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Abstract: Previous land surface modeling efforts to predict and understand water budgets in the U.S.
Southeast for soil water management have struggled to characterize parts of the region due to an
extensive presence of fragipan soils for which current calibration approaches are not adept at handling.
This study presents a physically based approach for calibrating fragipan-dominated regions based on
the “effective” soil moisture capacity concept, which accounts for the dynamic perched saturation
zone effects created by the low hydraulic capacities of the fragipan layers. The approach is applied to
the Variable Infiltration Capacity model to develop a hydrologic model of the Obion River Watershed
(ORW), TN, which has extensive fragipan coverage. Model calibration was performed using observed
streamflow data, as well as evapotranspiration and soil moisture data, to ensure correct partitioning
of surface and subsurface fluxes. Estimated Nash-Sutcliffe coefficients for the various sub-drainage
areas within ORW were all greater than 0.65, indicating good model performance. The model results
suggest that ORW has a high responsivity and high resilience. Despite forecasted temperature
increases, the simulation results suggest that water budget trends in the ORW are unlikely to change
significantly in the near future up to 2050 due to sufficient precipitation amounts.

Keywords: soil moisture; fragipan; water balance; climate change; Variable Infiltration Capacity
model; U.S. Southeast

1. Introduction

The soil water balance (Figure 1) is a prime control of the structure and function of intensively
managed agroecosystems, driving the dynamics of both soil microbial communities, and crops [1].
Stress resulting from soil moisture deficits nearly halts nutrient cycling [2], while anoxic conditions
that develop if the soil is too wet can alter microbial decomposition processes [3]. Both conditions
can negatively impact the physical and chemical make-up of the soil leading to crop yield gaps.
Thus, proper management of the soil water balance is essential to maintain both the productivity and
sustainability of any agroecosystem [4].
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Even in historically “water-rich” regions, like the U.S. Southeast where there are abundant fresh
water supplies and an extensive water management infrastructure, there is a risk for soil water deficits
considering increasing demands for clean water e.g., [5] and escalating occurrences of climate extremes,
e.g., [6]. Recent studies project decreases in precipitation amounts during the summer months in
the Southeast, as well as a potential for more frequent, intense storm events; however, there is high
uncertainty associated with these forecasts [6]. Understanding the water budget and predicting potential
changes in the near future are crucial for optimizing soil water management scenarios and developing
more effective and equitable allocation procedures for crop production and domestic water use.
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Physically based hydrologic models are useful for simulating complex physical land-atmosphere
interactions and may be applied to predict water budgets for current climate conditions, as well as
for projected conditions [9]. An example of such a model is the Variable Infiltration Capacity (VIC)
model, which has been used successfully to simulate water budgets across the U.S. and other regions
around the globe [10–13]. VIC is a physically based semi-distributed, macroscale hydrologic model
used to quantify water and energy balances at a daily or sub-daily time step [14,15]. It has been widely
used for different time and basin scales [10–13] to monitor and forecast water budget changes. VIC is
responsive to both seasonal and event dynamics, and can consider spatial heterogeneities in climate
and land use, making it a particularly useful model for predictions related to climate and land use
changes, e.g., [16,17].

Past hydrological modeling studies in the conterminous U.S. have shown bias in predicting
streamflows in the Southeast. This bias has been attributed to calibration issues [18,19]. Since other
regions with similar climates have not shown a similar bias, landscape characteristics in the Southeast
are believed to be the cause of the bias. Though general physical ranges for model calibration
parameters have been provided in the literature, there are certain parameters and conditions that can
be challenging to characterize. For example, the b-parameter of the VIC model is an empirical parameter
used to describe the distribution of the infiltration capacity of the landscape, where the infiltration
capacity is defined here as the total volumetric capacity of a vertical soil column to hold water [10].
The b-parameter dictates the hydrologic behavior of the study area in terms of rainfall-runoff-infiltration
partitioning. While a few studies have demonstrated the determination of the b-parameter directly from
observed data of soil depth and porosity, e.g., [10,20], these studies have made the implicit assumption
of a “static” distribution of soil moisture capacity, which is not always true. This is illustrated by
Huang et al. [20] using the soil moisture capacity on a typical hillslope. Despite the soil thickness, and
consequently total soil moisture capacity, generally increasing downslope, the “effective” moisture
capacity is lowest at the footslope because these soils tend to be wetter due to higher groundwater
levels. Consequently, footslopes tend to be saturated more frequently than ridges. This saturation
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behavior cannot be accounted for by considering only the total volume that the soil can hold. One must
also consider additional “dynamic” factors or processes that influence moisture-holding capacity.

Another example where current calibration approaches may be inappropriate is for regions with
fragipan soils [21]. Fragipan soils are dense pans that are seemingly cemented when dry, brittle when
moist, and slake when submerged in water containing redox features [22,23]. Observations suggest
that they cover nearly 17 million ha in the Eastern and Southeastern United States [24]. Subsurface
layers containing fragipan soils are water-restricting horizons that can lead to perched saturation
zones, thereby affecting the effective moisture capacity and controlling both runoff and baseflow.
The effective moisture capacity in this case is regulated by the low saturated hydraulic conductivity
and depth to the fragipan layer, which together dictate how much the overlying soil can hold before
runoff is observed. Therefore, estimating the b-parameter in this case requires an approach based on
the effective moisture capacity that considers the hydraulic conductivity in addition to the depth to the
restrictive layer. Such an approach has not been examined to date, despite the extensive coverage of
fragipan soils in Southeastern U.S. This could potentially explain past difficulties/biases in simulating
streamflows in the U.S. Southeast with land surface models.

Recent developments for calibrating land surface models like VIC have included the application
of evolutionary algorithms for determining a set of parameters that best match model simulations
with observed data, e.g., [19,25]. Despite significant strides in optimization routines, the “search space”
or range of values examined by these algorithms for each parameter is still user provided. An intrinsic
problem in hydrologic systems modeling is that a given end state of the system can be reached by
several potential means, corresponding to different sets of calibrated parameters [26]. Thus, unless
the ranges provided are physically based and restricted to capture for example the effective moisture
capacity needed to represent fragipan soils, uncertainties in model predictions related to the calibration
parameters will persist even if observed data are perfectly matched by model simulations [27–29].
Consequently, the model’s ability to forecast system response under climate and land use changes will
be questionable since there is no guarantee that the model’s effectiveness in predicting water budget
trends is due to replication of the underlying physical processes, and not the model structure and
parameter inputs.

