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Abstract: Snowpack properties like temperature or density are the result of a complex energy 

and mass balance process in the snowpack that varies temporally and spatially. The Snow 

Thermal Model (SNTHERM) is a 1-dimensional model, energy and mass balance-driven, that 

simulates these properties. This article analyzes the simulated snowpack properties using 

SNTHERM forced with two datasets, namely measured meteorological data at the 

Cooperative Remote Sensing Science and Technology-Snow Analysis and Field Experiment 

(CREST-SAFE) site and the National Land Data Assimilation System (NLDAS). The study 

area is located on the premises of Caribou Municipal Airport at Caribou (ME, USA). The 

model evaluation is based on properties such as snow depth, snow water equivalent, and 

snow density, in addition to a layer-by-layer comparison of snowpack properties. The 

simulations were assessed with precise in situ observations collected at the CREST-SAFE 

site. The outputs of the SNTHERM model showed very good agreement with observed data 

in properties like snow depth, snow water equivalent, and average temperature. Conversely, 
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the model was not very efficient when simulating properties like temperature and grain size 

in different layers of the snowpack. 

Keywords: Snow Thermal Model (SNTHERM); snowpack properties; snow modeling; 

Cooperative Remote Sensing Science and Technology-Snow Analysis and Field Experiment 

(CREST-SAFE) 

 

1. Introduction 

Information on snowpack properties is of great interest to the hydrologists’ community. Applications 

like water availability, reservoirs managing, flood forecasting, and assessing climate change impacts are 

just a few examples in which these data play a critical role [1–3]. For this reason, many efforts have been 

devoted to making this information available [4–6]. 

The conventional source of acquiring snow characteristic information is reports from a network of 

ground-based meteorological stations in which daily observations are performed [7,8]. However, most 

of Earth’s snow is located in remote and inaccessible areas, where populations are sparse or nonexistent 

and extreme conditions limit the continuous characterization of the snow conditions. 

Snow Physical Models (SPMs) and satellite remote sensing have been used for estimation of the 

snowpack properties for several decades [9–12]. A combination or synergistic approach can provide 

higher spatial and temporal resolutions than conventional, ground-based methods [13–17]. However, 

one question that is still unresolved is: What level of accuracy can be reached using snow physical models 

with several input sources? 

SPMs can produce snowpack properties [18,19], but they depend on externally supplied datasets of 

precipitation, radiation, temperature, winds, relative humidity, and barometric pressure to simulate land 

surface states, and errors in any of these inputs can impact the simulation results [20]. The required 

ground observations to run the models can only be collected at National Weather Service Offices (NWSO) 

sites or research sites, and both are very sparse and scarce around the United States. As a result, spatially 

and temporally continuous simulation of snowpack properties is very challenging when using only ground-

based measurements. That is where Data Assimilation Systems (DAS), which are a combination of 

remote sensing products (airborne and satellite observations), ground-based measurements and estimations 

based on interpolation methods and stochastic approximations, can prove a useful alternative that provides 

spatially and temporally-continuous meteorological data [21,22]. 

The accuracy of the simulated snowpack properties is determined by the accuracy of the models and 

the accuracy of the input data. In this paper, two frameworks to simulate snowpack properties are 

evaluated. The capabilities of the Snow Thermal Model (SNTHERM), an energy and mass  

balance-driven snowpack model [12], was evaluated using two different sets of meteorological data: 

observed data at the Cooperative Remote Sensing Science and Technology-Snow Analysis and Field 

Experiment (CREST-SAFE) site [23] and assimilated data from National Land Data Assimilation 

System (NLDAS) [21]. The results were compared with in situ observed snowpack properties at the 

CREST-SAFE site. 
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Multiple studies have demonstrated that SNTHERM successfully simulates the snowpack properties 

at diverse locations and under varying conditions, both as a standalone model and coupled with other 

models [24–26]. However, the scarcity of detailed and long term and continuous (from on-set to  

melt-out) observed data limited the validation of the studies. On the other hand, the path forward for 

snowpack properties retrievals is the synergy among different existing snow products and 

models[17,27,28]. Thus, long term and exhaustive validation of the model is still needed. 

