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Abstract: Basaltic activity is the most common class of volcanism on Earth, characterized by
magmas of sufficiently low viscosities such that bubbles can move independently of the melt.
Following exsolution, spherical bubbles can then expand and/or coalesce to generate larger bubbles
of spherical-cap or Taylor bubble (slug) morphologies. Puffing and strombolian explosive activity are
driven by the bursting of these larger bubbles at the surface. Here, we present the first combined
model classification of spherical-cap and Taylor bubble driven puffing and strombolian activity
modes on volcanoes. Furthermore, we incorporate the possibility that neighboring bubbles might
coalesce, leading to elevated strombolian explosivity. The model categorizes the behavior in terms
of the temporal separation between the arrival of successive bubbles at the surface and bubble
gas volume or length, with the output presented on visually-intuitive two-dimensional plots.
The categorized behavior is grouped into the following regimes: puffing from (a) cap bubbles;
and (b) non-overpressurized Taylor bubbles; and (c) Taylor bubble driven strombolian explosions.
Each of these regimes is further subdivided into scenarios whereby inter-bubble interaction does/does
not occur. The model performance is corroborated using field data from Stromboli (Aeolian Islands,
Italy), Etna (Sicily, Italy), and Yasur (Vanuatu), representing one of the very first studies, focused on
combining high temporal resolution degassing data with fluid dynamics as a means of deepening
our understanding of the processes which drive basaltic volcanism.
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1. Introduction

Basaltic volcanism is characterized by magmas of low viscosity, ranging from 101–104 Pa·s [1],
which enable the free flow of gas bubbles within the melt, in contrast to the behavior of more viscous
silicic systems [2]. In basaltic magmas spherical bubbles are generated following exsolution of gas
from the melt [3]. These bubbles grow via diffusion, decompression-based expansion, or coalesce
to form non-spherical bubbles, e.g., of spherical-cap morphology [4–6], which can transition into
Taylor bubbles (also called gas slugs), which nearly span the conduit width, and are of a length
greater than, or equal to, the conduit diameter (see Figure 1 for further details on the morphological
characteristics of spherical-cap and Taylor bubbles) [4,7,8]. These distinct bubble morphologies give
rise to a variety of potential classes of surface degassing activity, specifically, passive degassing
of spherical bubbles [2]; puffing, from bursting of non-spherical bubbles or non-over-pressurized
Taylor bubbles [9–11]; and explosions from over-pressurized Taylor bubbles [12–14]. The latter scenario
is associated with strombolian volcanism, as manifested on the eponymous Stromboli volcano,
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e.g., [9,15], where the activity has been well characterized through measurements of the erupted
gas masses, e.g., [11,16–18], and studies into the explosive dynamics, e.g., [19–21].

A number of other targets worldwide also exhibit strombolian volcanism, e.g., Yasur [22],
Villarica [23], Etna [24], and Pacaya [25]. Similarly, puffing activity on volcanoes has been well
studied using video, thermal imagery, and gas measurement approaches, particularly on Stromboli,
e.g., [10,11,26,27].
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the ascent process. Furthermore, James et al. [28] developed a criterion to quantify the transition 
between puffing and explosive bursting, and Del Bello et al. [14] developed a static-pressure model 
for bursting Taylor bubbles. However, to date, there has been very little consideration of the fluid 
dynamics of spherical-cap bubbles in a volcanic scenario, bar the work of Bouche et al. [29]. Spherical-
cap bubbles can be considered a transitionary morphology with characteristic shape (see Figure 1), 
prior to the formation of Taylor bubbles. These bubbles are characterized by a quasi-hemispherical 
nose and horizontal base and, unlike slugs, have lengths less than, or equal to, the conduit width, and 
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Figure 1. An illustration of (a) spherical-cap and (b) Taylor bubble morphologies including the bubble
features relevant to the model described here. Any bubble falling within the wake length of the
bubble ahead of it is considered liable for imminent coalescence. Any bubble beyond the interaction
length would be considered to flow independently (e.g., in the single regions of the model outputs
shown in Figures 2 and 3). Bubbles within the interaction length are affected by the leading bubble
(e.g., falling within the rapid regions of Figures 2 and 3).

