical Analysis of Water

The measurements of physico-chemistry of water samples were carried out either in the field
or in the laboratory. Water samples (one representative sample for each season) were collected from
the shore using acid-washed polyethylene bottles and then stored at 4 ◦C until further laboratory
analyses [14]. A total of 31 physical and chemical variables were measured and some key variables are
shown in Table 1.
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Table 1. Mean annual values of physical and chemical variables collected from the 32 study lakes across the middle and lower reaches of the Yangtze River system,
China. SD (Secchi disk depth); Cond (conductivity); NTU (Nephelometric Turbidity Unit); DO (dissolved oxygen); TN (total nitrogen); TP (total phosphorous); Chl-a
(chlorophyll-a), SS (suspended solid).

Lake Latitude
(North)

Longitude
(East)

Mean Lake
Depth (m)

SD
(cm)

Temp.
(◦C)

Cond
(ms/cm) pH NTU

(mg/L) DO % Salinity
(‰)

TN
(mg/L)

TP
(mg/L)

Si
(mg/L)

Chl-a
(ug/L)

SS
(mg/L)

Shijiu Lake 31◦25′57.20′′ 118◦53′47.50′′ 1.92 12.23 17.19 0.25 7.84 3.4 74.2 0.12 1.84 0.04 2.04 7.3 24.09
Gucheng Lake 31◦16′48.70′′ 118◦55′48.55′′ 3.15 40.6 16.96 0.26 8.18 5.46 322.0 0.14 1.31 0.02 2.62 3.6 9.08

Changdang Lake 31◦37′42.11′′ 119◦34′35.07′′ 1.57 6.60 16.69 0.44 7.90 15.3 316.17 0.22 1.92 0.08 2.57 26.3 42.72
Ge Lake 31◦31′38.35′′ 119◦46′34.24′′ 1.80 12.63 17.19 0.46 8.24 87.63 321.85 0.22 2.85 0.10 2.59 22.7 31.06

Meiliang Bay Lake 31◦26′30.46′′ 120◦09′46.56′′ 2.82 15.36 17.65 0.45 8.53 31.06 343.45 0.22 4.81 0.26 2.50 33.6 36.37
Yangcheng Lake 31◦26′8.89′′ 120◦47′40.40′′ 1.70 26.45 16.84 0.50 7.95 25.36 323.37 0.24 2.41 0.11 1.82 15.5 14.57
Dianshan Lake 31◦07′48.55′′ 120◦57′39.48′′ 2.50 26.66 16.96 0.58 8.15 19.36 318.2 0.28 2.62 0.09 2.10 11.7 21.95

Cheng Lake 31◦12′18.43′′ 120◦49′15.68′′ 2.17 31.32 17.09 0.53 8.20 13.23 320.6 0.26 3.09 0.10 2.21 8.6 9.62
East Tai Lake 31◦00′45.71′′ 120◦26′8.74′′ 1.62 16.94 16.99 0.35 8.12 29.63 323.77 0.17 1.34 0.06 1.26 8.1 48.07
Shaobo Lake 32◦35′51.34′′ 119◦26′49.06′′ 1.87 15.08 15.87 0.40 7.98 46.82 320.72 0.19 1.76 0.05 2.73 7.8 63.09

Yang Lake 32◦43′29.77′′ 119◦08′13.86′′ 2.22 22.44 14.31 0.24 8.25 29.03 314.52 0.13 1.21 0.04 1.93 13.2 27.86
Baima Lake 33◦13′36.34′′ 119◦08′3.59′′ 1.65 50.6 16.49 0.43 9.08 24.05 335.55 0.10 1.76 0.05 2.35 23.2 22.00

Hongze Lake 33◦17′0.93′′ 118◦43′37.38′′ 2.82 11.33 15.24 0.50 8.17 79.7 320.17 0.24 2.13 0.10 3.16 5.2 105.15
Luoma Lake 33◦17′0.93′′ 118◦43′37.38′′ 3.87 48.66 16.02 0.69 8.45 27.1 323.27 0.34 1.14 0.03 1.06 8.4 80.00
Nvshan Lake 32◦58′38.22′′ 118◦06′7.25′′ 3.70 27.39 16.23 0.35 8.45 19.2 319.37 0.17 1.36 0.04 1.53 8.1 16.73