However, the performance of SNTHERM has been evaluated several times for different sites, though 

these assessments have only included the following parameters: snow depth, snow water equivalent, 

density, and average temperature [23,24]. However, the task of assessing the variation of the snowpack 

properties within the snowpack layers has never been undertaken before. 

This study represents the first attempt to assess the efficiency of SNTHERM using meteorological 

variables from ground-based observations and data assimilation systems, based on the evaluation of 

snowpack properties (e.g., snow depth, snow water equivalent, and snow temperature) and a layer by 

layer comparison. 

The performance of the SNTRHERM model is assessed with in situ observations at CREST-SAFE 

as well as NLDAS data as input variables. This assessment is significant because in situ data, if obtained 

adequately, is a robust source of meteorological parameters. However, this information is rarely 

available and spatially distributed data such as NLDAS could be incorporated to complement the input 

required for snowpack properties simulation. The CREST-SAFE site was designed and installed with 

several objectives, e.g. the testing, validation, and improvements of SPMs and Radiative Transfer 

Models (RTM) [23]. On the other hand, for satellite product validation, spatially distributed data  

is required. 

2. Study Area 

The CREST-SAFE site [23] is located in Caribou, ME, north of the Northeastern region in the United 

States. Caribou has a humid continental climate, with long, snowy winters, and warm, humid summers. 

The monthly mean temperature ranges from −12.5 °C in January to 18.7 °C in July. There are approximately 

44 nights per winter that drop to −18 °C or below. Measurable snowfalls can occur as early as mid-October 

and as late as the last week of April, but significant snowfalls do not usually occur until mid-November, 

and are usually finished by early April. In general, Caribou offers the ideal conditions for maritime snow 

studies; the normal seasonal snowfall for Caribou is approximately 2.90 m with a record snowfall of 

5.02 m set in the winter of 2007–2008. The seasonal snow accumulation reaches its maximum by the 

end of February beginning of March and amounts usually to 50–60 cm. 

The CREST-SAFE station is located next to the Regional National Weather Service office on the 

premises of the Caribou Municipal Airport at Caribou, ME, USA (Figure 1). The quality-controlled 

location and with relatively flat topography offers the optimum environment for model validation.  

As for land cover/use, the site is just outside the urbanized area of Caribou, and it is covered by grass 

with some canopy present more than 10 m apart of the site where measurements are recorded. The top 

soil layer (50 cm) is a mixture of mainly clay with some encrusted rock organic matter. 



Geosciences 2015, 5 313 

 

 

 

Figure 1. Cooperative Remote Sensing Science and Technology-Snow Analysis and Field 

Experiment (CREST-SAFE) site location. Adapted from Lakhankar 2013 [23]. 

3. The Snow Thermal Model (SNTHERM) 

The Snow Thermal Model (SNTHERM) is a freely available, Fortran-written, one-dimensional 

snowpack model that was first released on 1989. It has been enhanced since then several times to include 

improvements and upgrades to its algorithms [12]. It is energy and mass balance-driven and it can be 

considered one the most robust models available nowadays. It has been used in several validation studies 

like spectral signature of the snowpack [29], snow melting processes in Greenland ice  

sheet [30], energy balance at continental scale, discrete point scale, and under the canopy [31,32]. A 

simplified version of the model is currently operational for snow mapping and forecasting in the United 

States [18,33,34] and Bosnia [35]. SNTHERM was based initially on the mass and energy-balance snow 

model of Anderson 1976 [36]. However, it also incorporates several other theories for snowpack 

properties, including dynamic snowfall density as defined by Anderson in 1976, which is based on data 

collected by LaChapelle 1969 [36]. Anderson used an empirical equation where New Snow Density 

(bifall) is a function of the wet bulb temperature (Tw) in Kelvin degrees. 