Hitherto, considerable attention has been devoted to the fluid dynamics of discrete aspects of slug
flow in volcanoes, via mathematical, numerical, and laboratory modelling approaches. In particular,
James et al. [13] investigated the evolution of Taylor bubble pressure and length during the ascent
process. Furthermore, James et al. [28] developed a criterion to quantify the transition between puffing
and explosive bursting, and Del Bello et al. [14] developed a static-pressure model for bursting
Taylor bubbles. However, to date, there has been very little consideration of the fluid dynamics of
spherical-cap bubbles in a volcanic scenario, bar the work of Bouche et al. [29]. Spherical-cap bubbles
can be considered a transitionary morphology with characteristic shape (see Figure 1), prior to the
formation of Taylor bubbles. These bubbles are characterized by a quasi-hemispherical nose and
horizontal base and, unlike slugs, have lengths less than, or equal to, the conduit width, and have
yet to develop a full falling film, as is the case with Taylor bubbles. There has also been very little
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attention devoted to resolving the implications of inter-bubble interactions within these volcanic
bubble flow regimes. Recently, we have highlighted the importance of coalescence between multiple
rising Taylor bubbles, in modulating the timing and intensity of high temporal resolution strombolian
explosions, based on field observations on Mt. Etna [24], and laboratory experiments [30]; the potential
importance of this phenomenon has also been highlighted by Gaudin et al. [26,27].

Here we present, for the first time, a combined model description of the fluid dynamics of puffing
and strombolian volcanism driven by spherical-cap and Taylor bubbles. This has been achieved
by: (a) bringing together prior model treatments of individual aspects of Taylor bubble flow from
the volcanic and fluid dynamics literature; (b) considering, for the first time, spherical-cap bubbles
in a volcanic scenario; and (c) including the previously little-considered (with notable exceptions,
including [31,32]) possibility that bubbles might interact with one another to coalesce and generate
larger, e.g., more explosive, masses. The model is also compared against degassing field data from
Stromboli [11,17,18], Etna [24], and Yasur [33] volcanoes. This is one of the very first attempts to
study volcanic degassing dynamics using a combination of modelling and gas flux time series [18],
expedited by the advent of≈1 Hz time resolution UV imaging of volcanic SO2 fluxes, which enables the
capture of rapid degassing phenomena in unprecedented detail [34–36]. This work is also one of only
a few in recent years, focused on defining transitions between basaltic degassing modes, building on
pioneering work performed in this area a number of decades ago, e.g., [37], that of Palma et al. [38] who
identified the relationship between bubble bursting strength and the duration of the styles of basaltic
volcanic activity relevant to this study, and the more recent work of Gaudin et al. [26], who categorized
explosions based on bubble sizes and eruptive properties.

2. Modelling Transitions between Spherical, Non-Spherical and Taylor Bubble Flow Regimes

The model classifies strombolian and puffing degassing regimes as distinct areas on plots of
inter-bubble burst spacing vs. bubble volume; this is illustrated schematically in Figure 2. In particular,
the activity is categorized within the following classes: puffing from spherical-cap bubbles; and
puffing from Taylor bubbles; and Taylor bubble-driven strombolian explosions. There is also a further
subdivision of these classes into scenarios whereby the bubbles can/cannot interact with one another,
i.e., “single” and “rapid” bursting regimes, and a region where bubble coalescence would inhibit
the presence of independent bubbles. The model (available as an Excel spreadsheet) is contained
within the supplementary material, with the underlying mathematics detailed below. In this section,
transitions between bubble morphologies will be considered, i.e., the zonation with respect to bubble
volume and length. In the following sections, the categorization in terms of inter-bubble spacing will
be covered, specifically in terms of when inter-bubble interactions may occur.

