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Abstract: Volatile-bearing lunar surface and interior, giant magmatic-intrusion-laden near and far
side, globally distributed layer of purest anorthosite (PAN) and discovery of Mg-Spinel anorthosite,
a new rock type, represent just a sample of the brand new perspectives gained in lunar science in
the last decade. An armada of missions sent by multiple nations and sophisticated analyses of the
precious lunar samples have led to rapid evolution in the understanding of the Moon, leading to
major new findings, including evidence for water in the lunar interior. Fundamental insights have
been obtained about impact cratering, the crystallization of the lunar magma ocean and conditions
during the origin of the Moon. The implications of this understanding go beyond the Moon and are
therefore of key importance in solar system science. These new views of the Moon have challenged
the previous understanding in multiple ways and are setting a new paradigm for lunar exploration
in the coming decade both for science and resource exploration. Missions from India, China, Japan,
South Korea, Russia and several private ventures promise continued exploration of the Moon in
the coming years, which will further enrich the understanding of our closest neighbor. The Moon
remains a key scientific destination, an active testbed for in-situ resource utilization (ISRU) activities,
an outpost to study the universe and a future spaceport for supporting planetary missions.

Keywords: The Moon; lunar exploration; lunar volcanism; lunar crust; lunar magma ocean; mare
basalt; lunar volatiles

1. Introduction

The Moon holds great scientific importance as a celestial body and has been a key source of
knowledge in our understanding of the solar system, including our own Earth. The initial views of the
impact bombardment history along with the concept of the magma ocean came from the studies of
the lunar samples (e.g., [1,2]). Crater count-based age dating of the planetary surfaces across the solar
system is still based on the inferred correlation between crater size frequency distribution (CSFD) and
radiometric ages of the rocks at the Apollo landing sites (e.g., [3–7]). The proximity of the Moon to
the Earth, along with the comparatively short-lived geological activity of the former, has enabled the
extrapolation of the current lunar surface geology to the likely conditions on the Earth in the distant
past. Such records (viz. isotopic, impact) of early Earth are either totally lost on the Earth or are very
obscure. These records include the trends in impact bombardment rates through geological time and
the record of solar activity. Interestingly, it has also been shown that fragments of the Moon may
have been transported to the Earth by large impacts (e.g., [8]). Some of the records of past events
on the Earth and the Moon exhibit striking correlations, further strengthening the case for a strong
Earth-Moon geological relationship (e.g., [9]) in space and time. The crater-covered surface of the Moon
is a very good representation of the Earth’s distant past, the lost face of the Earth that holds clues to

Geosciences 2018, 8, 498; doi:10.3390/geosciences8120498 www.mdpi.com/journal/geosciences

http://www.mdpi.com/journal/geosciences
http://www.mdpi.com
http://dx.doi.org/10.3390/geosciences8120498
http://www.mdpi.com/journal/geosciences
http://www.mdpi.com/2076-3263/8/12/498?type=check_update&version=2


Geosciences 2018, 8, 498 2 of 34

our planet’s early evolutionary history. The most widely accepted (although still actively debated)
theory of the Moon’s origin via impact of a Mars-size object (commonly referred to as Theia) into early
Earth implies that the Earth-Moon system is very closely related (e.g., [10–13]). Several other versions
of this broad hypothesis have evolved in the recent time (e.g., [14–16]) with some of them being guided
by the recent findings from missions and lunar samples.

1.1. The First Phase of Lunar Science

The time between the first telescopic observation of the Moon by Galileo (1609) to the Apollo and
Luna landings in early 1970s (and subsequent analysis of the lunar samples) span almost three centuries
of observations, hypotheses and validation of popular theories that provided numerous perspectives on
the astronomical, dynamical and geological aspects of the Moon (e.g., [17,18]). The tidally locked nature
of the Moon, its slow but continuous drift away from the Earth (indicating that it was much closer
to the Earth in the past), the recognition of abundant circular features on the Moon as impact craters
(after prolonged debate on them being volcanic calderas) and the large dark patches being recognized
as volcanically emplaced lava were some of the major landmarks in lunar science (e.g., [19–26]).

Continued telescopic studies, as well as lunar sample and meteorite analyses, revealed new
details about these original observations (Figure 1). The recognition of the rugged regions on the
Moon as the mono-mineralic primary crust (e.g., [2]); the revelation of the enormous range in the
titanium content of lunar mare basalts (e.g., [27–30]) along with their wide diversity in the visible
and near infrared spectral reflectance (e.g., [31–33]); the discovery of mountains of olivine-bearing
lithology at Copernicus crater [34]; the phenomenon of space weathering and its effects on lunar
rocks, especially their spectral signatures (e.g., [35]); the large clustering in ages for mare volcanism
between 3.2–3.8 billion years (e.g., [36]); incompatible element enrichment, referred to as KREEP
(Potassium, Rare Earth Elements and Phosphorus), (e.g., [37]); the contrasting trends in Europium (Eu)
concentration between Mare (negative) and Highlands (positive); the finding of small fragments of
pure anorthite and the relatively rare occurrence of evolved granitic lithologies together sparked a
revolution of sorts in trying to piece together the geological evolution of the Moon. These findings
were complemented by several geophysical experiments carried on-board the Apollo missions which
provided information about the near surface and deeper structure of the Moon, including layering in
the lunar maria (e.g., [38]). The contributions from the Apollo and Luna missions, as well studies of
the lunar meteorites, are too significant and enormous, deserving a separate publication. The above
summary aims at highlighting some of the major findings that have led us into the 21st century and
provides the backdrop for the current advancements in lunar science.



Geosciences 2018, 8, 498 3 of 34

A

C

B D

Near Side
Lunar 

Figure 1. Sampling of important science results till Apollo era. (A) Eu anomaly in returned samples.
Complementary signature of Eu between highland and mare rocks provided strong support for lunar
magma ocean (Source: Modified from [39,40]). (B) Anorthosite cataclasite sample, 60025. The purity
of plagioclase suggested a plagioclase-rich floatation crust as an outcome of global magma ocean
differentiation (Source: [41]). (C) Lunar granite sample, 12032, 366-19 represent a restricted suite of
evolved rocks produced towards late stages of the magma ocean (Source: [42]). (D) Spectral variability
of basalts on the lunar near side, based on telescopic observations, provide a sampling of the mantle
(Source: Modified from [33,43,44]).