The vertical water movement is based on the work done by Colbeck [37], in which the effective 

saturation of snow (se) is a function of the current saturation level (s) and the irreducible water saturation 

(ssisnow). Snowpack layer densification is calculated based on three main processes, namely destructive 

metamorphism or overburden compaction, constructive metamorphism or vapor movement and grain 

size change, and melt metamorphism or the gravitational water movement inside the snowpack [36,38–40]. 

The first two are merged into an overall compaction rate (CR) and the third metamorphism type is 

calculated based on the water balance. Destructive metamorphism is calculated as a function of snow 

viscosity (eta0) [38,39]. Constructive metamorphism is a function of temperature and it is a process that 

has a faster rate when new snow density is greater than the density limit (dmlimit) constant [36]. 

As described in the Special Report 91-16 of the United States Army Corps of Engineers [12] and 

reported by Melloh 1999 [41], the SNTHERM numerical solution is obtained using a variable grid of 

snow layers, each layer is governed by heat and mass balance equations. The model uses a control 

volume numerical procedure [42] for spatial discretization that allows compaction of the snow cover. A 
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Crank-Nicholson central difference scheme is used to solve the partial differential equations in the  

time domain. 

3.1. Datasets 

This study focused in the snowpack properties simulation for three complete winters (from 

accumulation period to total ablation) for which ground-based data was available. Specifically, the 

observed weather conditions for the 2010–2013 winters were input to SNTHERM. The two meteorological 

data sources utilized are CREST-SAFE and NLDAS. 

3.2. CREST-Snow Analysis and Field Experiment (CREST-SAFE) 

The CREST-SAFE experiment is a long-term field campaign where meteorological variables and 

snowpack properties are measured. The measured meteorological variables are: temperature, solar radiation, 

relative humidity, and wind speed and direction. The studied snowpack properties are depth, snow water 

equivalent (SWE), temperature of snow layers, grain size, density, and snow microwave emission at 89, 

37 and 19 GHz. A detailed characterization of the instruments and site is described  

in [23,43] and the archive and real-time data are available for the public and scientific community at the 

experiment website [44]. The only meteorological parameter that it is not measured in the  

CREST-SAFE site, and is needed for simulation, is precipitation. Consequently, for simulation purposes, 

it was obtained from the National Weather Service (NWS) Station named KCAR [8], located near the 

CREST-SAFE site, at the Caribou Municipal Airport, Caribou, ME. The precipitation classification was 

performed by the model, based on its built-in algorithm [12]. CREST-SAFE station provides all its data 

in an hourly time step from the installed instruments on its automated routine [23] and NWS provides 

the precipitation in 15 minutes time steps, which was resized to hourly. 

3.3. The National Land Data Assimilation System (NLDAS) 

In order to improve snow characteristic prediction by dynamical models, reliable weather forcing  

data is required; in this study, the CREST-SAFE’s weather observations are complemented with the 

NLDAS Forcing Data L4 Hourly 0.125° × 0.125°. This dataset is a national product that merges and 

downscales remote sensing and ground-based measurements of meteorological data for the continental 

United States [20]. Comparisons between NLDAS meteorological data and the locally-observed forcing 

shows a fair to good agreement between the datasets [20,45,46]. 

It is clear that NLDAS is a coarse resolution dataset that will never surpass the results that can be 

obtained with robust information such as CREST-SAFE observations. However, it does show potential 

to be used as a meteorological input in physical models that are able to effectively and efficiently 

simulate snowpack properties. 

SNTHERM capacity is limited to the input data accuracy and therefore the use of data assimilations 

systems should be restricted to places in which in situ observations are not available. NLDAS dataset 

contains all the necessary inputs needed for SNTHERM simulations in an hourly time step. Table 1 

shows the meteorological variables needed to run the SNTHERM model. Several publications  

compared and attempted to validate the NLDAS dataset in several regions of the continental United 
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States [20,22,45,47–49]. Some of the previously published articles focused in the meteorological data 

validation. Conversely, others have focused on the effects of using this meteorological data for modeling 

purposes. In general, NLDAS has shown potential as a weather forcing data set. Figure 2 shows a 

comparison for the observed meteorological variables at CREST-SAFE stations (CRESTOBS) and the 

co-located pixel of NLDAS dataset for the different meteorological input variables. 