Firstly, the degassing regimes are classified according to bubble volume (note that volume and length
here are interchangeable using the formula for the volume of a cylinder, assuming a quasi-cylindrical
geometry, and that data on bubble volume are often more readily acquirable than bubble lengths).
Bubbles in basalts cease to act as spherical bubbles (e.g., following Stokes law) at low Reynolds numbers
(Reb), <0.3 [39], such that:

Reb =
ρmusbl

µ
(1)

where ρm is the melt density, µ the melt viscosity, l the bubble length, and usb is the spherical bubble
rise speed, from Stokes law:

usb =
2
(
ρm − ρg

)
g
(

l
2

)2

µ
(2)

where ρg is the density of the gas phase and g gravitational acceleration. The l at which a bubble ceases
to be spherical can, therefore, be defined, enabling demarcation of the length (i.e., bubble volume)
at which non-spherical bubbles form in Figure 2. Any bubbles smaller than this size would lead to
passive degassing and effusive activity, for example from lava flows [40–42].
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Figure 2. Left—an illustrative example of the zonation between activity classes associated with
the model, plotted on arbitrary inter-bubble repose time vs. bubble volume axes. Within area
(a) are spherical-cap bubbles, which produce passive activity or light puffing, (b,c) are Taylor
bubble flow scenarios resulting in non-explosive and explosively-bursting scenarios, respectively.
Area (d) represents cases where bubbles rise in sufficient proximity to one another to affect one
another’s fluid dynamics, while (e) corresponds to a region in which independent bubble bursting
is unlikely due to coalescence between neighboring bubbles. Right—a further illustrative example
with only defining lines between sections of the model. Important equations and bubble features are
highlighted. Please see the text for full details on these.

The non-spherical bubble regime is dominated by spherical-cap and Taylor bubbles, particularly
at targets such as Stromboli; therefore, our attention here will be focused on these bubble classes [5].
Spherical-cap bubbles burst passively at the magma surface or, as observed on Stromboli, can generate
puffing, e.g., [10,11,19,26,27]. At larger bubble dimensions, spherical-cap bubbles transition into
Taylor bubbles, when the bubble length exceeds that of the conduit diameter, e.g., [7]. Hence,
areas are defined to the right of Figure 2 relating to Taylor bubble-driven activity involving puffing
or strombolian explosions, depending on whether overpressure develops at the nose, e.g., [13].
This boundary has been defined by James et al. [28], who used the term, P∗slim, which characterizes
burst vigor, and is ≥1 for explosive gas release. Here, we adopt Equation (13) from [28] to define this
transition, for a Taylor bubble reaching the magma surface at a pressure equal to surface atmospheric
pressure, Psur f , giving:

P∗slim =

√
ρmgA′lPsur f

Psur f
(3)

where:

A′ = 1−
(

rTB
rc

)2
(4)

such that: rTB is the Taylor bubble radius, which is the conduit radius, e.g., rc minus λ′, where λ′ is
the thickness of falling film surrounding the Taylor bubble. The falling film thickness is found, as per
Llewellin et al. [43], from:

λ′ = 0.204 + 0.123tanh(2.66− 1.15 log10 N f ) (5)

where the dimensionless inverse viscosity, N f [7] is defined as:

N f =
ρm

µ

√
g(2rc)

3 (6)

Hence, following Equation (3), the length, (and volume) at which slugs transition to explosive
activity can be determined. The second element of the model is to consider the significance of
inter-bubble spacing, in terms of determining whether bubbles rise independently of one another
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or whether interaction, which might lead to coalescence, could occur. This is considered in the
following sections.

2.1. Interactions between Taylor Bubbles

The ascent velocity of a Taylor bubble base uTB is determined using the Froude Number, e.g., [43,44]:

Fr = 0.34

1 +

(
31.08

N f

)1.45
−0.71

(7)

such that:
uTB = Fr

√
2grc (8)

This speed is taken to be the average bulk rise velocity of a Taylor bubble [44] during ascent in
a volcanic conduit, as expansion, which causes acceleration of the nose, occurs closer to the surface [13].

