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Abstract: Catastrophe models quantify potential losses from disasters, and are used in the insurance,
disaster-risk management, and engineering industries. Tsunami fragility and vulnerability curves
are key components of catastrophe models, providing probabilistic links between Tsunami Intensity
Measures (TIMs), damage and loss. Building damage due to tsunamis can occur due to fluid forces or
debris impact; two effects which have different implications for building damage levels and failure
mechanisms. However, existing fragility functions are generally derived using all available damage
data for a location, regardless of whether damage was caused by fluid or debris effects. It is therefore
not clear whether the inclusion of debris-induced damage introduces bias in existing functions.
Furthermore, when modelling areas likely to be affected by debris (e.g., adjacent to ports), it is not
possible to account for this increased likelihood of debris-induced damage using existing functions.
This paper proposes a methodology to quantify the effect that debris-induced damage has on fragility
and vulnerability function derivation, and subsequent loss estimates. A building-by-building damage
dataset from the 2011 Great East Japan Earthquake and Tsunami is used, together with several
statistical techniques advanced in the field of fragility analysis. First, buildings are identified which are
most likely to have been affected by debris from nearby ‘washed away’ buildings. Fragility functions
are then derived incorporating this debris indicator parameter. The debris parameter is shown to be
significant for all but the lowest damage state (“minor damage”), and functions which incorporate the
debris parameter are shown to have a statistically significant better fit to the observed damage data
than models which omit debris information. Finally, for a case study scenario simulated economic
loss is compared for estimates from vulnerability functions which do and do not incorporate a debris
term. This comparison suggests that biases in loss estimation may be introduced if not explicitly
modelling debris. The proposed methodology provides a step towards allowing catastrophe models
to more reliably predict the expected damage and losses in areas with increased likelihood of debris,
which is of relevance for the engineering, disaster risk-reduction and insurance sectors.

Keywords: tsunami damage; empirical fragility curves; great east Japan earthquake and tsunami
2011; debris; catastrophe modelling; vulnerability functions; loss estimation

1. Introduction

Tsunami have the potential to cause huge economic and financial losses, as demonstrated by the
2011 Great East Japan Earthquake and Tsunami (referred to throughout as the 2011 Japan Tsunami),
which cost the lives of over 18,500 people (National Police Agency of Japan, 2017). Tsunami fragility
functions are a family of cumulative distribution functions (Figure 1) that provide the probability
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of a given type of building exceeding specified damage states (each individual curve represents
a specific damage state) for a given value of a Tsunami Intensity Measure (TIM, e.g., inundation depth).
Vulnerability functions are generally derived from fragility functions, and are cumulative distribution
functions that relate expected human or financial losses to a TIM. Vulnerability functions are a key
component of catastrophe models, and so are vital for land-use and emergency planning as well as
human and financial loss estimation, for the purposes of mitigation and transfer of tsunami risk.
Tsunami-induced building damage can arise due to water ingress (damage to building contents
and non-structural elements), fluid forces (hydrostatic and hydrodynamic) and debris effects (impact
and damming). Debris effects are a significant source of building damage, yet are seldom explicitly
modelled in tsunami fragility and vulnerability functions. Debris effects on buildings include:

e Impact from large water-borne objects (e.g., cars, ships, shipping containers, trees, building
fragments etc. Figure 2a). A function of debris mass, velocity and contact duration (hardness);

e Increase in flow viscosity /density due to collected smaller debris/sediment (Figure 2b);

e  Damming (filling of openings with debris, increasing the effective area experiencing lateral load, Figure 2b).

Compared to seismic studies, few fragility functions for buildings affected by tsunami exist,
and studies collating these functions [1,2] show that the vast majority have been based solely on data
collected during the aftermath of the 2011 Japan Tsunami. Empirical fragility curves are very specific
to the building type and flow and debris conditions from where the data was taken [3]. For example,
Figure 1 shows very different fragility functions derived from damage data from mountainous and
coastal areas of the same city affected by the 2011 Japan Tsunami. These differences stem mainly
from the differing flow conditions experienced over these different topographies, rather than from
significant differences in building composition. These graphs suggest either that the TIM selected
might not be appropriate to fully describe the flow conditions, or that significantly different levels of
debris impact are at play in these different geographical areas. Without further clarity, as they stand,
it is clear that these empirical fragility functions are highly location-specific.