Table 1. SNTHERM model inputs list and sources. Source 01 is CREST-SAFE observed 

meteorological data, Source 02 is NLDAS data, Source 03 is a national weather  

service station, and Source 04 is the National Climatic Data Center (NCDC) FM Report.  

Snow Thermal Model Inputs 

Name Variable Symbol Units Note Used Source 
Air temperature T °K - 01/02 

Wind Speed WS m/s - 01/02 
Relative Humidity RH % - 01/02 

Precipitation water equivalent PR m/s - 02/03 
Precipitation type Pty - Optional Not used 
Incoming Solar KD W/m2 - 01/02 

Down welling long wave LD W/m2 - 01/02 
Cloud Cover (at 3 layers) CC % Optional 04 
Cloud Type (at 3 layers) CT - Optional 04 

 

Figure 2. Meteorological data cumulative distribution function (CDF) of observed 

meteorological data (CRESTOBS) and assimilated meteorological data from the National 

Land Data Assimilation System (NLDAS). Variables in figures: precipitation (upper left); 

Winds (upper right); relative humidity (lower left); and temperature (lower right). 



Geosciences 2015, 5 316 

 

 

Considering CREST-SAFE observations as ground truth, there is overestimation of wind speed and 

relative humidity in the NLDAS dataset, shown by the shift towards the right in both cumulative 

distribution function (CDF) curves when compared to the observed. On the other hand, precipitation and 

temperature CDFs showed good agreement. The objective of this work is not to compare or assess the 

meteorological data but rather the accuracy of the SNTHERM model and the effects of forcing it with 

the two datasets (CREST-SAFE and NLDAS). Future work will include an assessment of the effect of 

the biases (Figure 2) in the simulation process. 

4. Methodology 

In this study, the observed weather conditions for the 2010–2011, 2011–2012, and 2012–2013 winters 

were used as an input to the SNTHERM model. Then, the simulated snowpack properties were compared 

with measured snowpack properties collected in the CREST-SAFE site using automatic sensors and 

manual pits throughout the aforementioned winters. 

The performance of the SNTRHERM model is assessed with in situ observations at CREST-SAFE 

as well as NLDAS data as input variables (Figure 3). The National Land Data Assimilation System 

(NLDAS) [47] was used as a support method due to the current interest of investigating the strength of 

this weather forcing dataset for simulation purposes when ground-truth data is not available. The 

simulated snowpack properties (depth, grain size, density, temperature, and snow water equivalent) were 

compared to field observations at CREST-SAFE site. Calibration of the SNTHERM model was 

performed using two winters out of the three available. Validation was performed over the remaining 

winter. Alternating between calibration and validation period allowed obtaining a complete set of  

3 winters for validation. The general framework of this methodology is shown in Figure 3. 

 

Figure 3. Flowchart of datasets, modeling setup, and general scope of work. Meteorological 

data was processed from CREST-SAFE station (CRESTSIM input/simulation scenario) and 

NLDAS assimilation system (for NLDAS input/simulation scenario); observed snowpack 

properties at the CREST-SAFE site were used to calibrate and validate the model. 

To measure the efficiency of the model in both simulated scenarios (CREST-SAFE and NLDAS 

meteorological data), two assessments were performed. Both assessments were performed in the validation 

period. The validation period consists in the combination of the three validation periods for the three 

calibration scenarios presented on the model calibration section. The first assessment was based on snow 
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depth, snow water equivalent, and snow density. The second assessment is a layer-by-layer comparison 

of snowpack properties. 

Since most of the energy and mass fluxes of the snowpack occur in the bottom and top layers of the 

snowpack, the second assessment was based on two layers (Top and Bottom) of the snowpack and the 

average of the complete snowpack. The top layer is defined as the top 5 cm of the snowpack, the bottom 

layer is the bottom 5 cm of the snowpack, and the average is the average value of the measured parameter 

throughout the entire snowpack depth. 