Other properties of Taylor bubbles are also important here, in particular, the wake length lwake,
and the wake interaction length lmin. The wake and wake interaction lengths are key features of
a bubble during the coalescence process. Bubbles will begin to coalesce on meeting certain separation
criteria. The wake length, which is typically around four times shorter than the wake interaction
length, defines an area within which any trailing bubble will undergo near-instantaneous coalescence
with the leading Taylor bubble, i.e., a rapid acceleration of the trailing bubble into the leading bubble
as per [45]:

lwake = 2rc

(
0.30 + 1.22× 10−3N f

)
(9)

The wake interaction length defines an area of fluidic disturbance beneath the Taylor bubble,
within which any following bubble will be affected by the leading Taylor bubble through an increase
in velocity, such that the trailing bubble will no longer act independently [46]:

lmin = 2rc

(
1.46 + 4.75× 10−3N f

)
(10)

2.2. Interactions between Spherical-Cap Bubbles

Spherical-cap bubbles can also be characterized in terms of Reynolds number, in this case
appropriate to the length scale of these bubbles. This scale is determined by the equivalent diameter,
de for bubbles of volume Vb [46]:

de =

(
6Vb
π

) 1
3

(11)

Such that the Reynolds number in this case is defined as follows [46]:

Re =
ρmdeu

µ
(12)

For u we use the ascent velocity of the Taylor bubble base (e.g., uTB, to estimate the Re
characteristics of the system using a known velocity including effects of pipe diameter). The bubble
drag coefficient (Cd) is then calculated following [46]:

Cd =

(
2.670.9 +

16
Re

0.9
)1.

.
1

(13)

This relationship is applicable for regimes with Morton numbers >4 × 10−3, a condition satisfied
in volcanic scenarios, e.g., [14]. The spherical-cap bubble rise velocity (uCB) can then be calculated
using the following relationship, rearranged from Joseph [47], Equation (2.1):
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u2
CB =

(
gde
Cd

)
4/3

(14)

Coalescence between two spherical-cap bubbles occurs in the same manner as for Taylor
bubbles [6,48]. To consider this, de is firstly converted to bubble diameter (db) using the constant
0.57 [4], which accounts for the non-spherical morphology of these bubbles:

db =
de

0.57
(15)

The wake length of spherical-cap bubbles, cwake, applicable for Re < 200 (e.g., appropriate to
basaltic systems) is then determined as per Komasawa et al. [48]. Firstly, using bubble volume, Vb,
we can calculate the volume of the wake [48]:

Vw = VbRe0.66 (16)

which is then used to determine the wake length, cwake from the following relationship:

Vw =

(
πd2

w
4

)
× (cwake − lCB) (17)

where dw is the maximum wake diameter, which is taken as db, and lCB is the length of the cap
bubble (taken as db/2) [48]. For spherical-cap interaction length (cmin), there is no available prior
modelling literature to refer to here, hence, we take this to be four times greater than cwake, as this
is the approximate scaling between the wake and wake interaction lengths in the Taylor bubble
case, although, as spherical-cap bubble volume decreases, the influence of the interaction length will
also decrease.

2.3. Bubble Interactions

Using the theory presented in Section 2.1 and in Section 2.2 a temporal inter-bubble separation,
tmin, can be defined as a function of bubble volume (i.e., length) below which it would be highly
improbable for an independent trailing bubble to burst at the surface. In this case, any following
bubble would be travelling within the leading bubble’s wake, hence, would be liable for imminent
coalescence; tmin was, therefore, taken to be equal to the rise time of the trailing bubble (i.e., the ascent
velocity of the spherical-cap or Taylor bubble) through a column of liquid of thickness equal to that of
the leading wake length (lwake or cwake) plus the height of fluid (l f ilm), arising from complete drainage
of the film surrounding the leading bubble, following each burst. The latter was constrained, in the case
of Taylor bubbles, from the film volume, as a function of the slug volume, i.e., height, with knowledge
of the film thickness, as per Equation (5). For spherical-cap bubbles, this was constrained from the
bubble volume and conduit volume around the bubble (i.e., applying the formula for the volume of
a cylinder, for given conduit and/or bubble radii):

tmin =
l f ilm + lwake

uTB
or tmin =

l f ilm + cwake

uCB
(18)