o LV3 o  LV4

xLV2 oLV3  aLV4 LV5 OLV6 S 1ive ——Tocd
o 1 ®
] g
fos :
S 0.6 S
N " S
° 0.5 °©
,_3‘ 0.4 5
2 o2 2
B ;
A0 - - - T v T A 5

0O 2 4 6 8 10 12 14 2 3 4 5 6 78 910
Inundation depth (m) Inundation depth (m)

Figure 1. Fragility functions for ria (mountainous) coast (a) and coastal plains (b), but both from the
same city of Ishinomaki, Japan [3]. This suggests that using only one Tsunami Intensity Measure (TIM),
inundation depth, is insufficient to capture the damage potential of the flow.

(@
Figure 2. Evidence of debris effects on buildings, from the 2011 Japan Tsunami. (a) Likely large debris

impact on the top floor of an overturned Reinforced Concrete-framed building; (b) Openings dammed
by debris. (Photos: [4]).
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Various TIMs have been used in recent fragility studies to describe flow conditions, such as depth,
velocity and hydrodynamic force [5-7], and Macabuag et al. [8] present a methodology for selecting
the optimum TIM for a given dataset. However, TIMs in existing fragility studies rarely account
explicitly for the debris-induced damage [1,2], and it has not yet been investigated whether this
omission introduces a significant bias (systematic error) in the prediction of tsunami damage or loss.
Charvet et al. [9] presents initial steps to address this issue by generating fragility functions considering
that debris is mostly composed of the remains of collapsed buildings, and as such designates buildings
as having been affected by debris if they are within a given distance (distances from 10 m to 150 m
are tried) of a building that has been washed away. However, this method both ignores non-building
sources of debris (cars, ships, shipping containers, trees etc.), and does not make any allowance for
the size or number of collapsed buildings. For example, one small, nearby collapsed structure is
considered to be as much a driver of debris damage as several large collapsed structures. The current
study proposes to extend this work by also considering the number of nearby collapsed buildings.

Given the needs highlighted above, this paper presents a preliminary investigation to address the
following research questions:

e Isbias (systematic error) observed in fragility functions which do not explicitly model the presence
of debris in tsunami inland flow?

e Can a reliable and accurate estimation of debris effects be incorporated into fragility
function derivation?

e  What effect does consideration of debris have on financial loss estimation?

To address the above research questions, this study extends the preliminary work conducted
in [10] to examine the effect of debris in more detail and to consider the impact that including
debris-effects in models has on loss estimation. Note that a reliable or accurate method for identifying
debris impact is a significant challenge requiring further research, and as such is not the main focus
of the current study, which will make assumptions to determine debris impact. The study instead
focuses on presenting a methodology to conduct sensitivity analyses to determine the effect of debris
impact on fragility and vulnerability curve derivation (so identifying bias in current studies), and to
model more reliably the expected damage in areas with increased likelihood of debris. The proposed
methodology is presented in Section 2, a detailed building-by-building damage dataset and associated
tsunami inundation model from the 2011 Japan Tsunami is presented in Section 3, and the proposed
methodology is applied to this case-study dataset in Section 4. Finally, the results and their implications
for fragility analysis using observational data from past tsunami are discussed.

2. Proposed Methodology

To address the research questions posed in the previous section, a three-step methodology is
developed. In the first step, an exploratory analysis is carried out to identify buildings that have been
impacted by debris, with a sensitivity study carried out to check the influence of assumptions made on
the resulting fragility functions. In the second step, it is investigated whether the addition of a debris
term in the fragility functions leads to a statistically significantly better fit to the data. In the third step,
vulnerability functions are derived from the fragility functions so as to estimate economic loss for the
case study locations, and a comparison is made between estimates from functions which do and do
not incorporate a debris term. The three steps are shown in Figure 3, described in more detail in what
follows, and demonstrated for a case study dataset in Section 4.
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Figure 3. Flow chart showing the 3-step methodology presented in this paper, to quantify the effect that debris-induced damage has on fragility and vulnerability

function derivation, and subsequent loss estimates.
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2.1. Step 1: Exploratory Analysis of Debris-Induced Bias