East Chao lake 31◦37′2.30′′ 117◦39′30.30′′ 3.77 12.28 18.49 0.27 8.35 42.47 322.92 0.13 1.43 0.05 3.16 6.7 23.48
West Chao Lake 31◦39′45.51′′ 117◦22′29.42′′ 3.12 36.51 19.21 0.21 8.70 22.37 327.9 0.10 1.32 0.04 2.83 16.8 15.23

Caizi Lake 30◦48′29.22′′ 117◦22‘33.11′′ 2.53 9.03 18.29 0.13 8.42 69.07 320.3 0.06 1.53 0.05 2.50 8.9 37.82
Shengjin Lake 30◦23′32.34′′ 117◦04′43.72′′ 2.18 8.73 19.76 0.17 8.37 94.32 311.35 0.09 1.21 0.05 2.24 9.0 38.81

Sai Lake 29◦57′18.30′′ 115◦47′49.05′′ 3.60 37.37 19.17 0.261 8.68 18.2 330.5 0.12 0.85 0.03 2.47 11.1 13.27
Poyang Lake 29◦09′0.18′′ 116◦12′47.72′′ 3.43 9.38 21.09 0.14 9.09 27.8 114.96 0.06 1.54 0.06 4.16 4.0 33.07

Yangfang Lake 28◦32′27.43′′ 116◦31′18.41′′ 1.92 35.15 21.74 0.14 8.55 119.3 330.45 0.07 1.48 0.06 1.91 10.0 18.66
Jinxi Lake 28◦42′33.21′′ 116◦20′6.90′′ 2.67 11.31 19.82 0.12 8.56 149.92 326.4 0.06 1.26 0.05 4.12 11.0 23.52

Chenjia Lake 28◦39′23.40′′ 116◦22′42.08′′ 3.10 18.05 19.56 0.18 8.30 151.25 335.7 0.09 0.76 0.06 1.67 20.6 12.32
Junshan Lake 28◦33′11.38′′ 116◦19′26.20′′ 4.45 59.37 20.51 0.08 8.56 137.37 330.85 0.04 0.63 0.03 2.41 9.0 6.55

Ce Lake 30◦14′14.40′′ 115◦9′9.52′′ 2.55 33.73 18.65 0.29 8.53 21.57 311.77 0.14 2.11 0.21 1.12 51.9 12.38
Baoan Lake 30◦17′5.62′′ 114◦43′11.59′′ 3.30 20.45 19.76 0.29 8.07 13.02 333.42 0.14 0.94 0.05 1.77 15.5 15.62
Futou Lake 30◦00′52.05′′ 114◦12′40.47′′ 2.42 25.62 19.51 0.27 8.78 68.75 332.05 0.13 1.94 0.06 2.20 21.0 14.33

Xiliang Lake 29◦57′57.32′′ 114◦06′40.92′′ 1.97 27.12 19.25 0.25 8.00 44.95 314.55 0.12 1.24 0.02 2.59 11.4 8.76
Huanggai Lake 29◦40′44.75′′ 113◦32′21.37′′ 2.60 21.82 18.82 0.16 8.57 28.7 320.82 0.08 2.18 0.08 3.00 14.7 10.39
Honghu Lake 29◦49′22.86′′ 113◦23′46.55′′ 1.52 34.36 18.74 0.34 8.56 30.32 338.27 0.16 1.33 0.06 1.54 34.7 15.85
Zhupo Lake 29◦50′9.56′′ 115◦23′28.83′′ 3.95 46.32 18.14 0.32 8.42 19.12 326.1 0.16 0.92 0.07 1.24 27.5 10.56
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2.4. Gastropod Subfossil Analysis

For surface sediment analysis, about half of every surface sediment sample collected during the
three sampling periods, September (2016), January (2017), and May (2017), were mixed together to
obtain a sufficient number (about 10 or more per sample) of shells prior to the analysis. The resulting
weight of the mud samples from the three seasons combined was about 600 g. Gastropod subfossil
shells were primarily sieved through a 1 mm mesh to retain all size groups preserved. After the sample
was cleaned (mud washed-out), gastropod shells were hand-picked under a dissecting microscope,
dried, and identified under a dissection microscope (10×) using regional keys [54,55].