Further uncertainty in the forecasting capability of land surface models may arise from the type of
data that is used for model calibration. Currently, most water budget studies primarily utilize observed
streamflow data at select locations along the stream network (typically the watershed outlet) for
calibration purposes. Whereas, these data capture the integrated effects of rainfall-runoff-subsurface
processes across the entire watershed, they do not necessarily capture the relative partitioning of
rainfall into runoff, soil moisture, evapotranspiration (ET), groundwater recharge, and baseflow across
spatially heterogeneous landscapes [19]. Given the number of variables, it is plausible that rainfall
can be partitioned differently into these components/fluxes and the same integrated streamflow
fluxes would be observed at the calibration point, i.e., an equifinality issue [27]. Hence, although
the model may be able to replicate fluxes at the calibration point, inferences on the water budget
within the watershed may be questionable. This is particularly true for regions with fragipan soils,
where the layers are distributed over the watershed, both laterally and with depth, and are thus
difficult to characterize in terms of their effects on both the surface and subsurface water fluxes.
Thus, for forecasting studies, it is important also that other data, such as soil moisture and ET, are
calibrated along with the streamflow data. The selection of additional calibration variables should
not be arbitrary but rather guided by their ability to account for the major components of the water
balance and closure of the budget. In so doing, model uncertainty is reduced and inferences may be
made regarding potential changes in future water budgets with higher levels of confidence. This level
of model calibration is now feasible given the availability of various spatiotemporal satellite data
products for water budget components across the globe.

The main goal of this study is to examine the impacts of present and near-future climate on
the water budget in the Obion River Watershed (ORW), Tennessee, a predominantly agricultural
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watershed with fragipan soils in the Southeastern U.S. The specific objectives are threefold: (1) Develop
and provide a methodological blueprint for setting up, calibrating, and validating a VIC model in
a fragipan region, (2) account for the effects of landscape heterogeneity on the partitioning of both
surface and subsurface fluxes by considering ET and soil moisture as additional calibration parameters
to streamflow, and (3) compare present and near-future trends in soil water fluxes in ORW and their
implications for crop production. The calibration and validation blueprint presented herein calls
for detailed soil information, including the extent of fragipan soils and infiltration data for each
sub-drainage areas (SDA) within ORW. This information is used along with Horton’s infiltration
relationship [30] to provide physical ranges of the b-parameter. While the approach is used for a
watershed with fragipan soils, it is not limited to these landscapes and offers a simple physical
development process for the application of VIC to other types of watersheds as well. The study results
provide insight on the water balance into the near-future to help farmers, watershed managers, and
policymakers in decision making and resource management.

2. Materials and Methods

2.1. Study Area

The Obion River Watershed (HUC 08010202-3) is approximately 6400 km2 and representative
of the lower Mississippi River Basin, which is dominated by row crop agriculture [31] (Figure 2).
The ORW has a humid, continental climate and loess-derived soils, making it ideal for agricultural
production [32]. As a result, intensive row crop agriculture now dominates the watershed once covered
by forest and wooded wetlands. Intensive row crop agriculture and pastured grasslands cover 68.2%
of the watershed while forests cover only 28.7%. Residential areas cover the remaining 3.1% (AVHRR
land cover data). There are generally two major crop rotations in the cultivated areas; corn-soybean
with winter wheat planted as a cover crop or as a double crop, and continuous cotton. Approximately
80 to 90% of the management is continuous no-till.
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The annual average precipitation in the watershed is approximately 1310 mm. The majority of the
rain occurs in the spring and winter, although heavy convective thunderstorms occur in the summer.
The annual average temperature is 14.5 ◦C. During summer, ET can become the dominant flux in the
hydrologic cycle, exceeding incoming precipitation.

The topography and soil properties of the watershed transition from its eastern boundary to the
western boundary, which borders the Mississippi River (Figure 2). Rolling topography in the eastern
headwaters contain several North-South bands of sand and clay formations. The local streams in this
region have a moderately high gradient over generally sandy substrates. Loess plains in the middle of
the watershed have a gently rolling topography and contain sand, clay, silt, and lignite capped by loess
that can be 50–60 feet thick, generally deeper in the bluff regions towards the West. Streams in this part
of the watershed are low-gradient and murky, with silty sand bottoms. Many of the streams have been
deforested for agricultural purposes. Channel plugs have formed where aggradation and driftwood
accumulate to form blockages and alter flow patterns. Along the Mississippi alluvial plain on the West,
there are predominantly clayey soils with poor drainage that may contain wooded swampland and
oxbow lakes. Most of the very large farms in ORW exist along the Mississippi River, with smaller
farms located in other areas of the watershed.

Fragipan soils cover approximately 30% of ORW [33]. These soils are mostly found in the uplands
of the Eastern three-fourths of the watershed (Figure 2). The depth to the fragipan layer in ranges
between 0.1 m and 2.0 m below the surface. In most locations, the fragipan layer is below historical
tillage depths, typically 30 cm, and is therefore intact [34–36]. Furthermore, no-till practices are
currently practiced throughout the watershed to prevent additional disturbances to the fragipan layer.
The thickness of most fragipan soils is at least 15 cm [24]. The saturated hydraulic conductivity of the
fragipan layer in ORW, based on the U.S. Natural Resources Conservation Service (NRCS) soil survey,
is around 7 mm/h. The combination of poor drainage and relatively shallow depth to the fragipan
layer creates a very flashy hydrologic system [37], especially during more intensive rainfall events,
in areas where the fragipan soils are close to the surface.

2.2. Hydrologic Model

The three-layer variable infiltration capacity (VIC) model [14,38] was used for this study. VIC has
been extensively calibrated and applied for a variety of applications on water resources management,
land-atmosphere interactions, and climate change in many large and small basins over the U.S. and
worldwide [10–13,39–43]. Over the past two decades, VIC has been used in several multi-institutional
projects such as Project for Intercomparison of Land surface Parameterization Schemes (PILPS) and the
North American Land Data Assimilation System (NLDAS) project, and has been shown to compare
well with other land surface models and available observed data [18,44,45].