1.2. Post-Apollo Spike in Lunar Research

Before the last decade, a major spike in lunar science was contributed by two small missions,
Clementine (launched in 1994) and Lunar Prospector (launched in 1998) (e.g., [45,46]) and to a certain
extent by the Galileo mission (launched in 1989) which had briefly observed the Moon before heading
to its prime target, the Jupiter system [47]. Together, these missions provided the first global views
of the Moon in elemental, mineralogical, topographical and geophysical aspects, marking a major
departure from the originally lunar sample-focused, localized views of the Moon, which used to
be extrapolated to the entire Moon. The telescopic observations did provide a regional perspective
in some domains but were restricted to the nearside observations, leaving the entire lunar far side
dependent on extrapolations. This oversimplification and its pitfalls were rapidly overcome by the
global datasets from the Clementine and Lunar Prospector missions and regional views offered by the
Galileo mission. One of the major highlights included the generation of global elemental maps of Fe,
Ti, Al and Mg at different spatial resolutions (e.g., [48–51]) and the recognition of KREEP concentration
within the Procellarum region on the lunar near side (with very limited occurrences on the far side).
Together, this information formed the basis for the classification of major lunar terranes: Procellarum
KREEP Terrane (PKT), Feldspathic Highland Terrane (FHT) and the South Pole Aitken Terrane (SPAT),
the latter representing the largest and oldest known impact basin on the Moon (e.g., [52]). One of the
most fascinating (and controversial) discoveries from the Clementine mission was the observation
of hydrogen enhancement over the lunar poles, which was interpreted as potential evidence for
water ice (e.g., [53]), something that was predicted theoretically many decades ago (e.g., [54,55]).
The hydrogen enhancement at the poles (in the form of water ice) has very important implications as a
future lunar resource and also in terms of the origin and distribution of volatiles on planetary bodies.
This significant finding led to an intense debate about the occurrence of water ice (and other volatiles) in
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the polar regions and facilitated the lunar prospector mission with the specific objective of confirming
the presence of water on the poles using sophisticated instrumentation including gamma-ray and
neutron spectrometers (e.g., [46]). The results from Lunar Prospector, although positive, were far
from being conclusive, as additional complexities were revealed in the detection strategies (e.g., [56]).
Major geophysical forays were also made during this time with a global gravity and topographic map of
the Moon and much improved elemental maps constrained by direct (although coarse) measurements
of several elements through their gamma ray emissions (e.g., [57,58]). This global information suite
provided multiple new perspectives to constrain the understanding of the lunar geological evolution
(Figures 2 and 3).
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Figure 2. Scientific results from global lunar datasets. (A) Identification of major lunar terranes,
their geologic context and scientific relevance (Source: [52]). (B) Gravity signatures of the near and far
side of the Moon obtained from Lunar prospector mission (Source: [59]). (C) Polar maps of epithermal
neutron fluxes measure by lunar prospector spacecraft, hinting at the presence of hydrogen-bearing
species concentrated at the lunar poles and interpreted to be likely water-ice. The distinctive dips in
epithermal neutron flux over poles highlighted the different character of neutron absorbers at the poles
(Source: [56]).

Mineralogical and elemental investigations of the central peaks of impact craters were used to
constrain the compositional structure of the lunar crust (e.g., [60,61]), and improved age dating of
different basalt units led to much better understanding of the volcanic evolution and recognition of
the ~1 billion year old mare volcanism episode which extended the geologically active nature of the
Moon to much younger time scales than previously thought (e.g., [62,63]). Additional evidence for
an active Moon (in the form of outgassing) was presented in the form of the morphologically and
spectrally fresh-looking Ina structure at Mare Tranquillitatis [64]. The new analyses also strengthened
the case for no observable trend between the age of mare basalts and their titanium concentration
(e.g., [65]). Several new science questions were also raised by the new datasets, including the origin of
thorium anomalies on the lunar far side, namely at the Compton-Belkovich region, Dewar and within
the South-Pole Aitken basin (exposed at two impact craters). It has been unclear if these locations
were related to the KREEP layer on the lunar nearside. In addition, there are perennial questions in
lunar science that remain poorly answered, including the origin of the crustal thickness differences
between the near and the far side, the origin of the lunar swirls, the origin of the Procellarum region,
the character of the late heavy bombardment and the nature of the lunar core. Some of these questions
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are directly linked to the planetary evolution process, while others have broad implications for the
solar system. Needless to say, more observations and new perspectives of the Moon are still required
to answer some of these scientific challenges.

CB
A

Figure 3. Compositional and age variability in lunar basalts. (A) Large variations in Thorium
concentrations (a proxy for Potassium, Rare Earth Elements and Phosphorus (KREEP)) between
near and far side, as observed by lunar prospector observations (Source: [66], NASA). (B) Very young
basalts (~1 b.y.) around Lichtenberg crater (Source: [67]). (C) Geologic (and spectral) freshness of Ina D
structure was suggested to be an evidence for recent outgassing from the lunar interior (Source: [64]).

2. Renaissance in Lunar Science in the Last Decade (2008–2018)

The most recent phase of advancement in lunar science has not only been in the direction of
addressing some of the outstanding questions but, also in terms of critically evaluating the lunar
resource potential for future colonization. Efforts have been specifically targeted to obtain a wide
diversity of high quality datasets to enable surface exploration of the Moon by landers, rovers and
humans in the near future. Exploration of the Moon in the last decade has been undertaken by
multiple nations, including China, India, Japan, United States and several countries from the European
Union (Figure 4). High quality data from modern sensors onboard orbiters and landed missions have
significantly advanced the understanding of our closest neighbor. A major period of renaissance
in lunar science is currently in progress. This giant leap in our knowledge about the Moon (with
important implications for the solar system in many cases) is multi-faceted. On one hand, either
new scientific domains have opened up (viz. lunar volatiles) or poorly constrained aspects have
been greatly strengthened (viz. lunar exosphere and thermal environment). On the other hand,
fundamental understanding of the Moon’s origin and subsequent evolution has been thoroughly
challenged, necessitating a detailed revamp of theories and models. The re-shaping of lunar science,
based on recent remote sensing datasets, has just started and will likely drive the research for several
years (if not decades) ahead. The scientific advances made in the last decade have varied implications
on variety of spatial scales (viz. global-scale, regional scale or site-specific). The results are accordingly
presented providing the relevant context. In addition, though the major focus of this publication is
on the results obtained from remote sensing data, we have also selectively included findings based
on samples, experiments and models, guided by their strong complementary nature. Global scale
processes and products are the major drivers of planetary evolution and also the ones which are
generally best studied via remote sensing. With global remote sensing data available not only at high
spatial and spectral resolution but also increasingly high temporal resolution, interesting new insights
are emerging, some of them for the very first time. Volatiles on the lunar surface represent one of those
key findings that are rapidly changing our views of the Moon and its exploration potential.
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Figure 4. Missions to the Moon in the last decade. Credits for individual images: JAXA, CNSA, ISRO
and NASA.

2.1. Volatiles

Volatile species of diverse nature have now been discovered on the Moon. Lunar volatiles could
perhaps be regarded as one of the most important findings in planetary science in the last decade and
certainly a key milestone in lunar research. The recent data have revealed volatiles in different physical
forms and at different spatial scales, which is much beyond what had been predicted in the past or
inferred from previous missions. There are three distinct types of volatiles currently recognized on the
Moon (Figure 5).

2.1.1. Volatiles Associated with the Lunar Interior

These represent the first major discovery based on the re-analysis of returned lunar samples
(starting with volcanic glasses), enabled by the advancements in the analytical abilities (e.g., [68]).
The investigations reported significant concentrations of various volatile species, including H2O, F, Cl
and inferred an in-situ origin of the volatiles based on the degassing trend systematics from core to the
rim of the analyzed lunar glass-beads. Follow-up investigations including the study of fluid inclusions
locked inside olivine crystals in the glass beads have increasingly strengthened the argument for an
in-situ source of volatiles, including water, on the Moon, although the resolution of certain debates
would require additional analyses (e.g., [69–72]). This includes the suitability of the mineral apatite in
determining the primordial volatile abundances in the melt. Recent work has argued that although
apatite is found in both basalts and highland rocks which enables the determination of associated
volatile contents in space and time, the volatile contents of apatites cannot be directly interpreted in
terms of melt volatile concentration, unless equilibrium crystallization persisted for the entire duration
(e.g., [73]). There are several important implications of these findings. With the detection of liquid
water in lunar samples, the conventional modeling involving anhydrous crystallization of magmas on
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the Moon needs to be re-considered. The detection of volatiles has also raised important questions
about the widely accepted giant impact hypothesis for the origin of the Moon. Together with isotopic
studies, which have found remarkable similarities between Earth and the Moon, the in-situ volatile
discovery has led to a substantial re-thinking about the giant impact scenario, including the exchange
dynamics of the superheated disc of debris and the young Earth (e.g., [74]). Some answers to this
puzzle have been attempted, but it remains an active area of research (e.g., [14,15,75]). Interestingly,
evidence for OH/H2O of magmatic origin has also been presented from remote sensing data for
multiple locations on the Moon, including the central peaks of the craters Bullialdus and Theophilus,
the Compton-Belkovich Volcanic Complex (CBVC) and multiple pyroclastic deposits (e.g., [76–80]).
Caution should however be exercised in the detailed characterization of the hydration signatures
based on the available data, as there is only partial coverage of the hydration absorption band. It is
also important to note that the key observations represent the last few bands in the spectral coverage
of the instrument where the detector spectral response may not be as reliable. Upcoming missions
(discussed in Section 3) would hopefully enable a much more detailed investigation. Another key
aspect that would benefit from future lunar exploration, through orbiters, landers and sample return,
is an understanding of the volatile reservoir of the Moon. It is important to know whether the lunar
volatile reservoir is homogeneous and pervasive or heterogeneous with volatile-rich pockets in the
lunar interior. Each scenario will have its own implications for both the origin and the evolution of
the Moon.