A major source of large debris within tsunami inland flow is from collapsed buildings [9].
Therefore, a very simple assumption is made to identify whether buildings have been affected by debris
impact or not: buildings in close proximity to collapsed buildings are assumed to be affected by debris
impact. A regular grid is applied to the case study location, and the total footprint area of all “washed
away” buildings is calculated for each grid square. If this area exceeds a threshold proportion of the
total building footprint area for that grid all buildings of that grid square are deemed to have been
affected by debris and so are removed from the dataset. It is highlighted that although this method still
ignores non-building sources of debris (cars, ships, shipping containers, trees etc.), it is an improvement
on that presented in [9] as it considers the size and number of nearby collapsed buildings.

To assess the sensitivity of this definition of debris impacted buildings to the threshold
definition, fragility functions are developed for the complete dataset (i.e., without considering debris)
and compared to those developed for buildings assumed to have/have not been affected by debris.
A comparison of these functions is used to indicate whether the ignoring of debris-effects may introduce
systematic bias.

Key to the empirical fragility assessment is the construction of a statistical model which fits
the data best [11]. Fragility curves corresponding to each damage state (index i) are determined
by assigning a damage response indicator, damage state (DS), to each building (index j), which is
considered to follow a multinomial distribution (termed the “random component” of the model).
Each building is also assigned a TIM value, Xj. In Macabuag et al. [8], the comparison of various
statistical models showed the advantages of using parametric models and in particular the Generalized
Linear Model (GLM). GLMs relate the mean of a response variable (the probability of damage state
exceedance, P(DS > DS;) to the explanatory variables (x;) (with this relationship often termed
the “systematic component” of the model) via an arbitrary link function. Macabuag et al. [8]
also introduces Cumulative Link Models (CLMs), which recognize that the damage is an ordinal
categorical variable so using all available information regarding the data in the database to form
a single model (rather than separate GLMs for each damage state, [12]). For the example of
a probit link function (the inverse standard cumulative normal distribution) the components
of a CLM are shown in (1) and (2), where By and ; are the unknown regression parameters
(i.e., intercept and slope, respectively) estimated by a maximum likelihood optimisation algorithm.

DS = {0,1,2,3,4,5}, DS‘x]- ~ Multinomial(P(DS = DS;|TIM = x]->)
1- P(Ds > DS; x/-)
Where, P(Ds = DSZ-‘TIM = xj> = P(DS > DS; x]) - p(Ds > Ds,ﬂ‘xj)
Random Component (1)
P(DS > DSZ“X])
i=0
0 <i < Npg
i = Nps
Systematic Component  and probit (P <DS > DS;|TIM = xj)> = Bo,i + B 2)

Note that many existing studies fit models to the logarithm of the TIM (In ;1) [1] so as to force
the fragility functions through the origin. This is desirable as it is expected that when the TIM is zero,
the probability of damage is also zero. This practice will also therefore be conducted for all models in
this study.

Guidelines by the Global Earthquake Model (GEM) for the fragility assessment of building in
earthquake-prone areas [11] recommend that uncertainty quantification be conducted using bootstrap
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methods. It is therefore proposed that 5th and 95th-percentile bootstrap confidence intervals should be
constructed for fragility functions in this methodology based on 1000 iterations.

2.2. Step 2: Quantifying the Effect of Debris in Fragility Function Derivation

To address research question 2, the effect of debris on fragility function derivation is quantified
by the addition of a debris term in the fragility functions, and then testing of these terms to identify
whether they lead to a statistically significantly better fit to the data.

The significance of including debris data in the model is investigated by forming a more complex
model which includes a binary debris indicator variable, debris;, indicating whether or not the building
has been affected by debris (3) (i.e., debris; = 1 for all buildings within grid squares which have a ratio
of washed away footprint area to total area above the threshold percentage). The parameter §;; in
Equation (3) adjusts the intercept of the model and Equation (4) includes a fourth parameter 3; which
adjusts the slope of the model (an interaction term). In this way, a single model can be formed and
the significance of each parameter can be determined by their p-values. A likelihood ratio test is then
carried out to determine whether there is a significant increase in model accuracy with the addition of
the debris terms.