For sediment core analysis, at least four short sediment cores (each 45 cm long) were retrieved in
parallel from the Changdang Lake for subfossil analysis of gastropods. The preservation of gastropod
remains was limited to the upper 36 cm of accumulation, spanning the past 50 years. In order
to increase the number of gastropod remains, each sediment core (of three of the cores collected)
was subsampled at a 3 cm resolution (interval). Each 3 cm resolution sample with the same depth
profile from each core was mixed prior to hand-picking and identifying the shells under a dissection
microscope. The fourth core was subsampled at a 0.5 cm resolution and was used for pollen analysis,
thus the results are not reported in this study. Only the full body gastropod shells (fragments were
discarded) were identified based on regional keys [54,55].

2.5. Numerical Assessment of Lake Ecosystems Health

The spatial gradient of ecosystem health across the study sites was assessed by identifying the
changes in physico-chemical parameters, as well as biological responses to the environmental variables.
Selected physico-chemical variables from the 32 sites were assessed to identify the gradients of water
quality change and possible effects on gastropod populations. Correlation and regression analyses
including direct and indirect ordination techniques were used to understand lake environmental
change across the study region. Biological responses to the environmental variables were assessed
both at spatial and temporal scales. Responses at the spatial scale were assessed at population and
community levels of gastropods. The community level response was assessed using direct ordination
techniques, such as canonical correspondence analysis (CCA). The population level response of
gastropod species was assessed using a generalized linear model (GLM). Unlike linear regression
models, which are limited by the errors assumed to be identically and independently distributed
with a normal Gaussian distribution, GLMs are better suited for positive non-normally distributed
data. The GLM fits regression models for univariate response data that follow a very general class of
statistical distributions called the exponential family, including normal, binomial, Poisson, geometric,
negative binomial, exponential, and inverse normal distributions [56].

2.6. Development of Age-Depth Model

Sub-samples of dried sediment (0.5–3 g) were used to establish the core chronology as described
by Choudhary et al. [57]. The excess 210Pb activity (210Pbex) exhibited a monotonic decrease with depth,
from a maximum of 286.73 Bq/kg near the surface to 7.59 Bq/kg at 49 cm (Figure 2). The sediment
core records of 210Pbex show an exponential distribution. The upward decreasing trend of 210Pbex in
the upper 5 cm indicates mixing. We used the constant initial concentration (CIC) model to estimate
the sedimentation rate and age-depth chronology (Figure 2). The average sedimentation rate was
0.45 cm/annum. The core covered 111 years (1905–2016). Except for a few samples, the records of 137Cs
activity were extremely low for reliable detection and unsuitable to be used as a time marker. Instead,
we used local historical events to validate our age-depth model. All trace metals increased abruptly
at 20 cm and then plateaued around 15 cm (Figure 2). These were coincident with the beginning of
industrialization in the 1970s in the Changang lake catchment. The 210Pb results were consistent with
20 cm and the 15 cm depths, corresponding to 1970 and 1980, respectively.
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Figure 2. The constant initial concentration (CIC) profile of the 210Pb activity, age-depth model,
and trace metals and other elements in the sediment core of the Changdang Lake. All trace metals
increased abruptly at 20 cm and then plateaued around 15 cm in the sediment core. These results
coincide with the initial industrial period in 1970 across the catchment. Most factories were forced
to shut down or were asked to reform in the 1980s due to high water pollution. The records indicate
that the depths of 20 cm and 15 cm in the core correspond to 1970 and 1980, respectively, which is also
consistent with the 210Pb results.

3. Results

3.1. Environmental Gradients

All study lakes were relatively shallow (< 3 m depth). The Secchi disk measurements showed
high turbidity. Other eutrophication parameters such as total phosphorous (TP) and chlorophyll
(Chl-a) showed poor water quality among the study sites. However, pH, conductivity, and salinity
measurements suggested that all studied lakes are relatively fresh (Table 1). Relatively higher
standard deviations of calcium and magnesium, two essential elements required for gastropod shell
development, indicated differences in the concentration and dynamics of these minerals among the
study sites (Table 1).

The principal components analysis (PCA) of the 31 environmental variables measured in the
32 lakes suggested that more than 30% of the total variation was explained by axis 1 (λ1 = 0.31),
while axis 2 (λ2 = 0.14) accounted for about 15% of the total variation (Figure 3). Axis 1 was largely
influenced by anthropogenic-derived factors such as TP, PO4–P, and TN (total nitrogen), as well as
water temperature, turbidity, and water depth. Axis 2 was driven more by factors associated with
phycocyanin, Chl-a, suspended solids, and Secchi disk depth (Figure 3). In axis 1, most nutrients
(TP, TN, DOC (dissolved organic carbon), and DIC (dissolved inorganic carbon)), elements (Na, K, Ca,
and Mg), and salinity were positively correlated.