The VIC model framework is described in References [14,46]. VIC balances the water budget
within individual grid cells (Figure 1), while considering multiple soil layers with variable infiltration
and non-linear base flow. The soil characteristics are defined for each cell and held constant over time.
One or more vegetation tiles describes the surface of each grid cell, and the vegetation characteristics
such as Leaf Area Index, albedo, resistance, roughness root depth, and its relative fraction in each
soil layer, are assigned for each tile. The top two soil layers represent the dynamic response of soil
to infiltration. The model allows diffusion between the layers depending on the relative wetness.
The model estimates ET using the Penman-Monteith equation. Moisture from the middle layer
reaches the bottom layer through gravity drainage, which is regulated by a Brooks-Corey relationship.
The bottom layer represents seasonal soil moisture responses except when the other soil layers are
saturated. The base flow is only from the bottom layer and is based on the Arno model.

In this study, VIC was run at a daily time step in the water balance mode and results were
aggregated at a monthly scale. A grid cell size of 1 km2 was adopted to match the Advanced Very
High Resolution Radiometer (AVHRR) land cover data used in the study, yielding a total of 6417 cells.
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For each cell and time step, VIC computed water balance components such as runoff, evapotranspiration,
soil moisture, and base flow (Figure 1).

2.3. Data Sources

ORW has a wealth of in-situ and remotely sensed data available for model development,
calibration, and validation. The University of Tennessee Institute of Agriculture’s Research and
Education Center (REC) at Milan was a primary source of watershed and land-use parameters, as well
as measurements of ET and soil moisture. Since 1962, the Milan station has been an active research
facility in the heart of the watershed focusing on soil conservation, no-till agriculture, cover crops,
and irrigation.

In addition to the REC data, six U.S. Geological Survey (USGS) stream gages within the
watershed provided daily streamflow records for at least several years and up to several decades.
Additional monthly ET data were obtained from the USGS Simplified Surface Energy Balance (SSEBop)
data products [47], downloaded from the Geo Data Portal (https://cida.usgs.gov/gdp/). SSEBop
combines reference ET values (from the Penman-Monteith equation) with remotely sensed thermal and
vegetation imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite to
generate actual evapotranspiration (AET) data. Soil moisture measurements were also obtained from
nearby sites in the NRCS Soil Climate Analysis Network (SCAN). A 30-m Digital Elevation Model of the
watershed was obtained from the Tennessee GIS data server (http://www.tngis.org/elevation.htm),
and resampled to a 1 km resolution to match the model grid-cell size.

The observed historical climate data used in the study were obtained from DAYMET (http:
//daymet.ornl.gov/) [48] for 1980–2011, at a spatial resolution of 1 km × 1 km. The weather parameters
used included daily precipitation, minimum and maximum temperatures, humidity, and shortwave
radiation. Modeled historical and future climate data were also used in the study. These were obtained
from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) [49], which provides
long-term (hindcast/forecast) climate simulations for 1850–2205 with atmosphere-ocean global climate
models (AOGCMs) coupled with Earth system models of intermediate complexity. The historical
period of CMIP5 simulations ends in 2005 and the projection begins in 2006. For this study, data was
obtained for 1980–2005 for the historical period and for 2006–2050 for the projection period.

Two Representative Concentration Pathways (RCPs) [50], RCP 4.5 and RCP 8.5, were considered
for future climate projections. RCP 4.5 is a moderate climate scenario, where an additional radiative
forcing of 4.5 W/m2 compared to preindustrial conditions will be trapped in the atmosphere by 2100
RCP 8.5 is an extreme climate scenario, where an additional 8.5 W/m2 will be trapped by 2100 relative
to preindustrial conditions. For each RCP, climate predictions from the following four Global Climate
Models (GCMs) were used: (1) The National Oceanic and Atmospheric Administration—Geophysical
Fluid Dynamics Laboratory model (GFDL-ESM2M), (2) the Met Office Hadley Centre model
(HadGEM2-CC), (3) the Institut Pierre-Simon Laplace model (IPSL-CM5A-MR), and (4) the Japan
Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research Institute at the
University of Tokyo, and National Institute for Environmental Studies model (MIROC-ESM-CHEM).

2.4. Model Calibration & Validation

2.4.1. Selection of Calibration Parameters

A calibration process is presented herein for ORW based on its physical characteristics. The study
builds on the Troy et al. work [19], which showed that calibration for hydrological modeling (at a spatial
resolution of 1/8) using seven key parameters within an allowed range could significantly improve
the model results for the conterminous U.S. These seven parameters are presented in Table 1 along
with the ranges adopted in Reference [19]. The method of determination of each of the parameters in
this study is also specified in the table.

https://cida.usgs.gov/gdp/
http://www.tngis.org/elevation.htm
http://daymet.ornl.gov/
http://daymet.ornl.gov/


Geosciences 2018, 8, 364 7 of 25

Table 1. Description and determination method of model parameters 1.

Parameter Allowed Range Unit Determination in This Study Selected Values
for Calibration

b 0.001–1.00 - Horton model, effective soil
moisture approach -

Ds 0.001–1.00 - Calibrated 0.1–0.9
Dsmax 0.100–50.00 mm/d Ksat × Slope 2 -
Ws

3 0.200–1.00 - Calibrated 0.5–0.9
Layer 2 Depth 0.1–3.0 m Constant -
Layer 3 Depth 0.1–3.0 m Sensitivity Analysis -

Exp 0.1–30.00 - 3 + 2b1
4 -

1 b is the variable infiltration curve parameter, Dsmax is the maximum base flow velocity, Ds is the fraction of Dsmax
where nonlinear base flow begins, Ws is the fraction of maximum soil moisture content above which nonlinear base
flow occurs, the Exp parameter characterizes the variation of saturated hydraulic conductivity with soil moisture,
and the other two parameters are the depths of 2nd and 3rd soil layers; 2 Average slope of cell; 3 Ws > Ds; 4 b1 is
slope of soil retention curve as used in Campbell’s equation [51].