This, therefore, defines a region on Figure 2e where bubble bursts are significantly less likely to
occur, i.e., within this region, all trailing bubbles are likely to undergo near-instantaneous coalescence
with the leading bubble. This area is termed the “repose gap” region, following the terminology of
Pering et al. [24], who, in a study of rapid bursting events on Mt. Etna, noted an absence of large mass,
low repose time events, hypothesizing that this behavior was due to coalescence; this region is also
discussed in a modelling framework in Pering et al. [30].
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We can also define the time, ttransition, below which adjacent rising bubbles cannot be considered to
behave independently (e.g., bubbles are located within the wake areas of those ahead of them), such that:

ttransition =
l f ilm + lmin

uTB
or ttransition =

l f ilm + cmin

uCB
(19)

These durations correspond to the time taken for a Taylor or spherical-cap bubble to rise through
a column of melt of height equal to that of the drained film plus the wake interaction length, lmin or cmin,
of the leading bubble (Figure 2), and are based on the lengths or volumes of bubble in question. Hence,
this line subdivides the non-spherical bubble degassing classes in Figure 2, into categories where the
bubbles can/cannot be considered as rising independently of one another, respectively. Note that
a single area is used to denote non-independent (i.e., rapidly-bursting) Taylor and spherical-cap
bubbles (Figure 2d), without segregation between explosive and non-explosive cases for Taylor bubbles,
as complexities associated with pressure differences in this regime could lead to cases where the P∗slim
parameter would not apply.

3. Model Application to Target Volcanoes and Comparison with Field Data

The model was initiated with a range of Taylor and spherical-cap bubble volumes relevant to the
volcano scale, e.g., with corresponding bubble lengths ranging from the centimeter scale for spherical-cap
bubbles, to the order of meters for Taylor bubbles. We apply the model for conditions appropriate to three
target volcanoes: Stromboli, Etna, and Yasur, where field data concerning puffing/strombolian explosive
behavior are available with inter-event repose intervals on the order of seconds to minutes. The model
outputs, with field data overlain, are shown in Figure 3. During bubble ascent, the overlying viscous
magma acts to retard expansion, i.e., creating a gas overpressure. To account for this phenomenon we
applied the model of Del Bello et al. [14] for Taylor bubble data for Etna and Stromboli, which provides
estimates of gas overpressure at burst and the resulting bubble lengths as a function of magmatic and
conduit parameters, from which burst volumes can be extracted.

Geosciences 2018, 8, x FOR PEER REVIEW  7 of 14 

 

These durations correspond to the time taken for a Taylor or spherical-cap bubble to rise through 
a column of melt of height equal to that of the drained film plus the wake interaction length,  or 

, of the leading bubble (Figure 2), and are based on the lengths or volumes of bubble in question. 
Hence, this line subdivides the non-spherical bubble degassing classes in Figure 2, into categories 
where the bubbles can/cannot be considered as rising independently of one another, respectively. 
Note that a single area is used to denote non-independent (i.e., rapidly-bursting) Taylor and 
spherical-cap bubbles (Figure 2d), without segregation between explosive and non-explosive cases 
for Taylor bubbles, as complexities associated with pressure differences in this regime could lead to 
cases where the ∗  parameter would not apply. 

3. Model Application to Target Volcanoes and Comparison with Field Data 

The model was initiated with a range of Taylor and spherical-cap bubble volumes relevant to 
the volcano scale, e.g., with corresponding bubble lengths ranging from the centimeter scale for 
spherical-cap bubbles, to the order of meters for Taylor bubbles. We apply the model for conditions 
appropriate to three target volcanoes: Stromboli, Etna, and Yasur, where field data concerning 
puffing/strombolian explosive behavior are available with inter-event repose intervals on the order 
of seconds to minutes. The model outputs, with field data overlain, are shown in Figure 3. During 
bubble ascent, the overlying viscous magma acts to retard expansion, i.e., creating a gas overpressure. 
To account for this phenomenon we applied the model of Del Bello et al. [14] for Taylor bubble data 
for Etna and Stromboli, which provides estimates of gas overpressure at burst and the resulting 
bubble lengths as a function of magmatic and conduit parameters, from which burst volumes can be 
extracted.  