The concentration of TP in water provides strong evidence of water quality and the ecological
health of lakes [58]. Based on the standard used in [58], TP measurements showed that a large
number (N = 25) of lakes among the study sites were eutrophic, and about six lakes were hypertrophic
(Figure 4). Other variables which are influenced by TP, including Chl-a, coincided with elevated
turbidity, with high concentrations of suspended sediment particulates in some lakes (Figure 5).
Two lakes, Ce and Melliangan Bay, were found to have poor water quality, which means having higher
eutrophication, as revealed by TP and Chl-a measurements (Figures 4 and 5).
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on the basis of the smallest to the largest measurements of TP.
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Figure 5. Gradient of water quality with Chl-a concentration in 32 study sites. Lakes with >20 Chl-a
µg/L are shown by a vertical line indicating medium to high turbidity. Lakes are presented on the
basis of the smallest to the largest measurements of Chl-a.

3.2. Detrended Corespondence Analysis (DCA)

A total of 11 species of subfossil gastropods were collected from the 32 study lakes. The taxon
Cipangopaludina miyagii was the most common species recorded, followed by Parafossarulus striatulus
and Radix plicatula, Alocinma longicornis, and Radix swinhoei (Table 2). The compositional gradients of
sub-fossil gastropods after detrending by segments, squared-root transformation, down-weighting
of rare taxa, and non-linear rescaling of axes [59], revealed that a total of 37% of the total variation
was explained by the first two DCA axes (Table 3, Figure 6). Gastropod species such as R. swinhoei
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were closely associated with DCA axis 1, while the species Stenothyra glabra and Hippeutis cantori were
associated with DCA axis 2 (Figure 6).

Table 2. Mean abundance ± SD of the gastropods collected from 32 lakes.

Gastropod (Snail) Species Mean Min Max

Cipangopaludina miyagii (Kuroda) 5.30 ± 11.42 1 43
Parafossarulus eximius (Frauenfeld) 1.00 ± 0 1 1
Parafossarulus striatulus (Benson) 3.41 ± 3.96 1 12
Alocinma longicornis (Benson) 4.00 ± 1.41 3 5
Radix swinhoei (Adams) 2.00 ± 1.15 1 4
Radix plicatula (Benson) 3.18 ± 2.08 1 6
Stenothyra glabra (Adams) 1.00 ± 0 1 1
Bradybaena ravida (Benson) 1.00 ± 0 1 1
Semisulcospira cancelata (Benson) 1.00 ± 0 1 1
Hippeutis umbilicalis (Benson) 1.00 ± 0 1 1
Hippeutis cantori (Benson) 1.00 ± 0 1 1
Pulmonate 6.18 ± 12.29 1 69
Nonpulmonate 1.96 ± 1.42 1 7

Table 3. Summary of a Detrended correspondence cnalysis (DCA) of the 11 species of gastropods
in 32 sites.

DCA Axes 1 2 3 4

Eigenvalues (λ) 0.635 0.267 0.116 0.073
Length of gradient 4.255 3.006 2.479 2.107
Cumulative percentage variance of species data 26.0 36.9 41.6 44.6

Sum of all unconstrained eigenvalues = 2.455
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3.3. Canonical Correspondence Analysis (CCA)

The compositional gradient length of the first DCA axis was more than 4, thus non-linear
ordination (CCA) was used to examine species-environment relationships. A preliminary CCA,
when constrained with all environmental variables and 11 sub-fossil gastropods in ordination,
identified two lakes (Meiliang Bay and Ce) as outliers. A forward selection method in unrestricted
Monte Carlo tests of 999 random permutations in a reduced model in CCA showed that four
environmental variables: Chl-a, TP, Ca, and K, were significant in the species data (p < 0.05) (Figure 7).
The first two CCA axes explained 17.1% and 8.7% of the total variation in the species data, while the
species-environment relationships of each axis explained 51.7% and 26.2% of the total data, respectively
(Table 4). The biplots (Figure 7B) showed that the taxon Hippeutis umbilicalis was positively related
to Ca concentrations and was abundant in Zhupo and Futou Lakes, while the taxon Semisulcospira
cancelata was related to TP and the taxon Radix swinhoei was related to Chl-a.
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Figure 7. (A) Biplots of canonical correspondence analsysis (CCA): Samples vs. environmental variables
in 30 surface sediment samples. The cumulative percentage variance of species data (%) are shown in
Axis 1 and Axis 2; (B) Biplots of CCA: species of subfossil gastropods vs. environmental variables in
30 surface sediment samples. Cumulative percentage variance of species-environment (%) are shown
in Axis 1 and Axis 2.

