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Abstract: Knowledge of the composition (mineral and fluid proportions) of rock formation lithologies
is important for petrophysical and rock physics analysis. The mineralogy of a rock formation can be
estimated by solving a system of linear equations that relate a class of geophysical log measurements
to the petrophysical properties of known minerals and fluids. This method is useful for carbonate
rocks with complex mineralogies and a wide range of other lithologies. Although this method of
linear inversion for rock composition is well known, there are no interactive, open-source programs
for routinely estimating rock mineralogy from standard digital geophysical wireline logs. We present
an interactive open-source program, MinInversion, for constructing a balanced system of linear
equations from digital geophysical logs and estimating the rock mineralogy as an inverse problem.
MinInversion makes use of a library of petrophysical properties that can be easily expanded and
modified by the users. MinInversion also provides several options for solving the system of linear
equations and executing the linear matrix inversion including least squares, LU-decomposition and
Moore-Penrose generalized inverse methods. In addition, MinInversion enables the estimation of the
joint probability distributions for constituent minerals and measured porosity. The joint probability
distributions are useful for revealing and analyzing depositional or diagenetic composition trends
that affect porosity. The program introduces ease and flexibility to the problems of rock formation
composition analysis and the study of the effects of rock composition on porosity.

Keywords: petrophysical composition analysis; well logs; inverse problem; probability distribution;
depositional/diagenetic composition trends

1. Introduction

Geophysical logs are continuous recordings of a geophysical parameter along a borehole.
They are routinely used for the lithological identification of rock formation units. Gamma-ray and
spontaneous-potential logs are useful to distinguish between shale and sandstone units. A special class
of logs that are recorded for porosity estimation are particularly useful in composition analysis of rock
formations. Their measurements of bulk density, photoelectric factor, acoustic slowness, and neutron
porosity capture the bulk or resultant property of all rock constituents combined. Porosity is a measure
of the void space in rocks that is filled with fluids; the fluids are also treated as one of the rock
constituents. The relationship between the log measurements and the properties of the mineral and
fluid constituents can be modeled using a set of linear equations [1,2] expressed as:

CV = L (1)

where C is a matrix of the petrophysical properties of the rock constituents, V is a vector of the unknown
proportions of the rock constituents and L is a vector of geophysical log measurement which represent
the bulk petrophysical properties of the rock formation. An additional unity equation is included
which states that the sum of all mineral and fluid proportions is unity. For example, Equation (1) with
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the predominant components of quartz, calcite, clay and brine and log measurements of sonic travel
time, density and photoelectric absorption factor can be written out explicitly as:

ρq ρca ρcl ρ f
Peq Peca Pecl Pe f
∆tq ∆tca ∆tcl ∆t f
1 1 1 1




Vq
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Vcl
φ

 =


ρl

Pel
∆tl
1

 (2)

where ρ, Pe, ∆t, V stand for density, photoelectric factor, sonic travel time and volume fraction
respectively, φ is porosity. The subscripts q, ca, cl, f and l stand for quartz, calcite, clay, fluid (brine) and
log measurement respectively. Equation (1) can be solved using a forward modeling procedure where
geological models with different mineral and fluid combinations are used to generate alternate log
measurements for comparison to the actual logs [2]. The more useful method for solving Equation (1)
is to cast it as an inverse problem and solve for V:

V = C−1L (3)

Although the above procedure is well established, there are no interactive open source programs
for constructing and solving Equation (1) directly from the digital geophysical logs. Doveton et al. [3]
demonstrated the use of an Excel spreadsheet add-on capable of calculating well log composition for
defined petrofacies, however the constant modification to Excel spreadsheet functionality means that
the spreadsheet add-ons also require constant modification and effort duplication. Other software
like PfEFFER-java (Kansas Geological Society, Wichita, KS, USA), Geolog (Paradigm, Houston, TX,
USA), PowerLog (CGG, Paris, France), TechLog (Schlumberger Limited, Houston, TX, USA) are
capable of estimating lithology composition, however, these programs are not open-source; this
significantly limits their use, expansion and modification by users. In addition the methods used by
these programs for computing the mineral composition volumes are often not revealed, hence it is
difficult to compare the performance of different methods. We present here an interactive open-source
program, MinInversion, for constructing a balanced system of linear equations and estimating the
rock mineralogy as an inverse problem. The program is open-source and can be easily modified
and expanded by users. In addition the program facilitates the comparison of the performance of
different inversion methods for composition analysis. The program interactively reads in log files in
the standard LAS file format or Excel spread sheet format and provides choices of mineral and fluid
constituents from a library of petrophysical properties compiled from several sources (see Table 1).
The library of petrophysical properties contains various minerals and composite mineral mixtures
and can be easily expanded and modified by the user. The program also provides the options on the
method for executing the inversion computation including the least squares, LU-decomposition and
the Moore-Penrose generalized inverse methods.