probit(P(ds > DS;|TIM = x;)) = Boi + P1,iX; + Po,debris; 3)

probit(P(ds > DS;|TIM = x;)) = Bo; + B1,ixj + Bo,idebris; + B3 ix;debris; 4)

Guidelines by the Global Earthquake Model (GEM) [11] recommend the use of the Likelihood
Ratio Test (LRT) to compare nested models (models where parameters of one model are a subset
of the parameters of the other model), as conducted by some recent studies [6,13]. The likelihood
statistic of a model describes the likelihood of observing the observations on which the model was
fit, given the error distribution defined by that model. A more complex statistical model (one with
more explanatory variables) will always fit the training data as well or better than a simpler model fit
to the same data, however the LRT tests whether the improvement in fit of a more complex model
is statistically significant. The test utilizes the likelihood ratio test statistic (D) of two nested models,
which is a function of the ratio of the models’ likelihood statistics (2).

D= 7210g Lsimple model ®)

Lcomplex model

The distribution of the test statistic D is approximately a x> distribution, with degrees of freedom
equal to the difference between the degrees of freedom of the two models being tested (dfsimple model
— Afcomplex mode1)- By assuming this X’ distribution, the probability (or p-value) of D can be computed,
with a p-value < 0.05 indicating a less than 5% chance that the difference in deviance statistics D was
developed from random chance, and so the more complex model can be rejected. The likelihood ratio
test is used in this methodology to compare nested models.

2.3. Step 3: Quantification of Impact on Financial Loss Estimation

To address research question 3 estimated economic loss for the case study locations are compared
between estimates from fragility functions which do and do not incorporate a debris term.

Financial loss can be calculated using vulnerability functions, which relate the TIM to loss,
often expressed as a Mean Damage Ratio (MDR) (defined as the ratio of the cost to repair a building,
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to its replacement cost). The expected loss E[L] for a single building is therefore the MDR multiplied
by that building’s replacement cost, and the total loss is the sum of the losses for all buildings (6).

N,
MDR(TIM) = Y. MDRps, - [P(ds = DS;|TIM)]
=0

Npuildings

E[L]= Y MDR(TIM = x;) - (Replacement Cost)

j=1

i

(6)

By comparing loss estimates based on fragility functions that do and do not incorporate a debris
term, it is possible to draw conclusions as to whether the explicit modelling of debris is significant for
the dataset considered.

3. Presentation of Case Study Data

3.1. Building Damage Dataset

The building damage data used in this paper is taken from the 2011 Japan Tsunami building
damage database compiled by Japan’s Ministry of Land Infrastructure Tourism and Transport (MLIT).
The database is comprised of building information (including observed inundation depth and
damage state (Table 1) for each individual building located within the inundation area of the 2011

Japan Tsunami.

Table 1. Damage state definitions used by the Japanese Ministry of Land Infrastructure Tourism

and Transport following the 2011 Great East Japan Earthquake and Tsunami. Descriptions from [14],

usage descriptions are after [3].

Damage State Description Use
Possible to use
Ds1 Minor Damage Inundation below 1mmed1ately after
ground floor. minor floor and
wall cleanup.
The building is .
DS2 Moderate Damage  inundated less than 1m Possible to use E.lfter
moderate repairs.
above the floor.
The building is
DS3 Major Damage inundated more than 1m P0551b.1e to use after
above the floor major repairs.
(below the ceiling)
The building is Major work is
DS4 Complete Damage inundated above the required for re-use of

ground floor level.

the building.
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Table 1. Cont.

8 of 16

Damage State

Description Use

DS5 Collapsed

DS5*

DSé6 Washed Away

The key structure is

damaged, and difficult .
to repair to be used as it Not repairable.
was before
The building is
completely washed Not repairable.

away except for
the foundation

This paper considers the same dataset as [8], which comprised of three case-study locations,
namely the towns of Ishinokami, Kesennuma and Onagawa (Figure 4, which represent 80%, 15%,
and 5%, respectively of the combined dataset. It is noted that as DS5 and DS6 do not represent
progressively worse damage states they will be combined (into DS5%) for the purposes of fragility

function derivation.

Figure 4. Inundation and damage data referring to the 2011 Japan Tsunami. (a) Wave propagation

results, with case-study locations indicated: 1 = Ishinomaki, 2 = Onagawa, 3 = Kesennuma.