For small-scale hydrological modeling, heterogeneity within sub-drainage areas should be
considered in calibration for better representation of the watershed. The fine spatial resolution (1 km2

grid cell) employed in this study provided the basis to account for the heterogeneity. Properties of
each cell such as soil, vegetation, and climate were determined and assigned accordingly to represent
the watershed heterogeneity.

According to Reference [14], the b-parameter has the largest effect on runoff, while the Ds and
Ws parameters are critical in influencing the baseflow. Estimation of these three parameters is thus
crucial for model performance. Unlike the other four parameters (i.e., Dsmax, Exp, and depths of soil
layers 2 and 3), which are readily obtained from soil maps, b, Ds, and Ws are usually calibrated since
they are generally unknown and can vary considerably within a watershed [52]. In this study, b was
estimated using soil data and Horton’s infiltration relationship [30], while Ds and Ws were estimated
by evaluating plausible physical values for both parameters. The parameters Dsmax and Exp were
also calculated using empirical relationships (see Table 1). The depths of the second and third soil
layers were chosen to be consistent with the soil layers of the CONUS-Soil data [53]. For the third
layer, however, a sensitivity analysis was further performed to determine a minimum required depth
of 1.4 m. Cells with layer 3 depths lower than this value had fast drainage and unrealistically low soil
moisture contents.

2.4.2. Estimation of Calibration Parameters

As discussed above, the b-parameter is an important model parameter and should be determined
carefully to make sure that model results are physically meaningful. Based on its definition, b controls
the partitioning of rainfall into runoff and infiltration, and ranges commonly between 0 and 0.4, though
larger values have been estimated for some watersheds [19,54]. Higher values produce more runoff
and less infiltration whereas lower values produce less runoff and more infiltration. An extensive
literature search for the parameterization of the b-parameter (see Table A1 in the Appendix A) reveals
two readily noticeable facts: (1) The range of values used in the literature is wide; and (2) there is a
lack of a consistent methodology used to derive this parameter. Sivapalan and Woods [10] and Huang
et al. [20] are two of the few studies that have attempted to determine b directly from soil observations.
However, as explained in the introduction, a shortcoming of these studies is the assumption of a static
soil moisture capacity distribution, which is not directly applicable to watersheds with distributions of
fragipan soils that vary in space, both laterally and with depth. To address this issue, this study adopts
a dynamic or effective soil moisture capacity distribution assumption for determining the value of b.
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Since fragipan layers regulate infiltration, leading to perched saturation zones and increased
runoff [55], the effective soil moisture capacity for fragipan regions is estimated herein with the
following relationship derived from integration of Horton’s curve:

ie = fcts − (f 0 − fc)e−kts/k, (1)

where ie is the effective soil moisture capacity (L), fc is the final constant infiltration capacity,
i.e., saturated hydraulic conductivity (LT−1), f 0 and k are, respectively, the initial infiltration capacity
(LT−1) and decay rate (T−1) and ts is the time to steady infiltration (T). Equation (1) accounts for
dynamic or temporal effects that control water storage and saturation in the soil. Field data for
fragipan sites within the watershed were used to determine the variables on the right hand side of
Equation 1, from which ie was then computed. The computed values of ie across the watershed were
used to establish the cumulative soil moisture capacity curve, from which b was determined by fitting
the following distribution [54]:

ie = im [1 − (1 − A)1/b], (2)

where im is the maximum soil moisture capacity (L), and A is the fraction of the area for which
the infiltration capacity is less than ie. Further details on the estimation of ie and b for ORW is
provided below.

For the fragipan areas in the watershed, values of f 0 and k averaged 210 mm/h and 2 min−1,
respectively [56]. The average fc value for fragipan soils, based on the NRCS soil survey, was also
approximately 7 mm/h. The ts determined from field experiments was on average 60 h for an
approximate soil depth of 2 m, with fragipan soils occurring around 600 mm below the surface. Using
Equation (1), an average ie value of 432 mm could then be estimated for the fragipan regions (i.e., an
effective soil moisture capacity approximately 51% of the total capacity of the soil column, which has
a porosity of 0.42). Repeating the step for different fragipan depths, the cumulative distribution of
effective soil moisture capacities were plotted and Equation (2) was fitted to the data to obtain an
estimate of 0.53 for the b value. This is shown in Figure 3. Following a similar approach, a b value of
0.04 was determined for the non-fragipan regions.
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with the effective soil moisture capacity approach.

Since VIC requires a single value of b per grid cell, it was necessary to determine an effective b
value for each cell based on the relative influences of fragipan and non-fragipan areas within the cell.
This required a sensitivity analysis of the b-parameter to determine first whether or not variations in
b had a significant impact on rainfall-runoff-baseflow flux proportioning, and then to determine its
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relationship with the runoff coefficient (i.e., ratio of runoff to rainfall) to establish weighting factors for
computing the effective b value from the fragipan and non-fragipan b values and area proportions.
As mentioned above, fragipan soils cover approximately 30% of ORW. However, the actual proportion
of fragipan to non-fragipan area within each grid cell will vary from cell to cell depending on the
landscape characteristics [57]. For the sake of simplicity, an assumption of 30% fragipan coverage was
made for each grid cell falling within a sub-drainage areas where fragipan soils were present. Since the
VIC flux predictions are aggregated herein to the sub-drainage scale, this assumption is valid because
fragipan effects at that scale are aggregated in reality and will reflect the approximate coverage in each
sub-drainage area.