 
Figure 3. Outputs from the model run with input conduit and fluid dynamic parameters appropriate 
to: (a) Mt. Etna; (b) Stromboli; and (c) and Yasur volcanoes. Overlain on the plots are data points 
derived from field measurements on these targets, for Etna from Pering et al. [24], and Yasur from 
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Figure 3. Outputs from the model run with input conduit and fluid dynamic parameters appropriate
to: (a) Mt. Etna; (b) Stromboli; and (c) and Yasur volcanoes. Overlain on the plots are data points
derived from field measurements on these targets, for Etna from Pering et al. [24], and Yasur from
Kremers et al. [33]. In the Stromboli case, a number of literature sources are referred to, as detailed
above. In each case a single repose interval is applied, which is a minimum for the observed activity.
Figure 3b also just shows the maximum, mean, and minimum burst volumes from each of the Stromboli
papers to simplify the graphic.
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The schematic representation of the model in Figure 2 necessarily applies sharp definitions to the
boundaries between defined degassing areas. In reality, there will be a degree of fuzziness around these,
as the model provides a mathematical simplification of the ‘real world’ conditions in volcanic conduits.

Firstly, we considered the case of Mt. Etna (Figure 3a). Here we took UV camera field data from
Pering et al. [24], captured during a period of very rapid bubble-bursting activity (modal inter-burst
period ≈ 4 s) observed at the Bocca Nuova crater. Here, observed masses were converted to in-conduit
volumes, using a pressure value of ≈65 kPa (i.e., for Mt. Etna’s summit craters’ altitude ≈3300 m)
within the Del Bello et al. [14] model. The parameters applied within our model were: magma density
of 2600 kg·m−3, viscosity of 2000 Pa·s, and conduit radius of 1.5 m, e.g., [49]. In general, the field
data clearly fall above the repose gap area, affirming the model suggestion from Pering et al. [24]
that independently-bursting, large-volume, low repose time events would be improbable, due to
inter-bubble coalescence in the conduit. The majority of bursts (62%) fall within the rapid bursting
Taylor and spherical-cap bubble area, with 15% contained in the single Taylor bubble explosive area,
12% in the single Taylor bubble puffing area, and most of the remainder in the single puffing area,
indicative of activity spanning the strombolian explosive-puffing spectrum. In the case of this rapid
bursting scenario, the model points towards bubble interaction playing a key role in the fluid dynamics,
as previously suggested by Pering et al. [24].

Secondly, for Stromboli (Figure 3b), we ran the model with density, viscosity, and conduit radius
values of 2700 kg·m−3 [50,51], 300 Pa·s [52], and 1.5 m, respectively [53,54]. Figure 3b also includes
a range of field data points, based on literature-derived main vent burst volumes [11,17,18]. These data
generally fall within the single explosive Taylor bubble region, in line with the classical strombolian
activity associated with this target. However, the very smallest bursts from the Tamburello et al. [11]
dataset fall within the single Taylor bubble puffing region, capturing the spectrum of activity exhibited
at the volcano. For the specifically-described ‘puffing’ events from Tamburello et al. [11], all the
data points are located away from the rapid Taylor bubble bursting area. Note that in all the above
cases, minimum repose times from the literature have been assigned, e.g., 50 s from Ripepe et al. [10]
for puffing. Hence, even for these rather extreme prescriptions of inter-burst temporal resolution,
the model points towards clearly independent bubble flow behavior.