2. Geophysical Log Descriptions

The class of useful logs for rock composition analysis includes porosity logs (sonic, density
and neutron logs) and litho-density logs. Sonic logs measure the interval travel time or slowness
(inverse of velocity) of a formation as a continuous function of depth. The slowness varies with
lithology and porosity. Wyllie’s time averaging equation [4], gives a simple relationship between
velocity and porosity:

1
Vl

=
φ

Vf l
+

1− φ

Vm
(4)

where φ is the porosity, Vf l is the fluid sonic velocity, Vm is the matrix sonic velocity and Vl is the
logged velocity. Wyllie’s equation can be written in terms of slowness as:

∆tl = φ∆t f l + (1− φ)∆tm (5)
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where ∆t f l is the interval travel-time of the saturating fluid, ∆tm is the interval travel-time of the rock
matrix, and ∆tl is the logged interval travel-time. The density logs measures the bulk density of a rock
formation as a continuous function of depth. The bulk density is a combination of the densities of
mineral and fluid components. It is used to calculate porosity and is good for lithology identification.
Equation (6) shows the bulk density log response equation

ρb = φρ f l + (1− φ)ρm (6)

where ρb is the measured bulk density, ρm is the density of the rock matrix, ρ f l is the density of the
saturating fluid.

Neutron logs are a continuous measurement of the fast neutron bombardment of rock formations
as a function of depth. It targets the hydrogen density of the rock volume, which modifies neutrons
rapidly; hence it is primarily a measure of the rock formation’s fluid and gas content. It is reported in
neutron porosity units and is generally calibrated to a default of equivalent limestone porosity units.
On this porosity scale, zero porosity is matched with the mineral calcite and so the equivalent zero
reading for other minerals must be used to accommodate other lithologies. The neutron porosity is
sensitive to hydrogen in all forms, so that minerals that contain water of crystallization, such as gypsum,
register high equivalent neutron porosities which can then be used in the volumetric estimation of
these minerals. Equation (7) shows neutron log response equation.

nl = φn f l + (1− φ)nm (7)

where nl is the neutron log measurement, nm is the neutron value of the rock matrix, n f l is the neutron
value of the saturating fluid.

The photoelectric log was introduced as a curve on the lithodensity log by Schlumberger, but is
now recorded routinely by most logging companies. It measures the photoelectric absorption factor
cross-section index Pe of a rock formation, which is defined as (Z/10)3.6, where Z is the average atomic
number of the rock constituents. It is useful as a matrix indicator especially if cross-multiplied with
the corresponding density value to produce a volumetric-scaled parameter. However, this is closely
correlated with the photoelectric factor, so that effective volumetric composition analysis can be made
directly from values recorded on LAS files. Use of the photoelectric factor in inversion is limited if
the drilling mud used while logging contains barite because the photoelectric absorption index of
barite is significantly larger than that of most minerals. Equation (8) shows the photoelectric factor log
response equation.

Pel = φPe f l + (1− φ)Pem (8)

where Pel is the photoelectric factor log measurement, Pem is the photoelectric factor of the rock matrix,
Pe f l is the photoelectric factor of the saturating fluid.

We will use the known petrophysical properties of specific minerals to invert for the proportions of
the minerals that sum together to give the actual log measurements at a particular depth. For each depth
point within the well or a selected zone, MinInversion automatically constructs the linear system of
equations using the log response equations for each log together with the unity equation (which states
that the sum of all components is unity) and the above mentioned petrophysical properties. The system
of linear equations is then solved using whichever method is currently highlighted in the methods
panel of the program. The inversion model used in solving the system of equations has no inherent
constraints to prevent negative proportion estimates. If negative proportions occur, they may be used
as diagnostic tools for the better choice of mineral components. Other things that could lead to negative
proportions are: tool error and adverse borehole environments [2]; it is therefore advisable to check for
these problems before using logs in the inversion procedure.
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Carbonate rocks in general have more complex mineralogy than siliciclastic rocks hence, inversion
for petrophysical properties is most important for carbonate rocks [5]. The method has been used
effectively to estimate the complex mineralogy of carbonate rocks in the Permian basin, West Texas [2,5].