The sensitivity analysis was performed for a two-year period (2010–2011). The b-parameter was
varied between 0.15 and 0.9 and its effects on the runoff, baseflow, and streamflow were analyzed.
The results are presented in Figure 4 along with the simulated precipitation. As seen, higher b values
produced more runoff (Figure 4a) and less baseflow (Figure 4b). For streamflow, this resulted in higher
hydrograph peaks and lower troughs (Figure 4c). Overall, runoff differed by as much as 150% (a factor
of 2.6) in May of the first year, while baseflow differed by as much as 170% (a factor of 2.7), indicating
a sensitivity of the water fluxes to the value of the b-parameter. In terms of streamflow, the differences
in peaks were only as much as 50% (a factor of 1.5) in May of the first year while differences in troughs
were only as much as 100% (a factor of 2) in August of the first year. Given the large difference between
the estimated b-parameter for fragipan (~0.53) and non-fragipan regions (~0.04) in ORW, the sensitivity
analysis suggests that the separate estimation for fragipan and non-fragipan areas is justified since
significantly different responses in terms of runoff, baseflow, and streamflow are expected.
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The relationship between the b-parameter and the normalized runoff coefficient is plotted in
Figure 5 based on the sensitivity analysis results (each dataset is normalized with the runoff coefficient
corresponding to b = 0.9). The overall trend for the mean runoff coefficient (solid red line in Figure 5)
follows an approximate power law (Hoerl curve). Using this relationship, an effective normalized
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runoff coefficient of 0.4 was estimated for a cell with 30% fragipan (b = 0.53) and 70% non-fragipan
(b = 0.04) coverage. From this effective normalized runoff coefficient value, a corresponding effective b
parameter of 0.15 was estimated, which was adopted in the model.Geosciences 2018, 8, x FOR PEER REVIEW  10 of 25 
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Figure 5. Variation of normalized runoff coefficient with the b parameter. The black circles are data
points from the sensitivity analysis and the solid red line is a Hoerl model trendline fitted to the data.

The common ranges of Ds and Ws adopted from the literature are, respectively, 0.001–1 and
0.2–1 [9] (see Table 2). The selected values for calibrating Ds, and Ws used in this study (presented
in Table 1) were chosen after reviewing the literature for VIC simulations of regions close to west
Tennessee or with relatively similar soil and/or hydrological regime to ORW (see Table 2).

Based on the soil properties, model parameter values for Dsmax ranged from 0 to 100 for the 6147
cells, with an average value of around 10. Likewise, parameter values for Exp ranged from 3 to 20,
also with an average value of around 10. Finally, the depths of the 2nd and 3rd layers generally fell
between 0.4 m and 1.5 m.



Geosciences 2018, 8, 364 11 of 25

Table 2. Physical ranges for calibration parameters adopted in past studies.

Study Watershed
Area Cell Size Time Step Region Soil Order 1 Fragipan Hydrological Regime Land Cover b Ds Ws

Liang et al. [14] 11.7 km2 15 km Daily King Creek, Kansas Mollisols No Semiarid Tall Grass 0.008 7.7 × 10−5 0.96

Abdulla et al. [58] 6 × 105 km2 1 degree Daily
Arkansas-Red River
(US Southern Great

Plains)

Utisols, Alfisols,
Mollisols

Yes, on eastern
side of basin Arid to Humid

Grass, Shrub,
Woodland,

Forest, Alpine
0.0–0.4 - -

Troy et al. [19] Cell-Based 1/8 degree 12 h Northwest
Tennessee Alfisols Yes Sub-humid to Humid Crop, Grass 0.2–0.5 - -

Xie and Yuan [59] 43–371 km2

Each
watershed

treated as one
cell

Hourly France (12
Watersheds) Alfisols, Inceptisols Yes, on eastern

side of France Humid

Forest,
Woodland,

Grass, Shrub,
Crop

0.15–0.45 0.02 0.8

Chawla and
Mujumdar [52] 9 × 104 km2 1/2 degree Daily Midstream Upper

Ganga Basin, India

Lithosols,
Cambisols, Regosols,
Gleysols, Fluvisols

No
subequatorial

monsoon climate with
sufficient moistening

Forest, Crop 0.044 0.0004 0.62

1 Soil orders are based on the USDA classification system, except for [52] which is based on the FAO classification.
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3. Results

3.1. Model Calibration

The model was calibrated by comparing simulated monthly streamflow fluxes for each of
the six SDAs (Figure 2) against corresponding observed monthly USGS streamflow data for the
period of 1980–2011. Relative bias and the Nash-Sutcliffe efficiency coefficient [60] were used as
the measures of performance for each calibration case. The best set of calibration parameters and
model performance values for each SDA, along with the USGS gauging stations used, are presented
in Table 3. A comparison between simulated streamflow hydrographs and corresponding USGS
streamflow hydrographs for two of the SDAs is also shown in Figure 6. As seen, the calibrated model
correctly predicts the overall trends in streamflow and captures well the low flows. However, it tends
to underestimate high peak flows. The Nash-Sutcliffe Efficiency coefficient above 0.65 for all SDAs
suggests that the model results are good [61–63].

Table 3. Streamflow calibration: Nash-Sutcliffe Efficiency (NSE) Coefficient and Relative Bias for the
best combination of calibration parameters each Sub Drainage Area (SDA).

SDA Ds Ws NSE Coef. Relative Bias USGS Station

1 0.9 0.9 0.71 0.23 07024200
2 0.9 0.9 0.74 0.10 07024300
3 0.9 0.9 0.67 0.32 07024500
4 0.1 0.5 0.75 0.04 07025400
5 0.9 0.9 0.73 0.12 07026040
6 0.9 0.9 0.73 0.16 07026300
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(right) SDA 5.

The effective soil moisture capacity approach used herein for determining b gives confidence that
the model is able to partition correctly precipitation to infiltration and surface runoff. To validate the
model’s ability to simulate and partition subsurface fluxes, the calibrated results were also compared
with observed data of AET and soil moisture. Figure 7 compares the MODIS-derived AET with
the VIC-simulated AET for the entire watershed from 2000 to 2012. As seen, the MODIS values are
generally within one standard deviation of the VIC values and the Nash-Sutcliffe efficiency coefficient
is 0.77, which suggests good agreement. Furthermore, the simulated AET values are also similar to the
average range of 25–125 mm per month reported for the Arkansas-Red River basin (which neighbors
ORW on the west) in Reference [58].
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On the contrary, historic and projected temperatures clearly exhibit a rising trend with an 
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which also show an increasing trend for both RCP 4.5 and 8.5 till 2050 (~1.4 mm/year), with no 

Figure 7. Validation of monthly AET for the whole watershed. The model average and variability
represents, respectively, spatially averaged monthly flux and the spatial standard deviation.