2.1.2. Volatiles Associated with Topmost Surface

The second major discovery of volatiles on the Moon has been in the form of a globally distributed
monolayer of OH/H2O, based on the near-infrared spectral signatures. One of the most remarkable
aspects of this discovery is the detection of volatiles in space and time by three different instruments
on three different spacecrafts: Visible and Infrared Spectrometer (VIMS) onboard the Cassini mission
to Saturn system, Moon Mineralogy Mapper (M3) onboard Chandrayaan-1 mission to the Moon
and High Resolution Instrument-Infrared Spectrometer (HRI-IR) onboard Deep Impact (EPOXI)
mission to Comet 103P/Hartley 2 (e.g., [81–83]). The result was also independently confirmed by
the in-situ measurements of the lunar exosphere and near surface through Chandra’s Altitudinal
Composition Explorer (CHACE) mass spectrometer onboard the Chandrayaan-1 mission (e.g., [84]).
The complementary nature of the results provided by these observations separated in space and time
provided an unambiguous detection of OH/H2O on the Moon. Numerous aspects of this mono-layer
have been investigated by remote sensing, experiments and modeling. These include the origin of
the OH/H2O and their dependence on various physical parameters, such as surface temperature,
lithology, time of the day and latitude (e.g., [85–87]). An origin involving solar wind interaction with
the lunar surface seems likely, although debates are still underway about the dominant controls and
their influences on the occurrence and distribution of this lunar volatile species (e.g., [88]).

2.1.3. Volatiles Associated with the Lunar Poles

The lunar polar volatiles, unlike lunar indigenous water or surficial monolayer, were predicted to
exist in the permanently shadowed polar regions for a long time (e.g., [54,55]) and the detection of polar
hydrogen bearing deposits was reported by the Clementine and Lunar prospector missions (e.g., [53,56]).
Important resource implications have been a driving force in knowing the exact nature of these volatiles
on the lunar poles. Intensive efforts in observations, experiments and modeling have been made to
understand the nature of these volatiles. The first set of encouraging results in the last decade came
from the Miniature Synthetic Aperture Radar (Mini-SAR) instrument onboard Chandrayaan-1, with the
detection of radar backscattered signals from putative water-ice deposits inside permanently shadowed
craters (e.g., [89]). Subsequently, volatiles were detected by the Lunar Crater Observation and Sensing
Satellite (LCROSS) mission, which involved an impact into Cabeus crater (on the lunar south-pole) and
observations of the ejecta plume by a trailing spacecraft (e.g., [90,91]). Several instruments onboard the
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currently orbiting Lunar Reconnaissance Orbiter (LRO) mission have contributed additional insights
into the polar volatiles, including the Lunar Exploration Neutron Detector (LEND), Miniature Radio
Frequency (Mini-RF), Diviner and Lunar Orbiter Laser Altimeter (LOLA). The LEND instrument
predicted the highest abundance of polar hydrogen on the south polar Cabeus crater, leading to
its selection as the LCROSS impact site (e.g., [92]). Extensive coverage of the poles by the Mini-RF
instrument enabled the identification of craters with enhanced circular polarization ratio (CPR) only in
crater interiors instead of interior and exterior, the latter being a clear indication of surface roughness
induced backscattered signals. The former category of craters were thus interpreted to be water-ice
bearing (e.g., [93]). The Diviner instrument has provided reliable temperature estimates enabling
the identification of the coldest regions within the lunar poles, which would be prime candidates for
volatile repositories (e.g., [94]). Enhancement in the brightness of the Shackleton crater at 1064 nm
was reported by the LOLA team and suggested to be either due to less space weathered material or a
possible signature of ice mixed with regolith (e.g., [95]). Suggestions of the presence of water frost have
also been made (e.g., [96,97]). Exposed water-ice signatures from the lunar poles based on M3 data is
the latest addition to the steadily accumulating evidence for volatile (notably water-ice) inventory on
the poles (e.g., [98,99]). The far-reaching implications of polar volatiles on future lunar colonization
are driving the scientific and technological efforts in this regard. It includes the scheduled southern
high latitude region landing by the Chandrayaan-2 mission in early 2019 (e.g., [100]).

In the true spirit of the Moon being a cornerstone for solar system science, the discovery of lunar
volatiles, especially the mono-layer (OH/H2O), has sparked successful discoveries of volatiles on
other airless bodies (e.g., [101,102]). It’s interesting to note that several of the detections have been
based on the re-analysis of pre-existing datasets. This includes the lunar OH/H2O signature in the
Cassini mission observations of the Moon made in 1999 (e.g., [81]). An altogether different perspective
gained from the distribution of polar volatiles, that of the true polar wander of the Moon, has also
been revealed by the analysis of old data from the Lunar Prospector mission (e.g., [103]). Another fresh
perspective has come from the estimation of outgassing during the emplacement phase of mare basalts.
It has now been suggested that not only a transient lunar atmosphere (1.5× Martian atmospheric
pressure) could have survived for ~70 million years, a tiny amount of this volatile inventory could
also have ended up in the lunar poles (e.g., [104]). This possibility suggests that the volatiles at the
poles might be sourced not only from comets and solar wind but also from the lunar interior. Future
missions may or may not be able to differentiate between the volatiles obtained from different sources
and processes. The nature of volatile enrichment process (viz. continuous, episodic) by different
sources, the relative timing of volatile contribution by various sources (viz. early phase, late phase),
various mixing processes including regolith mixing time scale, as well as loss mechanisms of each
of the volatile species, would directly affect the ability to tag volatile species to a particular source
or process.
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Figure 5. Discovery of three different flavors of volatiles on the Moon. (A) Water (and other volatiles)
in the lunar interior, measured directly in lunar samples (Source: [68]). (B) OH/H2O on the lunar
surface measured by remote sensing (Source: [NASA]). (C) Near infrared signatures of OH, H2O and
Ice (Source: [82]). (D) In-situ detection of surficial water on the Moon. The distinct peak at mass no. 18
has been interpreted to be signature of water (Source: Modified from [84]). Water-ice signatures on the
lunar poles detected at (E) radar wavelengths (Source: Modified from [89]) and (F) integrated datasets
including near-infrared, thermal wavelengths (Source: [99]).