In addition, Pering et al. [18] reported on non-explosive puffing events, from a hornito adjacent to
the southeast crater, with a minimum repose interval of 30 s. These data fall within the single puffing
areas for Taylor and spherical-cap bubbles. Even smaller decimeter-sized bubbles have also been
associated with puffing activity from smaller vent openings at Stromboli with repose intervals of
≈0.5–2 s [9,10]. When plotted on Figure 3b, these events mostly lie in the rapid puffing area of the
model, in view of their rather smaller inter-event durations than those puffing events reported in
Pering et al. [18].

Thirdly, the model was run for the Yasur volcano (Figure 3c). Here, Kremers et al. [33] reported
on infrasonic observations of Taylor bubble bursting, quoting slug lengths and inter-event intervals
for a number of events. Here, we applied magma density and viscosity values of 2600 kg·m−3 and
1000 Pa·s, with a conduit radius of 1.5 m [22] within the model. In particular, we converted the
Kremers et al. [33] data to the volume (see Table 1) using the formula for the volume of a cylinder
(the infrasound derived length data in Kremers et al. [33] already account for pressure and viscous
effects), and plot against repose time in Figure 3c. In this case all data fall within the single explosive
Taylor bubble region, in line with the existent strombolian activity, and indicating independent bubble
flow, well outside the repose gap region.
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Table 1. Slug length and repose time data associated with rapid strombolian activity in the Yasur
volcano (Kremers et al. [33] Table 2, note, only bursts with defined repose times are taken and this is
then taken as the time between bursts) in addition to calculated explosive gas volumes.

Length (m) Volume (m3) Repose (s)

118.5 285 82
174.9 354 29
138.5 308 160
68.6 207 59
109.7 271 73
149.5 322 149
142.1 313 185
102.6 262 380
83.7 235 82

4. Discussion and Limitations

Here, we present the first unified fluid dynamic treatment of spherical-cap and Taylor bubble-driven
puffing and strombolian explosive activity in basaltic volcanism, the most ubiquitous class of activity
on Earth. This involves concatenation of discrete modelled aspects of Taylor bubble flow in volcanic
scenarios, the consideration of spherical-cap bubble fluid dynamics in volcanology (building on the
considerations of [29]), and incorporation of the possibility of inter-bubble interaction, which has been
little considered, hitherto. We also compared the model against field data from Etna, Stromboli,
and Yasur volcanoes, resulting in the field data falling, as would be expected within the areal
zonation of activity regimes, e.g., in respect of whether strombolian activity or puffing was manifested.
In particular, the general absence of data points in the repose gap region of the plots, affirmed the
expectation that bubble-coalescence would mitigate against independent bubble bursting in this area.
A further model success is the seamless flow between the cmin and lmin traces, i.e., the transition
between Taylor and spherical-cap regions. Hence, the mathematical treatments presented here appear
not to break down close to this regime shift. The flow between cwake and lwake for the Etna data
(Figure 3a) demonstrates similar seamlessness, however, there is a slight mismatch for the Stromboli
data (Figure 3b), highlighting a need for further study into interaction lengths of spherical-cap bubbles.
In this treatment, we assume that rapid strombolian activity, such as that observed at Etna, are driven
by trains of fully-formed gas slugs, with associated fluid dynamic features, for the duration of ascent
from depth prior to burst.