3. Software Description

3.1. Linear Inversion Theory

The MinInversion program enables the solving a system of linear equations using any of three
methods: least squares inversion, the LU-decomposition and Moore-Penrose generalized inverse
methods. A least squares solution for Equation (1) can be found by solving for a particular vector
V that minimizes a measure of the misfit between the data L and CV. Equation (9) shows the
residual (r) between L and CV. The least squares method seeks to minimize the sum of the square of
the residuals (r). The normalized least squares solution is expressed in Equation (10).

r = CV − L (9)

V = (CTC)−1CT L (10)

where C is a matrix of the petrophysical properties of the rock constituents, V is a vector of the
unknown proportions of the rock constituents and L is a vector of geophysical log measurement which
represent the bulk petrophysical properties of the rock formation. T is the transpose operator.

In LU-decomposition, given that matrix C is non-singular, it is separated or decomposed into a
lower triangle matrix (Ltr) and an upper triangle matrix (Utr) using the Gaussian elimination forward
elimination steps. Equation (1) is then replaced with two new Equations (11) and (12). The solution is
found by solving for W in Equation (11) and then back substituting W in Equation (12).

LtrW = L (11)

UtrV = W (12)

The Moore-Penrose generalized inverse [6,7], is a generalized inverse method that can be used if
the inverse of C does not exist. The pseudo inverse is constructed by finding the set of all vectors (V+)
such that the euclidean norm ‖CV+ − L‖ reaches its least possible value. V+ is defined as the unique
matrix that satisfies the Equations (13)–(16) and can be computed using singular value decomposition
(SVD) [7].

VV+V = V (13)

V+VV+ = V+ (14)

(VV+)T = VV+ (15)

(V+V)T = V+V (16)

The execution times for the LU-decomposition methods and Moore-Penrose generalized inverse
methods are generally smaller than the required execution time of the least squares method,
however the LU-decomposition methods and Moore-Penrose generalized inverse methods are not
guaranteed to always be stable. Figure 1 shows the execution times for the three methods as a function
of well zone thickness.
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Figure 1. Comparison of average execution times for the three methods: Least squares, LU-decomposition
and Moore-Penrose generalized inverse methods, as a function of well zone thickness. An input of
three logs is used in all test cases. In general, the execution times increase with zone thickness.

3.2. Program Usage

The MinInversion program is written in Matlab and has an interactive graphical user interface
(GUI). Figure 2 shows the graphical user interface for the program with an inset example. The program
usage is described below:

1. Input: The “Load LAS Logs” program allows the user to interactively select geophysical logs in the
standard LAS (Log ASCII Standard) file format. The LAS format is a standard file format common
in the oil and gas and water well industries for storing well logging data. The “Load ASCII/XLS”
button lets the user input geophysical well log data in tabular ascii format, Microsoft Excel or
comma-separated-value formats.

2. Choosing Logs: After loading the input data, the “Select Logs” button lets the user choose the
logs to be used in the inversion and match the selected logs with mnemonics recognized by the
program. The selected logs appear in the first panel on the left in the GUI.

3. Viewing Logs: The “View Logs” button allows the user to display the selected logs in the
program’s main display axes.

4. Selecting Rock Constituents: The “Select Constituents” button is used to select the mineral and
fluid components with make up the rock. The program suggests the number of components
to select based on the number logs available from the previous selection. The constituents are
selected from the library of petrophysical properties (which can be easily expanded by the user).
The selected constituents appear in the second panel on the left in the GUI. Table 1 shows a
section of the library of petrophysical properties.

5. Inversion Method: The program currently permits inversion using three methods: least squares,
Moore-Penrose generalized inversion and LU-decomposition methods. The “Invert” button
calculates a solution to the linear system of equations constructed from the selected logs and
constituents using the method selected in the “Method” panel. The results composition volume
is then displayed alongside the logs in the main display axes. If the “Porosity Trends” button
is toggled on and the porosity logs have been loaded, the program generates plots of joint
probability distribution of measured porosity with constituent proportions.

6. Other features: The status bar displays the current status of the program during any of the above
processes. The “Save plots” generates high resolution images of the logs, the composition volume,
a combination plot of logs and composition, and the joint probability distribution plots in a folder
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labeled “MinInversion_Output” located in the current Matlab folder. The “Reset” button is used
to clear the memory and reset the program.

Figure 2. Interactive graphical user interface (GUI) for the MinInversion program. Inset image
shows composition analysis of well log data from the Permian Basin calculated using the
LU-decomposition method.