2.2. Lunar Magma Ocean Concept

The Moon’s evolution from a globally molten ocean of magma (of uncertain vertical extent) has
been one of the core concepts in planetary science, borne out directly from the samples returned by
the Apollo missions (e.g., [2]). It has led to the conceiving of magma oceans on other large planetary
bodies, including our Earth (e.g., [105,106]). However, it has also been a real challenge for over four
decades to satisfactorily understand the workings of such a magma ocean, especially the formation of
plagioclase-rich crust and the distribution of the KREEP layer. Intertwined questions about the vertical
extent, duration and cooling history of the magma ocean are central to the debate and have also led to
the idea of serial magmatism as an alternative hypothesis or an additional component to the originally
proposed plagioclase-rich floatation crust (e.g., [107,108]).

2.2.1. Global Occurrence of Pure Plagioclase Layer

Globally distributed exposures of purest anorthosite (~98 vol % anorthite; PAN) on the Moon
have been reported based on remote sensing data acquired in the last decade (e.g., [109,110]).
Three independent instruments onboard two lunar missions, namely the Multi-band imager (MI)
and Spectral profiler (SP) on the Japanese Kaguya mission and NASA M3 on the Indian Chandrayaan-1
mission, have characterized the diagnostic 1.25 micron crystalline absorption band of plagioclase,
enabling its confident identification and determination of purity (Figure 6). The absorption band is
caused by to the presence of a small amount of Fe2+ in the crystal structure of plagioclase (e.g., [111–113]).
It has now been strongly suggested that a global crustal layer of pure anorthosite exists on the Moon.
At the same time, the estimated purity of these crystalline plagioclase exposures (~98 vol %) has been
debated, as it seems petrologically very difficult to have such an efficient crystallization scenario
where even the residual fluid, usually locked up in the voids, can be removed. Recent modeling
efforts have proposed a possible mechanism to generate PAN rocks in a magma ocean crystallization
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scenario (e.g., [114]). Additionally, more and more lunar samples are being found in Apollo
collections and meteorites with plagioclase purity consistent with remote sensing estimates (e.g., [115]).
New experimental measurements of the late lunar magma ocean liquid suggests a stratified crust with
mafic-rich older crustal component and mafic-poor younger crustal component (e.g., [116]). A key
constraint that would help petrologists in understanding the formation of the PAN layer from magma
ocean crystallization is its thickness and the depth of emplacement in the crust. Although estimates
for both the parameters have been suggested (~50 km thick layer located at a depth of ~10 km), it is
unclear whether it should be the same all over the Moon, given the crustal thickness differences on
the near and the far sides (e.g., [117]). This aspect is also important in view of the suggested model of
asymmetric crustal growth with respect to the near and farside crust (e.g., [118]). The model suggests
the far side highlands to be more primitive (higher Mg#) than the near side highlands (lower Mg#).
Detailed mapping of pure plagioclase exposures at regional scale at Orientale basin (diameter: 930 km),
has highlighted the occurrence of a very coherent PAN layer associated with the Inner Rook ring (IRR)
providing a strong constraint on the depth of this layer at least at Orientale [119].

A

C

B

D

Figure 6. Distribution and geologic setting of purest anorthosite (PAN) exposures. (A) Crystalline
plagioclase signatures observed at Jackson crater central peaks based on near infrared datasets
(Source: [109]). (B) Global distribution of crystalline plagioclase based on a combination of near infrared
and thermal infrared datasets. The red dots represent positive identifications. The black dots indicate
locations sampled but no plagioclase detection (Source: [110]). (C) Geologic context of purest plagioclase
exposures at Orientale basin. Preferential occurrence along the Inner Rook Ring (IRR) is exhibited
providing strong depth constraints of purest plagioclase layer (Source: [119]). (D) Relationship of purest
plagioclase exposures with featureless spectra (Source: [119]).

2.2.2. Global Occurrence of Featureless Spectra—Origin and Associations

The occurrence of crystalline plagioclase on the Moon is also intimately associated with extensive
exposures of featureless spectra, prompting speculations about the origin of these exposures and
whether they are also part of the plagioclase-rich layer. Conventionally, featureless spectra have been
considered as representative of shocked plagioclase lithology, since plagioclase loses its crystal structure
(the cause of 1.25 micron absorption feature) relatively easily during shock events (viz. meteoritic
impacts) (e.g., [120,121]). However, recent studies of shocked plagioclase using remote sensing data as
well as laboratory measurements of lunar samples suggest multiple possibilities, including featureless
spectra being space weathered PAN mineralogy, shocked plagioclase (with the caveat that there should
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be a glass band at 1 micron), iron-free plagioclase (<0.1% FeO) or finely fractured plagioclase with
abundant internal scattering that does not generate strong enough absorption signal to be detected
(e.g., [122,123]). The occurrence of crystalline plagioclase exposures within featureless spectra at basin
rings and crater central peaks has also highlighted a potential knowledge gap in our understanding
of the peak shock-pressures produced during impact events and their distribution in the target.
Unambiguous detection of crystalline plagioclase in the central peaks and basin rings suggest that
they were not subjected to high enough shock pressures to erase their crystalline structure.

2.2.3. Large Spread in Crystallization Ages of Primordial Crust—Conundrum and New Views

Vast spread in the radiometric ages of the anorthositic rocks (ferroan anorthosites) has had been
another key challenge for the magma ocean hypothesis and taken at face value, requires a long time for
magma ocean solidification, necessitating mechanisms for sustaining the magma ocean or raising the
possibility of primary crust formation through other mechanisms (e.g., [124,125]). Beyond radiogenic
heating from short-lived radioactive isotopes, tidal heating from the Earth, insulation by floatation
crust and energy from impacts have been suggested although the latter could also blast away portions
of the insulating layer, expediting magma ocean solidification (e.g., [126,127]). The large spread in
the radiometric ages of ferroan anorthosites could also possibly be explained by the origin of at least
some of them through recycling and secondary crystallization. In such a scenario, there would be an
anorthosite population which would not have a primordial origin (e.g., [128]).

2.2.4. KREEP and Proxies—Insights into Primordial Crust Formation

The residual soup of incompatible elements left towards the end of magma ocean crystallization,
KREEP, has been another enigma of sorts, at least in the context of its spatial distribution on the
Moon. The occurrence of KREEP was initially documented by returned lunar samples but was
subsequently mapped remotely by gamma ray spectroscopy through the detection of radioactive
element thorium and some rare earth elements (e.g., [129,130]). Unlike the global distribution of lunar
anorthosites, KREEP is mainly concentrated on the lunar near side, around the Procellarum region.
The lunar far side only has sporadic occurrences of high thorium concentrations, with major exposures
at Compton-Belkovich region, Dewar anomaly and two craters within the South-Pole Aitken (SPA)
basin (e.g., [130]). It is an open question whether the far side thorium occurrences are related to the
near side and what their vastly different spatial distribution means. Technological advancements
in the last decade have enabled global mapping of additional incompatible radioactive elements
(Figure 7): potassium (K) by Chinese Chang’E-1, Chang’E-2 mission and Uranium (U) by the Japanese
Kaguya mission, for the first time. (e.g., [131,132]). Apart from the broad positive correlations between
all the three radioactive elements for the Procellarum region, SPA and Compton-Belkovich region,
statistically significant differences in U/Th ratio have been reported between western and eastern
farside regions, possibly indicative of heterogeneous formation of the farside crust [131]. This may
also be important in the context of the observed nearside-farside crustal dichotomy. Apart from new
elemental measurements, advancements in the analytical techniques are enabling much higher spatial
resolution elemental maps from earlier missions and providing new scientific insights (e.g., [133]).
Pixon-based image reconstruction of lunar prospector thorium maps have led to the recognition of
much wider thorium spread around the Compton-Belkovich region than defined by the spatial extent
of albedo anomaly in that region. Accordingly, origin of Compton-Belkovich by explosive silicic
volcanism has been proposed, consistent with the results from independent studies (e.g., [134,135]).



