Supplement for

Impact of Climate Change on Flood Frequency and Intensity in the Kabul River Basin

Muhammad Shahid Iqbal¹, Zakir Hussain Dahri², Erik P Querner³, Asif Khan^{4,5} and Nynke Hofstra¹

- ³ Querner Consult, Wageningen, the Netherlands
- ⁴ Department of Civil Engineering, UET Peshawar, Jalozai Campus, 25000, Pakistan
- ⁵ Centre of Water Informatics and Technology (WIT), LUMS, Lahore, Pakistan.

¹ Environmental Systems Analysis Group, Wageningen University and Research, the Netherlands.

² Water Systems and Global Change Group, Wageningen University and Research, the Netherlands.

Impact of Climate Change on Flood Frequency and Intensity in the Kabul River Basin Supplement

Total cumulative estimated economic losses of all the floods that have been already reported in the Kabul river basin. Figure S1 presents all the losses in terms of direct losses, human loss, no of villages that were damaged or destroyed due to these floods in the past 80 years. Similarly, in Table S1 the direct damages due to floods in lower part of the Kabul basin are reported specifically in 2010 flood which was most devastating in the history.

Figure S1: Flood damages during 1950-2015 in the overall Indus Basin, Pakistan (FFC 2015)

Districts	Number of Affected Villages	Number of Human Deaths	Number of Injured People	Total Population Displaced	Loss of Crops (ha)
Peshawar	16	46	68	37373	37555
Charsadda	34	66	115	145810	16480
Nowshera	27	167	10	350336	No data
Mardan	43	8	40	11403	285
Swabi	11	7	4	742	40
Swat	42	95	207	101220	13950
Total	173	389	444	646884	68310

Table S1: District-wise flood damages in 2010 in the lower Kabul basin in Pakistan (Khan and Mohmand, 2011).

Figure S2: (a)Digital Elevation Model (resolution 90m) ranges from 271m to 7603m (b) landuse classes, where FRSE = Forest, RNGE = Range Land / Pasture land, URHD= Urban area, WATR= Water bodies, BARR= Barren land, AGRC= Agricultural land close grown crops, and AGRL= General Agricultural land, all the land-use classes were taken from (Arnold et al. 2009) (c) soil types classification of the Kabul basin.

Parameter_ Name	Min_value	Max_value	Calibrated_Value	
Snow peak temperature ⁰ C lag factor (<i>TIMP</i>)	0.373601	1	0.462	
Snowmelt base temperature ⁰ C (SMTMP)	3.89562	6.460076	5.616	
Snowfall temperature ⁰ C (SFTMP)	0.277164	2.808696	1.841	
Curve number (CN_2)	75.157191	78.54298	73.084	
Average slop steepness (HRU_SLP)	0.726551	1.753337	1.144	
"n" value for overland flow (OV_N)	-0.06826	0.434154	0.219	
Average slop length in meters (SLSUBBSN)	1.047301	3.084937	1.057	
Base-flow alpha factor days(ALPHA_BF)	0.344094	0.660076	0.455	
Groundwater delay (GW_DELAY)	37.193033	47.708542	41.933	
Soil available water capacity (SOL_AWC)	0.089423	0.289731	0.179	
Evaporation compensation coefficient (ESCO)	0.603259	1.061997	0.776	
Surface runoff lag coefficient (SURLAG)	5.141996	18.747337	13.501	
Saturated hydraulic conductivity (SOL_K)	1.041996	3.3747337	1.377	
Threshold depth of water in the shallow aquifer for return flow (<i>GWQMIN</i>)	1.952797	4.084298	2.789	

Table-S2: Parameters selected and final calibrated values for SWAT-Model.

Table-S3: Flow (m^3/s) for the 5, 25, 50, 100, and 500 year return periods for RCP 4.5 and RCP 8.5 for all selected GCMs and observed annual maximum flow for the contemporary period (1981-2015), near (2031-2050) and far (2081-2100) future.

	Time Period per RCP	5 yrs.	25 yrs.	50 yrs.	100 yrs.	500 yrs.
Observed	1981-2015	4500	5700	7300	8200	9150
INM-CM4 IPSL- CM5A EC- EARTH	RCP4.5 2031-2050	4300	5165	6880	7733	8622
		5829	6565	8580	9644	10753
		6384	7172	9840	11060	12332
MIROC5		9626	10250	11698	13148	14660
INM-CM4		4320	5093	7194	8086	9016
IPSL- CM5A	RCP8.5 2031-2050	5520	6295	9094	10222	11397
EC- EARTH		7063	8088	11024	12391	13816
MIROC5		11360	12335	12814	14403	16059
INM-CM4		4205	5262	7258	8158	9096
IPSL- CM5A	RCP4.5 2081-2100	6181	6962	8781	9870	11005
EC- EARTH		7870	9079	10932	12288	13701
MIROC5		11929	13215	13455	15123	16862
INM-CM4		4510	5100	7042	7915	8825
IPSL- CM5A	RCP8.5 2081-2100	5872	6614	8342	9376	10454
EC- EARTH		7366	8305	10205	11471	12790
MIROC5		11030	12500	13122	14749	16445