Table 1. Table showing a section of the library of Petrophysical properties compiled from several
sources. For composite constituents such as clays, values corresponding to dry samples should be used.
The values can be edited by the user. DT and DTS stand for compressional and shear wave slowness
respectively. The value −999.25 is used to represent values that are not available.

Component DENSITY (g/cc) DT (µsec/ft) DTS (µsec/ft) PE

Quartz 2.65 55.5 88.8 1.82
Shale 2.6 62.5 150 3.42

Calcite 2.71 47.2 89.9 5.09
Clays 2.65 64.3 98.9 3.03

Dolomite 2.87 43.9 74.8 3.13
Anhydrite 2.95 50 85 5.08
Gypsum 2.35 52.4 85.4 4.04

Muscovite 2.83 47.2 91.1 2.4
Biotite 3.2 55.5 100.6 8.59

Kaolinite 2.64 64.3 101.7 1.47
Glauconite 2.83 55.5 157.4 4.77

Illite 2.77 64.3 98.9 3.03
Chlorite 2.75 55.5 61.3 4.77

Orthoclase 2.54 68.9 84.9 2.87
Siderite 3.91 43.9 84.9 14.3
Pyrite 5 39.6 55.9 16.4
Halite 2.03 6.7 114.5 4

FreshWater 1 205 −999.25 0.36
Brine 1.1 188 −999.25 0.81
Oil 0.8 238 −999.25 0.12
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4. Applications and Examples

We demonstrate the application and usage of the MinInversion program using geophysical log
data from the Permian Basin, West Texas and the Atokan and Cherokee Pennsylvanian sandstone
formations, Kansas. Figure 3 shows the location of the wells used in this study.

Figure 3. Map showing the location of wells used in this study. One well is located in the Permian
Basin in Texas and the other well is located in Finney County in an oil-producing field within the
Hugoton gas area in Kansas.

4.1. Permian Basin, West Texas

The Permian basin located on the northwestern border of Texas and the southeastern border
of New Mexico is one of most prolific oil producing areas onshore of the US. The Permian basin
is a foredeep basin that developed during the late Mississippian and early Pennsylvanian [8].
Reservoir rocks of the Wolfcamp carbonate platform, consists of cyclic shallow-water facies affected
by diagenesis [9]. X-ray diffraction measurements on sparse core samples reveal that the three
predominant components are quartz, calcite and clay. Using MinInversion, we invert for the proportion
of the components. Figure 4 shows the results calculated using the least squares method. The inverted
porosity (blue) is obtained from the unity equation by subtracting the estimated mineral volumes from
unity. A good match can be observed between the inverted and measured porosity (neutron porosity).
A division between the quartz rich zone and the calcite rich zone can also be observed (broken line).

4.2. Pennsylvanian Sandstone, Kansas

We apply MinInversion to the late Atokan aged sandstone formation and the early Desmoinesian
(Cherokee group), from a well located in Finney County, Kansas. The middle Pennsylvanian sediments
are made up of both marine and nonmarine rocks containing mixed clastic sediments, shales and
limestone. The amount of limestone is indicative of a increasingly wide spread marine invasion of
the area during the middle and later Pennsylvanian time [10]. The Atokan stage consists of dark
interbedded cherty limestones and black shales. Gradational contact occurs between Atokan and
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Desmoinesian rocks in the basinward parts of the Hugoton embayment [11]. The lithofacies of
the Cherokee group consists of sandstone, sandy shale and widely extensive carbonate formations
interbedded with thinner shale units; the carbonate rocks thicken basinward. We invert for the
predominant components of quartz shale and calcite. Figure 5 shows logs used and the composition
analysis results computed using the Moore-Penrose generalized inverse method. The inverted porosity
(blue) is obtained from the unity equation by subtracting the estimated mineral volumes from unity.
A good match can be observed between the inverted and measured porosity (neutron porosity).

Figure 4. Composition analysis of geophysical well logs, Permian Basin, West Texas, calculated using
the least-squares method. A good match can be observed between the inverted and measured porosity
(neutron porosity). T marks the corresponding location of thin section photomicrograph in Figure 6.
The broken line represents a division between the quartz rich zone and the calcite rich zone.