(b) Inundation simulation results for Ishinomaki (¢) Building damage data with buildings coloured
from green (damage state (DS)1) to red (DS5) with black indicating DS6.

The construction material of a building has been shown to significantly affect its seismic
performance [15]. In [8], it can be seen that for this dataset the damage state distributions and fragility
curves for reinforced concrete (RC) and steel construction materials are very similar to each other, and
so may be grouped together and analysed simultaneously (termed as “engineered” buildings for the
remainder of this paper). Conversely, fragility curves for engineered and non-engineered (wood and
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masonry) buildings differ in both slopes and intercepts, and so it is appropriate to consider these
material groups separately. In this study, fragility curves are developed specifically for the engineered
material class (4570 buildings), which allows us to focus on a relatively homogenous building class,
whilst also ensuring a large dataset necessary for meaningful results.

Buildings of unknown construction material make up 18.1% of the total dataset within the
inundated area, representing a significant proportion of the data. Previous studies [16] generally
conduct complete-case analysis (i.e., they remove any partial data, such as buildings of unknown
material, from their fragility analysis). However, [8] showed that missing data can only be removed if
it can be shown to be Missing Completely At Random (where the data is missing purely by chance so
that there is no relationship between the buildings that have missing material data and other attributes
such as the building height, size and use) and that this is not the case for the 2011 MLIT Japan data.
Multiple Imputation (MI) (which involves replacing missing observed data with substituted values
estimated multiple times via stochastic regression models built on the other attributes) has been shown
to be an acceptable method for estimating missing data, and so is conducted in order to estimate
building material based on footprint area, damage state, building use, and observed inundation depth
used to complete the data.

3.2. Tsunami Inundation Simulation Data

To supplement the observed inundation depth data, a numerical inundation simulation is
conducted for the case-study locations to calculate simulated peak inundation depth (h), velocity
(v), Froude number (a measure of velocity non-dimensionalised by depth) and momentum flux
(a product of depth and velocity, proportional to hydrodynamic drag force). For this dataset, it is
found in [8] that the equivalent quasi-steady force (see [17])is the TIM which provides the optimal fit
to observed damage data. This TIM is also shown in [18] to represent the force of a tsunami inundation
on buildings. It is evaluated via two different flow regimes determined by Froude Number, and it
relates h, v and blockage ratio (building width/channel width, which is taken as 25% in this study)
to force, denoted here as Fgs. The two TIMs that are considered in this paper are therefore observed
inundation depth (f45) and the simulated equivalent quasi-steady force (Fgs).

The numerical tsunami inundation model is presented in detail and validated by [19].
The tsunami source model used in this study is the time-dependent slip propagation model
presented in [20]. The wave propagation and inundation calculation solves discretized non-linear
shallow-water equations [15,21] over six computational domains in a nested grid system. The
non-linear shallow-water equation includes the effects of flow resistance, which is parameterised
using uniform value of the Manning’s roughness coefficient (n = 0.025). The example results shown in
Figure 4 are the peak values for each grid square over the simulation period are the peak values for
each grid square over the simulation period.

4. Application of Methodology to Case Study Data

4.1. Step 1: Exploratory Analysis of Debris-Induced Bias (Case Study)

A regular grid of 500 m is applied to each case study location (Figure 5). The total footprint
area of all “washed away” (DS6) buildings is calculated for each grid square. If this area exceeds
a threshold proportion of the total building footprint area for that grid all buildings of that grid square
are designated as having been affected by debris. The levels of threshold proportions (i.e., washed
away area/total area) are selected arbitrarily, and for the needs of this study three levels are tested:
20%, 35% and 50%.

Table 2 shows the number of buildings in the grid squares deemed to be affected by debris.
As expected, the lowest collapse area threshold (of 20%) leads to the greatest number of buildings being
removed from the dataset. Examining the damage states, inundation depths and forces experienced at
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building locations shows that buildings affected by debris generally fall into higher DS categories and
at higher tsunami intensities.

Table 2. Proportions of data designated as debris-affected under various collapse area thresholds.