Whilst a few data fell slightly within the repose gap region of Figure 3a,b, this is likely explicable
by the following: (a) The repose gap region refers to an area where bursting is improbable, rather than
impossible, and is based on the assumption that a bubble cannot exist independently within the
wake of another bubble; in reality such a bubble would have a very short, yet finite, lifetime which
could account for the slight overlap of some data into the repose gap region, and is commensurate
with the close proximity of all such events to the transition line; (b) for the Etna data, all such
events are within a second of the repose gap line, which is likely at least partially a result of the
margin of error of the inter-event durations, given the quantized camera acquisition time stamp and
finite exposure times (100 s of ms); (c) for the Stromboli data, the very smallest puffing events from
Ripepe et al. [10] fall within the repose gap, potentially indicating that this activity is associated with
somewhat different magmatic and rheological properties than those reported in the literature for
the bulk conduit conditions of Stromboli, and assigned to the model; alternately, this could indicate
that our assumption that cmin is four times cwake, based on the behaviour of Taylor bubbles, could be
an overestimate; and (d) a final issue is that the model does not include complexities associated with
the flow of bubble trains. Here, all bubble ascent velocities have been based on models associated
with the flow of single bubbles in vertical conduits. In fact, in bubble trains, the rise velocities are
higher than in the single bubble case [55–57], and there is also the issue of near-surface expansion of
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trailing bubbles, e.g., [13]. Both of these effects will act to lower the cmin, cwake, lmin, and lwake traces
in Figures 2 and 3, plausibly also accounting for the very few data points that fell within the repose
areas of the Etna and Stromboli plots. Future model development could take into consideration these
effects, in addition to inclusion of more complex and realistic conduit conditions, e.g., [12], such as
inclination [58,59] and formation of viscous caps at the top of the conduit [26,60], both of which are
possibilities on Stromboli.

5. Conclusions

Here, we present the first unified model treatment of cap bubble and slug-based puffing and
strombolian explosive degassing behavior in volcanoes. This model illustrates the exciting new
scientific frontiers expedited by the recent advent of high speed imaging of volcanic gas plumes,
such that models for subterranean fluid dynamics can be corroborated with surface degassing
observations [61] in far more detail than previously possible with then-available temporally-coarser
degassing data. Indeed, this work is one of the very first to exploit this opportunity, following from
Pering et al. [18,24]. In particular, this framework offers the possibility of diagnosing underground fluid
dynamic, conduit, or magmatic conditions, based on surface observations of burst masses and timings.
Future work could focus on augmenting this combined UV camera to model a development framework
with contemporaneous in situ gas composition data [62,63], and infrasound measurements [25].
In addition, future work will focus on validating the model using numerical and laboratory models,
building on the recent work of Pering et al. [30].

This work is also focused on defining fluid dynamic transitions between disparate basaltic
degassing classes, highlighting the key role played by inter-bubble separation and coalescence during
such activity. There has been very little work in this area since seminal research, e.g., [37] a number
of decades ago. This new capacity to develop models, informed by high time resolution UV camera
observations offers exciting promise to provide step change advances in this field, extending to
a wider range of basaltic styles, e.g., covering Hawaiian activity. In particular, at basaltic volcanoes
such as Mt. Etna, where activity styles can transition rapidly between puffing and passive degassing
through single strombolian explosions to more rapid bursting events and, finally, to Hawaiian lava
fountaining [64,65], the model could be of utility in eruption forecasting.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Table S1: Basaltic
degassing model.
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Notation and Greek Letters

This section contains the notation and Greek letters used throughout this manuscript (listed in appearance
order). Units used, where applicable, are included in brackets.

Reb Bubble Reynolds number
ρm Magma density (kg·m−3)
usb Ascent velocity of a spherical bubble (m·s−1)
l Bubble length (m)
µ Magma viscosity (Pa·s)

www.mdpi.com/xxx/s1
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ρg Gas density (kg·m−3)
g Gravitational acceleration (m·s−2)
P∗slim Dimensionless burst vigour
A′ Ratio of bubble radius to pipe radius
Psur f Atmospheric pressure at the surface (Pa)
rTB Taylor bubble radius (m)
rc Conduit radius (m)
λ′ Falling film thickness (m)
N f Dimensionless inverse viscosity
Fr Froude number
uTB Taylor bubble base ascent velocity (m·s−1)
lwake Taylor bubble wake length (m)
lmin Taylor bubble interaction length (m)
de Equivalent diameter (m)
Vb Bubble volume (m3)
Re Reynolds number
Cd Bubble drag coefficient
uCB Spherical cap bubble base ascent velocity (m·s−1)
db Bubble diameter (m)
Vw Volume of spherical cap bubble wake (m3)
cwake Spherical cap bubble wake length (m)
lCB Cap bubble length (m)
cmin Spherical cap bubble interaction length (m)
tmin Minimum repose time (s)
ttransition Transition time (s)
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