Geosciences 2018, 8, 498 12 of 34

D

BA

C

Figure 7. New Measurements of incompatible elements with modern sensors. (A) Uranium distribution
exhibits spatial differences within farside highlands (Source: [131]). (B) Spatial distribution of thorium
(Source: [131]). (C) Improvement in spectral resolution between Kaguya and Lunar Prospector Gamma
ray spectrometers (Source: [131]). (D) Spatial distribution of potassium correlates well with the thorium
distribution (Source: [132]).

2.3. Lunar Secondary Magmatism

Magmatic activity on the Moon has primarily been recognized in its extrusive form as mare basalts,
pyroclastic deposits and silicic volcanism, each with their distinctive spatial distribution characteristics.
The intrusive form of magmatism, although suggested in the past, had not been probed in great detail
(with a few exceptions) till recently. Remote compositional, morphological and geophysical studies
from recent datasets have now revealed several interesting new insights.

2.3.1. Extrusive Magmatism

Major new scientific advances in the domain of extrusive magmatism (Figure 8) include the
hydrated nature of both pyroclastic deposits and silicic volcanism in the Compton-Belkovich region
(e.g., [77,80]). It should, however, be noted that not all pyroclastic deposits or silicic volcanic constructs
exhibit hydration signature, pointing to possibly either heterogeneous reservoirs inside the Moon or
their different evolutionary state during various eruption events.

2.3.1.1. Evolved Lithologies—Identification and Characterization

Direct evidence for the highly silicic nature of numerous non-mare volcanic constructs has been
an important finding based on the observations from Diviner radiometer onboard the LRO spacecraft
(e.g., [136,137]). Previously referred to as lunar red spots (due to strong absorption in UV compared
to reflectance at longer wavelengths), hypothesized to be silicic in nature based on high albedo and
typical morphology (e.g., steep slopes), Diviner results indicate that some of the red spots are silicic
(e.g., Hansteen Alpha, Mairan domes, the Lassell Massif region and the Gruithuisen Domes) while
others are not (e.g., Helmet Feature, Darney Chi, Darney Tau, Montes Riphaeus, and Mons La Hire)
(e.g., [138–141]). The new observations have divided the red spots into two broad classes. Further
investigations of the differences between the two classes would hopefully provide additional insights
into this relatively restricted flavor of extrusive magmatism on the Moon. The Compton-Belkovich
region has long been recognized as an isolated thorium anomaly on the lunar far side, hinting at
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the presence of an evolved lithology at this location (e.g., [129]). However, based on the analyses
from multi-mission and multi-instrument datasets, including imaging, spectral and radar data, it is
now additionally recognized as the Compton-Belkovich volcanic complex (CBVC), comprised of a
series of silicic domes and an extensive area of pyroclastic deposits, indicating its explosive mode of
emplacement (e.g., [135,142]). Lassell massif on the near side has also been suggested to be a silicic
volcano based on similar lines of evidence (e.g., [143]). Interestingly, it also shows some evidence of
recent resurfacing (~ 60 Ma), which needs to be further explored.

2.3.1.2. Young Volcanism on the Moon—New Evidences and Debates

The most recent volcanic activity on the Moon had until recently been tied to ~1 billion years,
based on the studies of basaltic exposures overlying Lichtenberg crater ejecta (e.g., [62]). However,
this time-scale might need significant revision based on the high spatial resolution study of 70 small,
morphologically fresh, topographic anomalies collectively referred to as irregular mare patches (IMPs).
Crater count ages younger than 100 Ma for these features have been suggested which, if true, would
advance the lunar volcanic activity by an order of magnitude (e.g., [144]). Alternative interpretations
(other than young age) have been offered for at least some of these features, which have been known
since the Apollo era. The Ina structure is the most well-known and was recently suggested to be
undergoing active resurfacing by escaping gases from the lunar interior, giving morphological freshness
to this structure (and therefore younger age) (e.g., [64,138,145,146]). It has alternatively been explained
as a product of inflated lava flows (e.g., [147]). IMPs have also been proposed to be the weathering
product of a magmatic foam formed during the late stage of dike emplacement, a couple of billion years
ago (e.g., [148,149]). The unusual character of the substrate has been suggested to be the cause of the
observed morphology with very few superposed craters, resulting in very young ages. Thermophysical
properties of the selected IMPs provide examples of both high and low-thermal inertia than typical
regolith, with the latter suggested to be the product of pyroclastic eruptions or explosive outgassing
(e.g., [150]). The low thermal inertia (compared to the surrounding regolith) is consistent with the
predictions from [149]. High resolution morphological and mineralogical observations of Lowell crater
have been presented to address the nature of some of the identified flows being simply impact melt
deposits vs expression of young volcanic activity (e.g., [151–153]). The absolute model age of Lowell
crater has been determined to be ~374 million years (e.g., [154]). Similar perspectives for other locations
have been presented recently, reviving discussions from the distant past (e.g., [24,155]). Major new
strides in the studies of impact melt deposits including their morphology, texture and mineralogy,
for craters all over the Moon, have provided detailed perspectives to settle at least some of the reported
ambiguities (see Sections 2.4.2 and 2.4.3). However, the ongoing debate on the possibility of very
young volcanism on the Moon (or the lack of it) would benefit from additional studies from recent and
future datasets. Returned samples or in-situ analysis of rocks from selected locations would be key in
resolving the complexity associated with the age of the various studied features.