Number of
Threshold Buildings % of total Dataset
. o P Designated (4570 Buildings)
Footprint area of ' hed away' buildings within gridsquare .
<: E Tutulj;reu of all bui;{iings in gridsquareg ) as Affected Affected by Debris
by Debris
Base case (no buildings designated as having been affected by debris) 0 0%
50% of total grid building area 588 13%
35% of total grid building area 778 17%
20% of total grid building area 1440 32%

Fragility functions are formed for all engineered buildings, and for those designated as affected or
unaffected by debris, for the 20%, 35% and 50% collapse area thresholds. Reference [8] demonstrates
that the optimal TIMs for this dataset are inundation depth and a measure of force, and so both of
these TIMs are adopted here. Partially-ordered cumulative link models with a probit link function
(model (2)) are formed on the logarithms of the selected TIMs, as this model is shown by [8] to fit this
dataset well.

The fragility functions formed for all engineered buildings (i.e., the complete 4570-building
dataset, ignoring debris) are considered as the base-case. It is seen that fragility functions for buildings
with/without debris-impact deviate from the base-case, with the size of that deviation increasing with
lower threshold values (i.e., the greatest deviations are seen for functions formed on data for the 20%
collapse area threshold). Figure 6 therefore compares fragility functions formed for all engineered
buildings, and for those designated as affected or unaffected by debris, for the 20% collapse area
threshold (visible trends are similar for the 50% and 35% thresholds). Note that Figure 6 is plotted in
link-space such that the x- and y-axes are transformed (indicated in the axis titles) so that the fragility
functions appear as straight lines (Equation (2)), allowing trends to be more easily seen.

Intuitively, lower damage exceedance probabilities are expected in the absence of debris-related
damage (i.e., a given flow depth may be deemed as more likely to cause damage if debris is also present
in the flow). Therefore, taking fragility functions formed for all engineered buildings as the base-case
(solid line, Figure 6), then the expected trend in Figure 6 is that damage exceedance probabilities
should be higher for functions formed on debris-impacted buildings (dashed line, Figure 6) and lower
for functions formed on buildings not struck by debris (dotted line, Figure 6). This expected trend is
indeed shown in Figure 6, with some exceptions. For depth, the exceptions lie at lower depths for
DS3 and very high depths at DS4 and DS5, where the damage exceedance probabilities for buildings
not struck by debris are greater than the base case. For force, the exceptions lie at high force levels
for DS4 and very high force levels for DS5 where the damage exceedance probabilities for buildings
not struck and struck by debris are greater and lower than the base case respectively. Consider that
for the expectation to be upheld at all TIM values then the curves must be perfectly parallel, but
the methodology used does not prescribe this, meaning that they will inevitably cross at some point.
It may therefore be that these highlighted, counterintuitive instances are due to a lack of data at these
TIM ranges to constrain the functions. This crossing of the curves can be prevented by including the
debris term within the model (and omitting an interaction term, so that the curves remain parallel),
as will be conducted in Step 2 below.
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Figure 5. 500 m grid used for debris analysis overlaid on case-study location Ishinomaki.
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Figure 6. Fragility functions for observed inundation depth (top) and simulated force (bottom) for
fragility functions derived for all engineered buildings (solid line, with 95% bootstrap confidence
intervals) and buildings which are/are not deemed to be affected by debris (for the 20% collapse area
threshold). Some curve do not extend full the width of fig (e.g., DS2, TIM = h, struck by debris) as for
some TIM values there is a cumulative probability of 0, such that probit(0) cannot be evaluated, and so
the curve cannot be drawn for these TIM values.

It can be seen in Figure 6 that the confidence intervals at lower damage states are wider for
buildings struck by debris, which reflects the fact that there are not many debris-affected buildings at
these lower damage states. Le., Buildings in the vicinity of other washed away buildings, DS6, are likely
to have experienced higher damage states themselves. This is intuitive, as it would be expected that
debris-affected buildings should experience greater damage. It can also be seen that confidence
intervals are narrower for force (Figure 6, bottom) compared to depth (Figure 6, top), which might be
considered to indicate reduced uncertainty when considering force as a TIM.