Figure 8 shows the comparison between the simulated and observed soil moisture data from
2004 to 2010. The observed data in this case are field observations obtained from the NRCS-SCAN
network. The comparison confirms that the model was able to replicate the magnitude and trends in
soil moisture in the watershed, with a fair Nash-Sutcliffe Efficiency Coefficient of 0.4.
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3.2. Climate Impact on the Obion River Watershed Water Budget

Figure 9 presents annual precipitation and temperature time series in ORW for the historical and
projection periods examined herein. In each plot, the dotted blue lines represent the maximum and
minimum model predictions (among all four GCMs), and the solid black curve shows the observed
historical data. The solid cyan line is the ensemble average of the four GCMs.

While there are no obvious trends in precipitation for both the RCP 4.5 and RCP 8.5 scenarios,
RCP 4.5 shows a slight decline, whilst RCP 8.5 shows a slight increase. This is accordance with reported
trends for the region for the 20th century. According to Hanson and Weltzin [64], the region had about
a 1% increase of precipitation per decade over a 100-year period. It was also reported that the number
of moderate and extreme dry months (according to the Palmer Index) in the second half of the same
100-year period was less than the first half [64].

On the contrary, historic and projected temperatures clearly exhibit a rising trend with an
approximate increase of 3 ◦C over the 70-year period from 1980 to 2050, for both RCP 4.5 and RCP 8.5
scenarios. Consistent with these are the annual time series of potential evapotranspiration (PET), which
also show an increasing trend for both RCP 4.5 and 8.5 till 2050 (~1.4 mm/year), with no significant
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differences between the scenarios (see Figure 10). This is to be expected since PET is a function of the
mean temperature, among others.
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curve is the average of four GCM models, and the variability curves are the minimum and maximum 
of four models. The red line is the slope of the time series during the projected period. The percent 
change from 2006 to 2050 is shown in red above each line. 

 

Figure 9. Annual precipitation (top) and temperature (bottom) time series based on observations
for 1980–2011 and modeled climate from the fifth phase of the Coupled Model Intercomparison
Project (CMIP5) [49] for historical (1980–2005) and projected (2006–2050) period according to two
Representative Concentration Pathways (RCPs) [50] of RCP 4.5 (left) and RCP 8.5 (right). The average
curve is the average of four GCM models, and the variability curves are the minimum and maximum
of four models. The red line is the slope of the time series during the projected period. The percent
change from 2006 to 2050 is shown in red above each line.
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Figure 10. Time series of annual PET based on four GCM models for the historical period (1980–2005)
and projected period (2006–2050) considering RCP 4.5 (left) and RCP 8.5 (right). The average curve is
the average of four GCM models, and the variability curves are the minimum and maximum of four
models. The red line is the slope of the time series during the projected period. The percent change
from 2006 to 2050 is shown in red above each line.
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Unlike PET, the annual time series of AET show different trends (see Figure 11). While the
projected AET for RCP 8.5 is increasing, the projected AET for RCP 4.5 is declining. This phenomenon
can be explained by the precipitation trends shown in Figure 8. Consistent with AET trends,
the projected precipitation declines for RCP 4.5 and rises for RCP 8.5. Studies indicate that changes
in wind and air temperature may not always be the root cause for AET changes, and that changes in
precipitation characteristics can dominate AET trend changes [65]. The decline in precipitation for RCP
4.5 results in a soil moisture limitation that primarily drives declines in the ET [66]. Thus, the available
water restricts variation of AET for this region in West Tennessee.
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Figure 11. Time series of annual AET based on four GCM models for the historical period (1980–2005)
and projected period (2006–2050) considering RCP 4.5 (left) and RCP 8.5 (right). The average curve is
the average of four GCM models, and the variability curves are the minimum and maximum of four
models. The red line is the slope of the time series during the projected period. The percent change
from 2006 to 2050 is shown in red above each line.

Figure 12 shows the soil moisture time series for the historical and projected periods. The projected
time series for both RCPs are within the same range as the historical period. In addition, the slope of
the trend for both RCPs is negligible, suggesting no significant changes due to climate in the near future
till 2050. It is worth noting that variation of soil moisture through ET also depends on land use/land
cover [67]. In this study, the land use/land cover was fixed to current values for the projection period.
Any land use/land cover changes in future may directly affect ET, and consequently the soil moisture.

The above trends for precipitation, temperature, PET, and AET, along with trends in runoff
and baseflow, are summarized in Figure 13. Box plots of the parameters for the historical period are
compared to the associated box plots projected for RCPs 4.5 and 8.5. The comparisons are for the 20-year
periods of 1986–2005 in the past and 2031–2050 in the future. For comparison purposes, all parameters
are presented as deviations from the average value during the historical period. Precipitation and
temperature are known drivers of change in the water balance. For ORW, while there are slight changes
in precipitation, there are significant changes in the temperature for the projected period. However,
as noted previously, the water balance in this region is more restricted by water availability. Therefore,
the projected changes in the other water budget parameters, including AET, soil moisture, baseflow,
and runoff are slight, except some changes in the most extreme data points manifested by extension of
the whiskers in Figure 13.
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Figure 12. Time series of annual soil moisture based on four GCM models for the historical
period (1980–2005) and projected period (2006–2050) considering RCP 4.5 (left) and RCP 8.5 (right).
The average curve is the average of four GCM models, and the variability curves are the minimum
and maximum of four models. The red line is the slope of the time series during the projected period.
The percent change from 2006 to 2050 is shown in red above each line.
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Figure 13. Box plots of average annual deviations from the historical mean for two 20-year periods
of 1996–2005 (historical: black) and 2031–2050 (projected RCP 4.5: green and projected RCP 8.5: Red).
Boxes are the median, 25% and 75% percentiles, and whiskers extend to the most extreme data points.
The historical mean value from 1996–2005 is used as the reference.

Statistical tests were used to assess quantitatively changes in the mean and standard deviation of
each parameter from the historical period to the projected period. The same 20-year periods considered
in Figure 13 were used for these tests. T-tests were used to measure differences in the mean while
F-tests were used to compare standard deviations. The results of the tests are presented in Table 4.
Only two parameters, i.e., temperature and PET, show significant changes in their mean values into the
projected period for both RCP 4.5 and RCP 8.5. Further, the only parameter that shows a statistically
significant change in its standard deviation is the temperature for RCP 8.5. The findings suggest that
there will be a significant increase in extreme temperature conditions under the RCP 8.5 scenario.
Overall, however, the statistical results suggest that changes in projected water budget will be not
significant in near future for the ORW.
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Table 4. Statistical comparison of average annual fluxes for two 20-year periods of 1996–2005 (historical) and 2031–2050 (projected; RCP 4.5 and RCP 8.5). Results of 0
and 1 show, respectively, statistically insignificant and significant changes (significance level 0.01). The statistically significant changes are highlighted in bold.