Table 4. Summary of canonical correspondence analysis (CCA) forward selection of 11 species of
gastropods in 30 sites.

DCA axes 1 2 3 4

Species-environment correlations 0.850 0.637 0.703 0.492
Cumulative percentage variance of species data (%) 17.1 25.8 30.6 33.1
Cumulative percentage variance of species-environment (%) 51.7 77.9 92.3 100

Sum of all eigenvalues = 2.415
Sum of all canonical eigen values = 0.800

3.4. Generalized Linear Model (GLM)

Out of 11 species of subfossil gastropods identified from the surface sediment samples, only
Cipangpaludina miyagii showed strong sensitivity to increasing concentrations of Chl-a. The C. miyagii
populations declined substantially in lakes with Chl-a concentrations > 5 µg/L (Figure 8).
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3.5. Subfossil Gastropod Stratigraphy

Altogether, six species of subfossil gastropods, Ballamya aeruginosa, Parafossarulus eximius,
Parafossarulus striatulus, Alocinma longicornis, Radix swinhoei, and Semisulcospira cancelata, were recorded
in a 36 cm long sediment core collected from Changdang Lake. The preservation was scarce as
only a few complete individuals from each species were retrieved. The relative abundance of
all five species was common in the 1950s. The subfossil abundance of Ballamya aeruginosa was
dominant among species collected throughout the period (1935–2015 AD between a 36 and 27 cm
depth (c. 1935–1955 AD). The preservation of the other five species was relatively poor. P. eximius
remains were rarely encountered. The abundance of P. striatulus was low with sporadic abundance.
The abundance of the other three species, A. longicornis, R. swinhoei, and S. cancelata, was also low,
where the abundance of A. longicornis and S. cancelata declined, while the abundance of Radix swinhoei
increased over time (Figure 9).Geosciences 2018, 8, x FOR PEER REVIEW  14 of 19 
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Figure 9. Sediment stratigraphy of subfossil gastropods (relative abundance) in Changdang Lake in
the lower Yangtze River.
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4. Discussion

4.1. Gastropods and Aquatic Ecosystem Health in the Middle and Lower Reaches of the Yangtze River
Floodplain Lake System

How freshwater gastropod communities respond to changes in floodplain lakes’ ecosystem
health in the middle and lower reaches of the Yangtze River system is the key question of our
study. Gastropods show strong interactions with fish, macroinvertebrates, and littoral macrophytes
in shallow lake ecosystems [60]. Macrophyte communities play a central role in regulating water
quality and lake ecosystem health, while gastropods graze on periphyton and transfer carbon energy
to higher trophic levels [61,62]. However, ecosystem health in the floodplain lakes of the middle
and lower reaches of the Yangtze River system has declined due to the excessive use of fertilizers in
agricultural catchments and aquaculture, and the release of nutrients into the lake systems [48]. In our
study, a large number of lakes are classified as eutrophic and six lakes are considered hypertrophic,
as shown by high TP concentrations (Figure 4). The loss of ecological health in these lakes is due
to the cumulative effects of a range of stressors, which include nutrients, carbon, salts, and toxins.
Freshwater gastropods are reportedly sensitive to high toxic compounds such as microsystin LR in
eutrophic lakes [63]. For example, Radix swinhoei lives in aquatic plants and is commonly exposed
to the microsystin LR toxin during cyanobacterial blooms in the lower Yangtze lakes, with altered
metabolism and reproductive performance [28,63,64]. In our study, at least nine lakes also have a
>20 µg/L Chl-a concentration, leading to significantly reduced transparency and hypoxia (Figure 5).
Gastropod diversity was poor in lakes with high TP and Chl-a, due to the loss of aquatic macrophytes.
Macrophytes have attached periphyton, which is an important element of the diet of gastropods [19].