Therefore, the exploratory analysis presented in Figure 6 demonstrates that the consideration of
debris effects has a sizeable impact on the resulting fragility functions, and so this impact should be
quantified in Step 2 of the methodology, below.
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4.2. Step 2: Quantifying the Effect of Debris in Fragility Function Derivation (Case Study)

The effect of debris on fragility function derivation is quantified by the addition of a debris term
in the fragility functions, and the testing of this term to ascertain whether it leads to a statistically
significant better fit to the data. A single model is formed which considers all engineered buildings
and the significance of each parameter is determined by their p-values (Table 3). A likelihood ratio test
is carried out to determine whether there is a significant increase in model accuracy with the addition
of the debris terms (Table 4).

The p-values in Table 3 show that all debris parameters are significant and that the null hypothesis
(that debris has no influence on damage state) can be rejected with the exception of the debris and
debris interaction terms for DS1 (3, ps; and 3 ps1). The LRT results in Table 4 give p-values << 0.001
showing that the reduction in the residual sum of squares for the more complex model is statistically
significant, so inclusion of debris in the fragility function formulation improves the performance of
fragility functions.

Table 3. Regression parameters of model (4).

Parameter Parameter Description Estimate Std. Error p Significance !
01 1.(Intercept) 2.44 0.08 1.14 x 107189 .
112.(Intercept) 1.20 0.03 5.01 x 1072% —

Bo 213.(Intercept) 0.11 0.03 2.89 x 105
314.(Intercept) —1.41 0.05 1.31 x 107190 -
415.(Intercept) —1.45 0.05 293 x 10163 kot
011 Inlhgps ;! 0.08 0.01 2.69 x 10731
112 Inlhops | 0.09 0.01 3.38 x 10752 ot

B1 213. Inlhgps | 0.46 0.02 1.62 x 107124 wox
314. Inlhgps ;1 1.38 0.04 3.71 x 10-2%
415. Inlhops j | 1.03 0.04 1.72 x 107119

011. debris; 0.13 0.21 5.36 x 1071
112. debris; 1.06 0.15 2.83 x 10712
B2 213. debris; 1.67 0.10 1.57 x 104 i
314. debris; 1.58 0.12 2,90 x 10738
415. debris; 0.89 0.11 2.37 x 10715
011. Inlhyps ;|- debris; 0.04 0.02 1.62 x 1072 *
112. Inlhgpsj . debris; 091 023 6.58 x 107>

B3 213 . Inlhgps ;1. debris; —0.24 0.04 1.74 x 10~8

314.1nlhops ;1. debris; —0.61 0.08 1.44 x 1071 ook
415.Inlhops ;1. debris; —0.46 0.07 6.89 x 10~ 1

1 Significance codes are: *** = p < 0.001, ** = p < 0.01, * = p < 0.05.

Table 4. Likelihood ratio test results comparing models of increasing complexity based on observed
inundation depth. Model numbers are defined in the text above. Equation (2) refers to model based on
a single TIM, (3) includes a debris term, (4) includes a debris-TIM interaction term.

R Model - Number of Akai'ke ‘Inforn‘lat.ion Log-Likelihood Pr (>Chisq)
andom Systematic Parameters Criteria Statistic
Component Component
Equation (2) 10 11,177 —5578
Equation (1) Equation (3) 15 10,547 —5258 <2.2 x 10710 4
Equation (4) 20 10,400 —5180 <2.2 x 10716

4.3. Step 3: Quantification of Impact on Financial Loss Estimation (Case Study)

Section 4.2 demonstrates that debris effects influence fragility function derivation. However, the
question remains as to what impact this might have on the estimation of expected loss (E[L]) derived
from those fragility functions. Equation (6) shows that accurate calculation of E[L] requires information
on the value of the property and on the expected MDR for each damage state. The accurate definition
of property value and expected MDR requires financial data which is beyond the scope of this paper.
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Hence, an approximate comparison of representative calculated losses is presented here to illustrate
the impact that debris-effects can potentially have on loss forecasting.

Preliminary vulnerability functions according to models (1) and (4) (considering only tsunami
intensity, and incorporating debris, respectively) are shown in Figure 7. As per [22-24] and [25],
MDRs of 0, 5, 20, 40, 60, and 100% are assumed for DS0, DS1, DS2, DS3, DS4, and DS5, respectively.
The buildings considered for the loss estimation are the same engineered structures (presented in
Section 2.1) used for the fragility derivation. The inundation scenario considered is the same 2011
Tsunami inundation presented in Section 3.2. In the absence of more recent and site-specific financial
data a mean unit construction cost of 1600$/m? is assumed as per [22,24,25]. The total construction
cost for each building is then calculated by multiplying the unit construction cost by the footprint area
and the number of stories. The total economic losses (the sums of expected loss for all the buildings in
the dataset) are compared in Table 5.