4.3. Depositional/Diagenetic Composition Trends

MinInversion can be used to investigate depositional or diagenetic composition trends that affect
porosity. Interpretation of composition analysis results can be juxtaposed with other data types such as
thin-section photomicrographs and core data. Figure 6 shows thin section photomicrographs obtained
from samples corresponding to the location marked T within the well in the Permian Basin (Figure 4).
The photomicrographs show by calcite (marked C), Quartz particles and clay; porosity is mainly from
microporosity in organic matter and interparticle porosity. Calcite acts as cement and the multiple
stages of calcite cementation imply that the calcite cementation is diagenetic. Figure 7 shows the
joint probability distribution of measured porosity and rock constituents for the Permian Basin well
calculated using MinInversion. An increase in calcite can be observed to correspond to a decrease in
porosity indicating the effect of calcite cementation; this is in agreement with the photomicrograph
observations. An increase in quartz content can be observed to correspond to an increase in porosity;
this is caused by interparticle porosity between the grains. The distribution of clay with porosity reflects
differences in the quartz rich and the calcite rich zone (separated with the broken line). We calculate
the joint probability of measured porosity and clay for the two zones separately (Figure 8). The calcite
rich zone, which has less clay, shows no obvious trend between clay and porosity. The quartz rich zone,
which has more clay, shows a decrease in porosity with increasing clay content, indicating clay may be
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pore-filling. However the quartz rich zone has higher porosity than the calcite rich zone, which reflects
a combination of the effect of less calcite cement and more quartz.

Figure 5. Composition analysis of geophysical well logs, late Atokan and early Desmoinesian (Cherokee
group), Middle Pennsylvanian, Kansas, calculated using the Moore-Penrose generalized inverse
method. A good match can be observed between the inverted and measured porosity.

Figure 6. Thin section photomicrographs corresponding to the calcite rich location (marked T in
Figure 4) showing extensive calcite cementation (marked C) as well as Quartz particles and clay.
The dark matter in the image is a plant fragment containing sparry and ferroan calcite. Variation in
ferroan calcite indicates multiple stages of cementation and diagenesis.

Figure 9 shows the joint probability distribution of measured porosity and rock constituents for a
well in the late Atokan and early Desmoinesian deposits of the Pennsylvanian, Kansas. An increase
in calcite can be observed to correspond to a decrease in porosity indicating calcite cementation.
Quartz content increases with porosity, indicating interparticle porosity, however the data generally
has more samples with a smaller proportion of quartz content. An increase in shale content corresponds
to a decrease in porosity indicating the high compressibility of shale.
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Figure 7. Joint probability distribution of measured porosity and rock constituents for the well in the
Permian Basin. An increase in calcite can be observed to correspond to a decrease in porosity indicating
the effect of calcite cementation. An increase in quartz content can be observed to correspond to an
increase in porosity. The distribution of clay with porosity reflects the two zones (separated with the
broken line).

Figure 8. Cont.
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Figure 8. Joint probability distribution of measured porosity and clay for the well in the Permian Basin.
Inversion is performed separately for the quartz rich zone and the calcite rich zone. The quartz rich
zone, which has more clay shows a decrease in porosity with increasing clay content, indicating clay
may be pore-filling. The quartz rich zone has higher porosity than the calcite rich zone, which reflects a
combination of the effect of less calcite cement and more quartz.

Figure 9. Joint probability distribution of measured porosity and rock constituents for a well in the late
Atokan and early Desmoinesian deposits of the Pennsylvanian, Kansas. An increase in calcite can be
observed to correspond to a decrease in porosity indicating the diagenetic effect of calcite cementation.
Porosity increases with quartz content and decreases with shale content.
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5. Conclusions

We present an interactive open source program for constructing and solving a balanced system of
linear equations and estimating the rock mineralogy as an inverse problem. The program interactively
reads in log files in the standard LAS file format or excel spread sheet format, provides choices of
mineral and fluid constituents from a library of petrophysical properties and constructs a system of
linear equations for inversion. The program also provides the options on the method of executing the
linear matrix inversion computation including the Least squares, the Moore-Penrose generalized
inverse and the LU-decomposition methods. In addition MinInversion facilitates the study of
depositional or diagenetic composition trends that affect porosity in the data by generating plots of the
joint probability distributions of measured porosity and rock constituents. The program introduces
ease and flexibility to the problems of mineral composition analysis and the depositional or diagenetic
effects of rock composition on porosity using geophysical logs; this will aid in better decision-making
in subsurface resource exploration especially when composition analysis is juxtaposed with other
types of data.

Supplementary Materials: The following are available at www.mdpi.com/2076-3263/8/2/65/s1. MinInversion
Package. The software source code and demonstration video are available online at https://goo.gl/spdwMf.
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