2.3.1.3. Basalt Composition and Ages—New Updates

The compositional character of volcanic deposits (along with their age information) is a key
tracer for understanding the magmatic evolution of the Moon in terms of mantle melting events and
the interaction of molten material with other lithological components before emplacement on the
surface. An integrated view from high quality elemental and mineralogical composition, enabled by
recent missions, has provided several new perspectives on the lunar magmatic evolution, while also
refining and validating the results from the past datasets. A new variety of basalt has been reported
from the Imbrium region, analyzed by ChangE’-3 Yutu rover instruments, and suggested to have been
sourced from a hybridized mixture of ilmenite-rich cumulates and evolved mantle melt (e.g., [156,157]).
The results from the in-situ analysis of this basalt variety provide a new ground truth location for
remote sensing observations after more than four decades and it is therefore a key addition. Global
abundance maps of key elements (including iron and titanium) and minerals have been produced by
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numerous techniques, including spectral reflectance and gamma-ray spectroscopy providing more
reliable estimates than previously available (e.g., [158–161]). Abundant olivine-bearing character of the
late stage high titanium basalts on the western near side has been validated by high spectral resolution
observations, and their origin from evolved residual melt has been suggested (e.g., [67]). Detailed
studies of mare basalts at Orientale basin have led to the identification of previously undetected
basaltic occurrences and the recording of volcanic activity spanning the entire range of volcanism
documented for the Moon (e.g., [162]). Mare basalts at Moscoviense basin exhibit diversity in their
titanium concentration and ages (e.g., [163,164]). Recent analysis of the basalt mineralogy and elemental
concentrations, using high spatial and spectral resolution data and new algorithms, have sub-divided
the existing basalt unit classification and identified a distinctive unit in the north-eastern part of the
basin (e.g., [165]). Compositional studies of basalts at Serenitatis basin provide contrasting perspectives
from elemental and mineralogical analyses. Basaltic units classified based on the titanium concentration
exhibit a relatively higher degree of variability (in FeO and TiO2 contents) in older eruptions (e.g., [166]).
In contrast, basaltic units classified based on spectral differences report uniformity in pyroxene
composition across units and suggest a possibly stable source which did not undergo significant
fractionation (e.g., [167]). Integrated studies of basalts at Tsiolkovskiy crater have revealed a complex
emplacement pattern of basaltic units with distinct differences in spectral character and titanium
content (e.g., [168]). Post-emplacement modifications in the geologic setting of basalts at Tsiolkovskiy
appears likely. Young lunar basalts (~1.2–2.8 billion year) on the near and the far side have been
found to not exhibit any distinctive mineralogical character, except perhaps higher FeO at Orientale
and western nearside region (e.g., [169]). Recent experimental and modeling work has identified
pink spinel anorthosite (PSA) as a new member of the Mg-suite of rocks and suggested it to be a
proxy for identifying locations of Mg-suite magmatism on the Moon (e.g., [170]). Globally distributed
PSA locations have been used to predict potential sites of Mg-Suite volcanism, a flavor that has not
been commonly observed despite its lower viscosity than mare basalts (which have been extensively
extruded on the lunar surface) (e.g., [171]). An interesting corollary to the PSA - Mg-Suite linkage is the
suggestion that KREEP may be a non-essential component in the petrogenesis of the Mg-suite of rocks.
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Figure 8. Insights from extrusive volcanic deposits. (A) Fine-scale spectral variability within western
nearside basalts. The olivine abundant nature of the youngest high titanium basalts is exhibited
(Source: [67]). #1: Old and Low Titanium; #2 Youngest and High Titanium; #3 High Titanium. (B) Titanium
abundance map of Mare basalts from modern sensors (Source: [160]). (C) Irregular Mare Patches (IMPs)
such as Sosigenes, exhibit very few superposed craters (marked in red circles) and have been suggested
to indicate very recent volcanic episode (Source: [144]). (D) Alternative model of IMPs explaining their
young morphology (including absence of superposed craters) despite very old age (Source: [149]).
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2.3.1.4. Lunar Pyroclastic Deposits

Extrusive magmatism in the form of pyroclastic eruptions has been well-recognized, and detailed
studies of regional pyroclastic deposits are well-documented (e.g., [172,173]). The knowledgebase,
however, has been getting enriched with new insights from recent missions including chromium-rich
spinel detection at Sinus Aestuum [174,175] and the hydrated nature of several of the pyroclastic
deposits (e.g., [80]). There are also smaller, pyroclastic deposits that have been observed under different
geologic settings including the floors of impact craters (e.g., [176]). These small deposits have now been
studied in great detail by integration of radar, thermal infrared, visible, infrared and topographical
datasets revealing wide range in glass content (0–80 wt %), rock abundance and circular polarization
ratio (e.g., [177]). These studies report greater general diversity in physical and mineralogical properties
of small pyroclastic deposits compared to the larger deposits. This might be hinting at larger influence
of local materials on small pyroclastic deposits. Till recently, a poorly understood aspect of lunar
pyroclastic deposits was the nature of the driving agent (gas), especially given the earlier thinking that
assumed a dry lunar interior. Even with the discovery of volatiles in the lunar interior, it has been
suggested that H2O concentrations alone are insufficient to cause the observed pyroclastic eruptions,
and therefore the chemical species contributing to the lunar pyroclastic eruptions need to be identified
(e.g., [178]). Recent experimental work has suggested iron pentacarbonyl as the dominant species
(with smaller concentrations of methane) that likely participated in the pyroclastic activity on the
Moon (e.g., [179]).

2.3.1.5. Lava Tube Skylights—Accessibility, Science and Resource Potential

The discovery of lunar lava tube skylights/lunar pits has been a key finding in the last decade,
enabled by high spatial resolution views of mare basalts by multiple missions (e.g., [180–182]). Several
skylights have now been detected, including occurrences in the Mare Tranquillitatis and Marius Hills
region (Figure 9). These lava tubes hold great scientific and resource potential. With documented
lateral extent of ~20 m, exposure of several basalt layers and capacity to shield the interior from
harmful solar radiation, the lava tubes could potentially provide future lunar habitats for astronauts
and access to the geological records of lava outpourings (e.g., [181,183,184]). However, the limited
information on skylights from remote sensing observations also adds several uncertainties, including
the stability of the structure, lateral extent (and its connectivity) and potential hazards of unknown
nature. Several studies including structural modeling and reconnaissance mission planning have been
carried out to characterize the skylights, to be able to fully evaluate their potential and future uses
(e.g., [185–189]). Lunar (collapse) pits have also been documented in impact melt deposits and might
offer locations for future habitats. Emplacement of mare basalts took place in a series of eruptions
over long geological time, with hiatuses in-between. High spatial resolution imaging datasets and
subsurface information from ground penetrating radar are providing new views of distinctive basalt
layers, which is important for variety of purposes, including estimation of the volume of outpouring
during various volcanic episodes (e.g., [190]).
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Figure 9. New views of lunar magmatic structures. (A) Lava tube skylights located in different parts of
the Moon, enabled by high spatial resolution observations (Source: [184]). (B,C) Mission concepts for
the exploration of lava tube skylights (Source: [188], modified from [189]). (D,E) Linear gravity anomalies
(LGAs) of large spatial extent (several hundred km) have been interpreted to be ancient magmatic
Intrusions (Source: [191]).

2.3.2. Intrusive Magmatism

Magmatic activity on the Moon in the form of intrusive deposits has been documented largely
from lunar samples and hinted by remote sensing observations in the past (e.g., [192,193]). This data
record is not only important in understanding the lunar evolution in general but is also required for
answering some important questions. One key enigma has been the asymmetric distribution of mare
basalts between the near and the far side. Recent geophysical observations have discovered linear
gravity anomalies (LGAs) on the Moon, some of them with a lateral extent of a few hundred kilometers
and width of a few kilometers (Figure 9) (e.g., [191]). LGAs occur extensively both on the near and far
side of the Moon and have been interpreted as ancient magmatic intrusions, produced during the early
phase of lunar evolution when the Moon was in a state of globally isotropic extensional stress. If true,
these observations not only provide key insights into the thermal evolution of the Moon far back in the
geological time, the global occurrence also provides strong evidence of extensive magmatism on both
the near and far side of the Moon. The crustal thickness variations likely led to stalling of magmatic
bodies within the farside crust (and likely at some locations on the nearside). These observations
thus provide fresh insights on the global magmatic activity on the Moon, as opposed to the magmatic
activity exhibited by asymmetric occurrence of extrusive volcanism.

The nature of the Procellarum region has been debated for a long time with impact as the
likely mode of its origin (e.g., [43,194,195]). High quality gravity data has now provided new
perspectives with the identification of positive, narrow, linear gravity anomalies bordering the region in
a non-circular and non-elliptical geometry, which is contrary to the expectation in the case of an impact
origin (e.g., [196,197]). The study further suggests that the gravity anomalies represent lava-filled weak
zones produced in response to large scale thermal stresses in that region. The high concentration of
heat producing elements in the Procellarum region is believed to have caused differential cooling
in the region and have thus influenced the distribution of thermal stresses. However, the cause of
localization of heat producing elements in the Procellarum region is still not well understood.
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Floor-fractured craters (FFCs) have long been suggested to be potential evidence for near-surface
intrusive activity, although viscous relaxation has also be been proposed as an alternative (e.g., [192,198]).
Integrated morphological, topographic and gravity analyses along with physical modeling of FFCs
using data from recent missions has enabled several new insights while also revealing the associated
challenges with the available observations. The studies strongly support near-surface intrusive activity
as the cause for the formation of FFCs. Accordingly, a viscous relaxation mechanism is no longer
supported for the origin of FFCs. In addition, the studies have also revealed that, although high
quality gravity data broadly correlates with the occurrences of small magmatic intrusions within FFCs,
the correlation is not strong enough due to significantly smaller gravity signal from such intrusions
(e.g., [199–201]). Future missions and/or better techniques would hopefully provide better tools for
studying the floor-fractured craters.