4.2. Community Level Response to Lake Ecosystem Health

Although the number of species was low, the DCA discriminated the sites as per the gastropod
affiliation. Species such as H. catori and S. glabra were associated with lakes characteristic to ”healthy“
conditions with a relatively good quality, consisting of a high macrophyte density. The CCA indicated
strong relationships between gastropod species and four environmental variables. The species
H. umbilicalis was related to Ca-rich lakes such as Zhupo and Futou lakes (Figure 7B). Studies suggest
that hard water lakes provide a favourable environment for gastropod populations as these lakes
contain a rich source of minerals and calcium needed for shell development [40,65]. Shells are
formed during ecological processes, where water biogeochemistry plays a central role in physiological
processes of snails [44,45].

The temporal response of gastropods to the ecosystem health of lacustrine systems is poorly
known. The decline in the subfossil abundances of S. cancelata and A. longicornis in the sediment core
from Changdang Lake suggests a rapid deterioration of Lake ecosystem health, possibly caused by high
concentrations of TP in the water. Both S. cancelata and A. longicornis are sensitive to water pollution.
Gastropods are also sensitive to changes in the hydrodynamics of lake systems. The modification of
environmental flows is common in the region, which has considerable implications for lake levels and
macrophyte dynamics in the middle and lower reaches of the Yangtze system [6,66–68]. Despite the
aquatic macrophytes which play a significant role in gastropod composition, we were not able to
analyse the macrophyte records for our subfossil gastropod records. Gastropods receive food from
epiphytic macrophytes [19]. Prior to the 1970s, Changdang Lake would likely have had a more
diverse assemblage of macrophytes (submersed, emergent, and floating-leaved) and morphology
supporting the growth of gastropods; however, after the 1970s (around 20 cm depth in the core),
the catchment of the lake was modified by humans, subsequently leading to the loss of submerged and
emergent macrophytes (Figure 2). As the Changdang Lake is very shallow and exposed to frequent
wind-induced turbidity, this leads to considerable implications for the dynamics of macrophytes and
thereby for gastropod populations and diversity. The deterioration amplified by increased nutrient
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loading and climate change over the past 60 years in the middle and lower reaches of the Yangtze
River system is widely reported by various authors [19].

4.3. Population Level Response of Lake-Ecosystem Health

Gastropods show an increased heterogeneity to environmental gradients in shallow lakes,
which ultimately determines their populations [19]. Understanding of individual species’ requirements
to the environment holds crucial information to decipher changes in Lake ecosystem health [33].
For example, Cai et al. [69] examined the ecological stoichiometry (i.e., maintenance of fixed elemental
composition in body or elemental homoeostasis) of two of the most widely distributed gastropods in
the lower Yangtze River. The carbon:nitrogen:phosphorus (CNP) stoichiometry of Corbicula fluminea
and Bellamya aeruginosa exhibited substantial natural intraspecific variation in tissue stoichiometry.
Unlike other gastropod species, the characteristic of having CNP stoichiomertry in these species is
thought to help them adapt to nutrient enriched environment [69]. In our study, only one species
of gastropod, Cipangopaludina miyagii, showed a significant decreasing monotonic response to Chl-a
concentrations in the GLM (Figure 8), indicating that the species is more likely to occur at eutrophic to
hypertrophic conditions. This evidence suggests that there has possibly been a rapid deterioration of
ecosystem health in some Yangtze River floodplain lakes as a result of multiple stressors including
nutrients, heavy metals, and several other toxic compounds in the river system. Further studies are
crucial to better understand the relationships between gastropods and environmental variables.

5. Conclusions

The floodplain lake ecosystems of the middle and lower reaches of the Yangtze River system,
China, have gone through rapid environmental change over the past 50–60 years. Spatial and temporal
responses of subfossil gastropods (freshwater snails) in the region suggest that the ecosystem health
of some of the Yangtze River lake systems is likely to have declined over time. Response of the
taxon, Cipangopaludina miyagii in GLM, for example, indicates highly polluted water bodies and
associated ecosystems of some study sites possibly caused by nutrient loading, and the release of
heavy metals and toxic compounds into the water courses from the catchments. Considerable decline
in the abundance of subfossil gastropod taxa Semisulcospira cancelata and Alocinma longicornis over the
past 50 years possibly indicates a rapid increase in water pollution in the region due to increasing
concentrations of TP loading in some Yangtze lakes, including Chenjia and Yangcheng. This study
shows that gastropods have the potential to constitute important bioindicators. The use of subfossil
gastropods in lake sediments shows that the approach can have promising application for better
understanding long term ecological health and contributing to a science-based allocation of resources
in the conservation and management of ecosystems across the middle and lower reaches of the Yangtze
River system and beyond.
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