~ 751
0.75 0.75 — All Engineered
14
0O 0.504 0.504/: .. Not Struck
= 3 by Debris
0254/ 0.251 _ _ Struck
by Debris
0.0 25 5.0 75  10( 0 250 500 750 1000
Observed Inundation Depth (m) Calculated Force (kN/m)

Figure 7. A comparison of vulnerability curves (mean damage ratio (MDR) vs. TIM), for all engineered
buildings, those struck by debris and those not-struck by debris. Note that the curves pass through the
origin, but increase instantly for all non-zero TIM values.

Table 5. A comparison of indicative estimated losses due to building damage, for engineered buildings.

Total Economic Loss
(Calculated from Vulnerability

Model Number Model Description Functions with the Following TIMs)
Inundation Depth Force
1) Considering a single TIM only 4362$M 4310$M
4) Considering Debris (and interaction) 4231$M 4175$M
Difference: 1.2% 1.4%

Figure 7 shows that, as expected, the MDR for buildings which are not struck by debris are
lower than those struck by debris, and generally lower than that when ignoring the effect of debris
(except at higher inundation depths, the reason for which should be investigated in future studies).
Table 5 shows that considering the effect of debris lowers the loss-estimate by between 1-1.5%,
amounting to approximately 100$M-150$M in this particular scenario.

It is highlighted that the vulnerability functions cross at high values of inundation depth because
of a lack of data with which to constrain the curves for this TIM range. This could be treated by
removing the debris interaction term (B3 in Equation (3), so constraining the curves to be parallel.

Given a paucity of publicly available financial data, it is not possible to compare these results with
observed losses during the 2011 Japan Tsunami, but this illustrative example serves to demonstrate that
ignoring debris (or assuming that it is implicitly captured in the modelled inundation TIM), may lead
to biases in loss estimation.
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5. Conclusions

This paper has presented first steps towards quantifying the influence of debris-related effects on
tsunami fragility and vulnerability assessment. A three-stage methodology is presented to conduct
sensitivity analyses to determine the effect of debris impact on fragility and vulnerability curve
derivation (so identifying bias in current studies), and to model more reliably the expected damage in
areas with increased likelihood of debris. This methodology is demonstrated using a detailed damage
dataset from the 2011 Great East Japan Earthquake and Tsunami.

The main results from this preliminary work are as follows:

1.  Debris-affected buildings mostly experienced higher TIM values and higher damage states
(i.e., debris designation occurs in the vicinity of other ‘washed away’ buildings, which as more
likely to occur in locations of high TIM values).

2. The removal of buildings thought to be affected by debris resulted in changes to both the slope
and intercept of the fragility functions. This indicates that the inclusion of debris-damaged
buildings in the dataset does have an effect on fragility functions that may not be captured by
purely flow regime-related TIMs.

3.  The difference between the intercept and slope for fluid-only and debris-influenced fragility
functions can be quantified by inclusion of debris-indicator terms in the fragility functions.

4. The influence of debris regression parameters on determining building damage is shown to
be significant for all but the lowest damage state (“minor damage”), for the dataset used.

5. More complex fragility functions which incorporate debris regression parameters are shown to
have a statistically significant better fit to the observed damage data than models which omit
debris information. This suggests that inclusion of debris information in fragility functions
improves the accuracy of the model.

6. Comparing simulated economic loss for estimates from vulnerability functions which do and do
not incorporate a debris term suggests that biases in loss estimation may be introduced if not
explicitly modelling debris.

Debris does not impact all areas in the same way and is expected to be more significant in areas of
high urban density and high inundation, and so existing fragility studies may be biased if they do not
account for debris. Further study is needed to more accurately quantify the effects of debris, however
the research presented in this paper presents a step towards developing a methodology which is able to
model more reliably the expected damage and losses in areas with increased likelihood of debris. This
is of significant relevance for the engineering, disaster risk-reduction and insurance sectors, which all
model predicted losses using vulnerability functions.
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