2.4. Compositional Trends within Anorthositic Crust—Lateral and Vertical

The compositional character of the lunar primary crust exhibits rich diversity both in the lateral
and vertical dimensions, holding important clues to the evolutionary history of the Moon. It includes
the geological activity during the cooling of magma ocean and subsequent to its solidification. Material
and energy contributions from both external and internal agents have been the driving factors in
the continuous modification of the primordial lunar crust over the last several billions of years.
The unobstructed global excess to the topmost surface of the lunar crust (through remote sensing
observations) has provided an enormous amount of scientific insight into the workings of the various
geological processes, as well as their influence on the crustal framework. There are two broad crustal
components which enable the understanding of the different aspects of crustal evolution. Overlaps are
however unavoidable and bring in the complexity in observation and their interpretations.

2.4.1. Primordial Crust Produced (and Modified) Dominantly by Internal Geological Activities

The primordial crust extracted from the magma ocean differentiation has been suggested to be
stratified, including an impure plagioclase-rich layer (with mafic components) and pure plagioclase-
rich layer (almost devoid of mafics). The exact stratigraphic order of various plagioclase layers is not
well constrained, but this character of the primordial crust has led to the general expectation of change
in mafic character with depth. However, the primordial crust, as a function of its global occurrence
and large time span of formation, was likely being simultaneously modified by internal geological
activities at different spatial scales. Large scale events such as mantle overturn, along with localized
partial melting, ascent and eruption of magmas, have certainly led to extensive physical and chemical
interactions with the primordial crust. The current mineralogical character of the crust (Figure 10) is in
part an outcome of these processes.

Discovery of Mg-spinel rich lithologies, in the form of Pink Spinel Anorthosite (PSA) on the near
and far side lunar crust has been a major new finding from recent remote sensing data (e.g., [202–204]).
The occurrence of this new rock type in variety of geological settings on the Moon possibly suggests
more than one mode of origin. However, one of the current hypotheses has linked its origin to
magma-wallrock interactions in the lower crust, with the character of the magma body being highly
magnesian (e.g., [170]). This is consistent with the geological association of this lithology in many
cases with the basin rings. However, possible formation through impact melt interactions with
anorthositic rocks has also been suggested (e.g., [205,206]). One of the enigmatic findings of this
lithology is an association with highly silicic rocks at Hansteen alpha (e.g., [204,207]). Integrated
elemental, mineralogical and high resolution imaging results have indicated that Mg-spinel exposures
on Hansteen alpha are restricted to low Fe, pitted unit (absolute model age: ~3.5 billion years) and
morphologically associated with ridges along scalloped features (e.g., [208,209]). It has been suggested
that the Mg-spinel exposures might not be genetically related to the silicic lithology at Hansteen alpha.
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Figure 10. Global distribution of minerals with high resolution geologic context. (A) Preferential
distribution of olivine exposures around impact basins. Possible mantle origin has been suggested
based on detailed analyses (Source: [210]). (B) Olivine exposures at Crisium basin (shown by various
symbols). Anomalously high concentration of olivine-bearing exposures is documented. Diverse
origins have been proposed. Base map is crustal thickness overlain on topography. Red dotted line
corresponds to GRAIL defined linear gravity anomaly. (Source: [211]). (C) Distribution of Mg-Spinel
Anorthosite, the new rock type on the Moon. Preferential occurrence around basins and locations of
low crustal thickness has been suggested. The pink arrow marks the location of Theophilus crater,
shown in D (Source: [204]). The different letters refer to geologic setting (B—Basin, D—Dispersed,
K—Knobs, P—Pyroclastic, S—Special). (D) Mg-Spinel exposures (red and pink) concentrated in the
central peaks of Theophilus crater (Source: Modified after [203]). Red, Green and blue colors represent
band strength at 2 µm, 1 µm and 1.25 µm, respectively.

Global distribution of various key mineralogical endmembers (low Ca-pyroxene, high Ca-pyroxene,
olivine and Mg-spinel) has been mapped by several workers using a variety of datasets in order to
identify and understand global and regional trends (Figure 10). In this context, occurrence of abundant
olivine exposures around major basins has been suggested to indicate their possible mantle origin
(e.g., [210]). If true, these locations could be important sampling locations for obtaining mantle rocks
by future missions. Several follow-up studies using a variety of datasets and techniques, including
spectral reflectance, thermal infrared and radiative transfer modeling, have highlighted the complexity
of the character of the reported olivine occurrences with wide variation in the forsterite concentrations
and likely multiple origins of olivine at different locations (e.g., [211,212]). Some studies have also
supported the potential mantle origin of the reported locations based on numerical simulations of large
impact events (e.g., [213]). The distribution of low Ca-pyroxene rich lithologies has highlighted some
new observations. Highly magnesian (Mg > ~80) low Ca-pyroxene exposures have been located south
of Mare Frigoris based on remote sensing observations and spectral modeling. A potential linkage with
KREEP related Mg-suite pyroxenes has been suggested (e.g., [214]). The global distribution of high
calcium-pyroxene in the highlands has revealed geologically interesting trends. Many of the geological
young, small rayed-craters (8–24 km diameter) in the highlands region have high Ca-pyroxene as
the dominant lithology (e.g., [215]). It has been suggested that the conventional thought that low-Ca
pyroxene is the major mafic component of the crust may not be applicable universally.
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2.4.2. Impact Cratering Produced Components at Local Scale

Impacts have been gardening the lunar crust throughout geological time with varying intensity
(Figure 11). The large-scale distribution of crater ejecta on the lunar surface is quite evident by the
enormous rays of geologically young craters. As a result, lithologies occurring within the crust might
actually be sourced from different depths and lead to a heterogeneous crustal framework rather than a
well-defined compositionally layered structure. However, there may be exceptions, as in the case of
exposure of possibly layered magmatic plutons (e.g., [193,202]). Apart from simple excavation and
re-distribution of material during the cratering process, a melt component is also produced which
increases with the size of the crater (i.e., larger craters have proportionately large deposits of impact
melt) (e.g., [216]). High spatial resolution datasets at multiple wavelengths (viz. optical, thermal,
radar) from recent missions have increasingly revealed extensive occurrence of impact melt deposits
around impact craters and sometimes away from them (e.g., [217–222]). Impact melt deposits have
conventionally been assumed to be rich in glass [223]. However, recent laboratory measurements have
highlighted that impact melt signatures span from glass to completely crystalline, the latter mimicking
signatures of primary igneous rocks (e.g., [224]). Detailed remote sensing studies characterizing
the mineralogical character of morphologically identifiable impact melt deposits have revealed the
crystalline nature of impact melt to be much more common than its glassy flavor (e.g., [225–227]).
This crystalline character of impact melt deposits has important implications for the observed
compositional diversity of the lunar crust and may therefore be an important component of the
crust [228]. In the context of olivine mineralogy, it has recently been suggested that at least one
exposure of olivine at Copernicus crater might have an impact melt origin, as opposed to being a
primary exposure from mantle or crustal pluton (e.g., [229]). This finding also has direct bearing on
the suggested mantle origin of olivine occurrences around basins discussed in the previous section.