Parameter
Mean Standard Dev. T-Test F-Test

Past RCP 4.5 RCP 8.5 Past RCP 4.5 RCP 8.5
RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5

Result p-Value Result p-Value Result p-Value Result p-Value

Precipitation (mm) 1308 1316 1350 231 278 254 0 0.84 0 0.28 0 0.10 0 0.40
Temperature (◦C) 14.91 16.93 17.09 0.84 1.01 1.17 1 2 × 10−28 1 2 × 10−27 0 1 × 10−1 1 4 × 10−3

AET (mm) 820 812 851 81 90 89 0 0.57 0 0.02 0 0.33 0 0.40
PET (mm) 809 840 860 57 63 67 1 9 × 10−4 1 5 × 10−7 0 4 × 10−1 0 2 × 10−1

Soil Moisture (%) 26.7 26.7 26.4 2.3 2.4 2.4 0 0.95 0 0.41 0 0.67 0 0.62
Baseflow (mm) 303 311 303 89 98 97 0 0.59 0 0.97 0 0.35 0 0.41
Runoff (mm) 185 191 192 52 65 58 0 0.50 0 0.39 0 0.05 0 0.35
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The characteristics of ORW were also examined with the Budyko curve [68], which is a common
representation of the land-water balance that describes the mean-annual partitioning of precipitation
into streamflow and evaporation. The curve summarizes the relation between the ratios of AET/P
(evaporative index) and PET/P (dryness index), where P is precipitation. The distribution of annual
values on the Budyko curve (Figure 14) can be used to determine the following characteristics of a
watershed [69]:

1. Resistance (or responsivity), which measures the degree to which streamflow is synchronized
with precipitation, and;

2. Resilience (or elasticity), which measures the degree to which a watershed can return to normal
functioning following perturbations.
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watershed for the past period based on observed climate (1980–2011) as well as the historical period
(1980–2005) and projected period (2006–2050) based on GCM climate annual values.

Resistance was estimated from the deviation in the AET/P of annual values (i.e., ∆y-axis), while
resilience was estimated as the ratio of deviation in PET/P to the deviation in AET/P (i.e., ∆x-axis/∆y-axis).
The data suggest that ORW has a relatively low resistance (i.e., high responsivity = 0.9), meaning that
streamflow is largely synchronous with precipitation. This result is consistent with the effects of the
fragipan soils in the region, which systematically transfers precipitation into streamflow discharge with
less storage. Further, the ORW has a high resilience (i.e., elasticity = 2.3 (> 1)), so it has the capacity to
sustain its functionality after extreme climatic perturbation such as drought or extreme precipitation [69].

4. Discussion and Conclusions

Biases in streamflow predictions in the U.S. Southeast from past hydrological modeling studies
have been attributed to calibration issues [18,19]. Since other regions with similar climate have not
shown a similar bias, landscape characteristics are believed to be the cause of the bias. Specifically,
the occurrence and extensive coverage of fragipan soils in the region are thought to control hydrologic
response by affecting the partitioning of rainfall into runoff and infiltrated water, especially during
more intensive rainfall events, in areas where the fragipan soils are close to the surface.

This study presented a methodology for calibrating regions with significant fragipan coverage
based on the effective soil moisture capacity associated with these features. Estimation of the
b-parameter of the VIC model, which controls rainfall-runoff-infiltration partitioning, was based
on fragipan layer characteristics such as the saturated hydraulic capacity, the time to saturation,
and the depth to the fragipan layer. This approach avoided the need to evaluate the wide range of
b-parameter values recommended in literature (see Table A1) to match the observed flows. Further,
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since the approach is based on the physical characteristics of the soil, simulated trends in runoff and
baseflow, as well as the behavior of the watershed in terms water budget response can be attributed to
the processes that take place.

The proposed approach was successfully applied to the Obion River Watershed located in the
U.S. Southeast, specifically the Northwestern part of Tennessee. Estimated b-parameter values of
0.53 and 0.04 for fragipan and non-fragipan soils, respectively, in the watershed produced good
model predictions with Nash-Sutcliffe coefficient values greater than 0.65 and relative bias values
ranging between 0 and 0.32 for sub-drainage areas within the watershed. A sensitivity analysis on
the b-parameter validated the need to examine fragipan and non-fragipan soils separately in the
watershed and confirmed that fragipan soils were resulting in flashier streamflow response with higher
peaks and lower troughs. Further, the calibrated model was also shown to correctly predict trends
in evapotranspiration and soil moisture, confirming that it was able to correctly partition subsurface
fluxes in the various components.

The calibrated model was used to study the impacts of climate on the water balance in ORW.
Water budgets were simulated for past and future projected climates up to 2050 (based on four GCMs
for RCPs 4.5 and 8.5). While no significant changes in the water balance were forecasted for the near
future (based on T-tests and F-tests), the results suggested a significant change in extreme temperature
conditions for the RCP 8.5 scenario. Trends in the fluxes also suggested that the water budget in
ORW is controlled to a large degree by water availability. This explains the lack of sensitivity of the
water budget to forecasted temperature increases. The effect of a temperature increase will be to
increase PET. However, since water availability is limiting, the AET will be regulated by the water
input (i.e., precipitation) and not temperature [66], thereby rendering the watershed less sensitive to
temperature changes. Being a cropland, this scenario occurs primarily during the growing season in
ORW when most of the ET occurs. Nonetheless, the effects are reflected in the annual water budget
trends since ET is the primary system water output on an annual basis (see Table 4).

Annual changes in the evaporative (AET/P) and dryness (PET/P) indices of ORW on the Budyko
curve were used to characterize its responsivity (i.e., the degree to which streamflow is synchronized
with precipitation) and resilience (i.e., the degree to which a watershed can return to normal functioning
following perturbations). The ORW was found to have a high responsivity of 0.9, suggesting that
stream flow was largely synchronized with precipitation. This finding is consistent with the effects of
the fragipan soils in the region, which tends to systematically transfer precipitation into streamflow
discharge with relatively less storage. The ORW was also found to have a high resilience of 2.3, also
indicating that it has the capacity to sustain its functionality after extreme climatic perturbation such
as drought or extreme precipitation.