2.4.3. Impact Cratering Produced Components in Large Impacts

Large impacts approaching the size of basins have significantly different implications for crustal
compositional diversity and are therefore being discussed in a separate section. Compared to small
impacts (simple to complex craters) where impact melt largely comprises of melt-rock mixtures, basins
have a considerably larger molten component that may give rise to impact melt seas. It has been
suggested (and argued against) that such large bodies of melt could potentially differentiate, giving
rise to lithologies with igneous textures and more importantly indistinguishable signatures in remote
sensing observations (e.g., [230–232]). If true, at least some of the observed crustal diversity may
be the result of differentiated impact melt rather than primary igneous processes. This possibility
of differentiated impact melt has been evaluated through petrological modeling, as well as direct
validation of the predicted compositional stratigraphy through elemental and mineralogical assessment
of impact melt seas at large basins. Petrological models have demonstrated the feasibility of impact
melt differentiation and predicted the lithological succession and abundances [233,234]. Compositional
studies of Orientale impact melt deposits have, however, shown to be not consistent with predicted
lithologies from a differentiated impact melt (e.g., [235]). Similar studies have also been carried out for
the South Pole Aitken (SPA) basin (discussed below). Although far from being resolved, the complexity
of the problem and its significant implications strongly justifies the need for intensive studies of impact
melt differentiation and impact cratering process at large spatial scale.
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Figure 11. New views of impact melt deposits and SPA Basin. (A) High spatial resolution view of an
impact melt flow deposit at Giordano Bruno crater (Source: [217]). (B) Unique impact melt flow feature
with no detectable topographic signatures (left panel), which is compositionally distinct (green feature
on crater floor and northern wall) from surrounding impact melt on the floor (after [226]). Red, green
and blue colors map band strength at 1 µm, 1.9 µm and 2.3 µm respectively. (C,D) Compositional
zones at South Pole Aitken (SPA) basin (Source: [236,237]). (E,F) Modeled mineralogical sequence at
SPA based on the differentiation of an assumed impact melt sea (Source: [233,234]).

2.5. South-Pole Aitken Basin—New Light on the Lower Crust and Upper Mantle

The oldest and the deepest impact basin on the Moon holds crucial clues to the earliest phase
of the lunar evolution. Several new insights have been obtained from modern sensors at multiple
wavelengths. Integrated mineralogy, elemental composition and topography data have revealed
identifiable zones of different lithologies. An elevated region near the basin center, previously referred
to as olivine hill [238] has now been confirmed to be rich in mafic minerals and accordingly referred to
as mafic mound. The innermost zone in the SPA basin is composed of high calcium-pyroxenes and
named the SPA compositional anomaly (SPACA) (e.g., [236,237]). However, some of the crater central
peaks in this region exhibit low Ca-pyroxene mineralogy. The depth of origin for the central peaks
provide constraints on the vertical extent of Ca, Fe-rich pyroxene layer. The outer zone of SPA (still
within the basin) is comprised of an annulus of Mg-rich pyroxenes. The compositional stratigraphy
exposed at SPA has been compared to a differentiated impact melt, exposure of mantle material, as
well as a product of a unique mode of non-mare volcanism (e.g., [237,239]). The lack of olivine-rich
exposures within SPA has also led to the speculation that the mantle of the Moon is not olivine-rich,
rather rich in low Ca-pyroxene (e.g., [237,240]). Detailed studies of low Ca-pyroxenes at SPA have
also revealed composition of Mg50–70, suggesting that the SPA impact event excavated an iron-rich
pyroxene (e.g., [214]). The study, however, also revealed that the exposures of low Ca-pyroxenes at
Apollo basin (located within SPA) are different in character and likely more primitive in nature.

3. Future Lunar Science and Exploration

The Moon has been a cornerstone for understanding the solar system’s evolution. The results
from recent missions have provided brand new insights and have raised important new questions
whose implications go beyond the Moon. Active attempts are being made worldwide to address some
of these new questions, as well as old, unresolved questions through orbiters, landers and sample
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return missions (Figure 12). Several missions from national space agencies are in advanced stages of
execution, including Chang’E-4 (first far side landing) and Chang’E-5 mission (sample return mission),
Chandrayaan-2 (first landing at lunar high latitudes) and Lunar flashlight (multi-laser probing of the
lunar poles in CubeSat architecture) (e.g., [100,241–243]). Several other missions are being currently
planned or have been proposed, including LunaGlob, a mission to the lavatube skylights and the
magnetic anomalies (e.g., [185,188,189,244,245]). Apart from the science of the Moon, one of the
potential opportunities is to carry out science from the Moon (e.g., [246]). A key advancement in the
field of lunar exploration has been the active participation of the private enterprise, which is probably
key to maintaining a sustained presence on the Moon. Several companies, including Team Indus
(India), Astrobotics (USA), Moon Express (USA) and ILS (Israel) have made sustained efforts for more
than a decade to make private Moon landing a possibility (e.g., [247–252]). Although, such a milestone
has not yet been achieved, its probability in the near future has been steadily rising. In addition,
active efforts are also being made towards exploring the utilization of lunar material towards future
infrastructural requirements (e.g., [253–256]).

Future Lunar Missions 

(2019 - )

Moon Express

(USA)

Lunar Flashlight

(USA)

Chang’E - 4

(China)
(India)

Chang’E-5

(China)

Korean Lunar Pathfinder 

Orbiter (South Korea)

Chandrayaan-2

(India) 

Astrobotic (USA)

Figure 12. Lunar missions in the near future (planned/proposed). Credits for individual images:
CNSA, KARI, NASA, ISRO, Team Indus, Astrobotic and Mars Express.

4. Summary

Significant scientific discoveries have been made in the last decade that have revolutionized
the understanding of the Moon, raising critical questions about the origin of the Moon through a
large impact, its evolution in a magma ocean scenario, its volcanic and plutonic activity, as well as
the primary, secondary and tertiary nature of the lunar crust. The discoveries of the three types of
volatiles (a monolayer of OH/H2O, polar ice and magmatic water in the lunar interior) have important
implications for the Moon and beyond, and have dramatically altered the scope of volatiles in the solar
system. Extensive observational evidence for the pure plagioclase layer has provided tighter constraints
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on the nature of the magma ocean crystallization but also posed the challenging petrological problem of
forming such a pure layer. The volcanic history of the Moon has been substantially revised through the
availability of high resolution imaging, while also raising intense debates on the potentially very young
volcanism. Brand new gravity observations have revealed the magmatic-intrusion-laden lunar crust
providing great insights into the lunar thermal evolution in its early phases. New components of the
crust in terms of pink spinel anorthosite (PSA) have been identified, sparking ideas about a KREEP-free
Mg-suite, including the possibility of Mg-suite volcanic inventory. Several new perspectives on the
impact process and products have been obtained, with the possibility of crustal compositional diversity
being strongly influenced by recrystallized impact melt rocks at different spatial scales. The detection
of volatiles on the lunar poles through multiple techniques, along with discovery of several lava
tube skylights, have significantly revived the interest in lunar exploration and a sustained presence
on the Moon. Approved, planned and proposed new missions promise great hope for science and
exploration of the Moon in the immediate and distant future. The Moon continues to demonstrate its
great scientific potential and promise as an exploration outpost with potential resources for sustaining
long-term presence. An ancient saying (Figure 13) from an Indian scripture captures the human
scientific curiosity and the acknowledgement of the Moon’s ability to provide answers to some of the
outstanding questions in planetary science:

Figure 13. A Sanskrit shloka (verse) from an ancient Indian scripture, Rigveda, originating in ~1500
BCE. Credit: ISRO Somayaan Project Report.
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