The projection of no significant changes in the water budget of ORW in the near future has
implications to the region’s agriculture. While the irrigation for agricultural purposes in Tennessee
has been increasing over past decades and is expected to increase over the next decades [70], it is well
below the average in the country. The average acres of farms under irrigation was 17.8% for Tennessee
and 25.4% for the United States with average acre-feet irrigation per acre of 0.4 for Tennessee and 1.6
for the United States [71]. Since the mean soil moisture and evapotranspiration are not expected to
change profoundly until 2050, agriculture in Western Tennessee can be expected to continue to perform
similarly to recent trends, holding economic factors constant. Furthermore, water sources for irrigation
are not expected to be impacted in the near future from climate changes according to the projected
water balance.
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Appendix A

Table A1. Treatment of b parameter in various VIC studies.

Article Model Size Value Definition Method

Zhao et al. [72] N/A 0.2–0.4
Topographic factor, denoting non-uniformity of
distribution of soil moisture storage. b = 0.2–0.4
for mountainous and hilly areas.

First estimated directly from observed
hydrological data and then calibrated
in the computation routine

Zhao [73] N/A 0.1–0.4

Defines the non-uniformity of the surface
conditions. (<10 km2), b = 0.1 and basins
(<1000 s km2), b = 0.4. As x moves down the
curve, it implies a redistribution of soil
moisture during the drying period, with water
flowing from the more elevated parts of the
sub-basin to the lower parts.

Experience

Dumenil and
Todini [74]

600 km × 600
km 0.01–0.5 Parameter b is a function of orography only Orography correction to represent

steep orography

Wood et al. [15] 767 km2 0.01–10;
0.085–0.129

Shape parameter. Acknowledges that model
assumes infiltration capacities vary within an
area due to variations in topography, soil, and
vegetation.

Sensitivity Analysis
Estimated

Liang [14] 11.7 km2 0.008 Infiltration shape parameter

Estimated from streamflow,
precipitation, and
maximum/minimum temperature
through calibration.

Kalma et al. [75] 26 km2 4 Empirical parameter

Assumed that they had a set of total
storage capacity values. The
cumulative frequency of these values
were plotted and then was fit with
different values of b by trial and error.

Zhao and Liu [76] N/A 0.1–2

b varies from 0.1–0.4 when spatial scale is
within thousands of square kilometers. b
increases significantly to 1 or 2 even more
when modeling area is over tens of thousands
of square kilometers.
b reflects the pattern of land surface
characteristics (<100 km2) and heterogeneity of
the land surface and distribution of rainfall
(<1000 s km2)

Experience and through calibration of
precipitation and streamflow.

Sivapalan and
Woods [10] N/A 4.03 Empirical parameter

Through fitting a distribution of soil
depths obtained through field
observations.

Liang et al. [46] N/A
0.01–0.5—Based
off range from

Todini 1992

Infiltration shape parameter which is a
measure of the spatial variability of the
infiltration capacity.

Estimated using hydrologic
information (especially streamflow).
If no information is present,
determine based on past calibration
experience.

Abdulla et al.
[58] 1 × 1 degree 0–0.4 Infiltration parameter

Estimated using the Shuffled
Complex Evolution search method
where the objective function was the
sum of squared differences between
the simulated and observed
streamflow. This was then spatially
interpolated to derive b values across
the basin.

Lohmann et al.
[18]

1/6 degree = 18
km 0.12–0.16 Infiltration capacity shape parameter

Calibrated through requiring direct
runoff to approximately equal the fast
flow from the routing model in VIC.

Jayawardena and
Zhou [77] 131 km2 13.186 (single

parabolic curve)

Measures the non-uniformity of the spatial
distribution of the soil moisture storage
capacity over the catchment.

Calibrated using daily hydrological
data
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Table A1. Cont.

Article Model Size Value Definition Method

Nijssen et al. [78] 1 degree
0.5 degree 0.1–0.25 Infiltration parameter

Estimated manually by comparing
naturalized monthly streamflow
hydrographs with modeled monthly
hydrographs at key locations.

Liang and Xie,
[79] 1/8 degree cells 0.1–0.5

Soil moisture capacity shape parameter, which
is a measure of the spatial variability of the soil
moisture capacity, defined as the maximum
amount of water that can be stored in the
upper layer of the soil column. It is a surrogate
for spatial heterogeneity of soil properties.

Sensitivity Analysis
Meant to represent moderate
infiltration capabilities.

Woolridge et al.
[80]

Lumped—1260
km2

Distributed

3.68–5.32;
2.069–7.20

Model parameter giving the concave up shape
for values less than one and convex up for
values greater than one.

Optimized from rainfall-runoff data

Huang and Liang
[20] N/A

0–13.5, however,
only kept values

0–5

Controls the shape of the spatial distribution of
soil moisture capacity over a study area, and
thus plays a significant role in describing the
heterogeneity of soil moisture capacity over the
study area. Derived from STATSGO data.

Estimated from STATSGO database.
Estimated by fitting distribution of
calculated soil moisture capacity of
each soil column (soil moisture
capacity = total soil depth × soil
porosity).

Xie and Yuan [59]
32–370 km2

(treated as
lumped units)

0.15–0.45 Infiltration parameter which controls the
amount of water that can infiltrate into the soil.

Calibration between observed and
modeled hydrograph

Xie and Yuan et
al. [81] 50 km2 0–10 Infiltration parameter which controls the

amount of water that can infiltrate into the soil. Calibration using streamflow

Chen et al. [82] N/A 0–larger
Represents the spatial heterogeneity of spatial
field capacity (b = 0 for uniform distribution
and large for significant spatial variation)

Calibration using streamflow and
precipitation data.

Oubeidillah et al.
[9] 4 km × 4 km 0.001–0.8 Variable infiltration curve parameter

Calibration of modeled streamflow
against USGS Water Watch data for
each HUC8 in CONUS
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