4.1. Statistical Analysis 

The efficiency of the model was measured based on statistical and goodness of fit measures, namely 

the root square error (RMSE), the correlation coefficient (R2), and the Kling-Gupta Efficiency (KGE) 

index. The selected measurements are widely used throughout the scientific community and simultaneous 

analysis of the indexes will define how close the simulations are to the observed data. In general, the 

larger the RMSE values, the more significant the errors associated with the simulation. Furthermore, low 

R2 values will indicate low ability of the model to represent the variability of the phenomena. Finally, 

other authors [50,51] and recent works [52,53] suggest that the KGE index is a powerful tool for 

quantitative assessment of hydrological and land surface models. The KGE function quantifies three 

important aspects: (i) the correlation between simulated and observed values; (ii) the relative variability in 

the simulated and observed values; and (iii) the bias error. 

A correlation greater than 0.80 is generally described as strong, whereas a correlation less than 0.50 

is described as weak. In this study, a good simulation is defined as having an R2 greater than 0.70, an 

RMSE less than half the observed standard deviation (SDobs) [54], and a statistical value from Student’s 

t-test lower than the critical value. The critical value for samples of 29 elements is ±2.06 and for samples 

over 150 elements is ±1.98. For goodness of fit index such as the KGE, the general performance is 

considered good for values greater than 0.75 [54]. 

The Equations (1)–(4) are used for the statistical analysis performed in this work, with Yn,obs; observed 

variable at time step n, obs; average observed variable at time step n, Yn,sim; simulated variable at time 

step n, sim; average simulated variable at time step n, N; number of observed/simulated points, RMSE 

is Root Mean Squared Error, R2 is the correlational coefficient, t is the statistical value from Student’s t-

test, SDsim is the standard deviation of the simulated variable, CVsim is the coefficient of variation for the 

simulated variable, and CVobs is the coefficient of variation for the observed variable. 
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4.2. Model Calibration 

A site-specific sensitivity analysis was carried out to determine the most sensitive parameters of the 

model that affect snow depth and snow water equivalent of the snowpack. A genetic algorithm (GA) 

optimization scheme [55] was used to generate combinations of parameters and minimize an objective 

function. The objective function was defined as the RMSE between observed and simulated  

snow depth. 

The GA scheme produces a set of 20 random combinations of four (4) selected parameters values 

within the assigned range for first iteration. The model is executed for each combination and the 

objective function value (RMSE) is calculated for each of them. The combinations are ranked based on 

their objective function values. The top three (3) ranked combinations are selected for the next iteration 

exactly as they are, the next seven (7) are partially modified by changing 50% of the parameters (two), 

and the remaining ten (10) combinations are substituted by new combinations generated randomly. 

Approximately 1496 different combinations are generated in 88 iterations. The algorithm stops when the 

stopping criterion is reached. In this case, the stopping criterion was a maximum number of generated 

combinations, set to 1500. This optimization process has shown to be very efficient; 1500 combinations 

were considered sufficient to ensure stability of the solution given the value range and step change for 

the parameters. 

The calibration period was the combination of winter 2010–2011 and winter 2012–2013. Out of the 

1500 combinations of parameters generated within the GA scheme, the top 10 were further analyzed. The 

parameter set closest to the default values was selected as the optimum parameter combination. The 

same procedure was used alternating the calibration and validation period (e.g., using winters 2011–2012 

and 2012–2013 for calibration and using 2010–2011 as validation period). As it was expected, all the 

calibrations setup offered very similar results for optimum parameter set. 

The parameters in the first column of Table 2 were selected from the manual sensitivity analysis for 

calibration. The third column shows the range used for calibration and the fourth column shows the 

change step for the parameter within the calibration setup. The fifth column shows the default value of 

the parameter and the sixth column shows the value used in the simulations. The validation period 

selected to show results was winter 2011–2012. 
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Table 2. Model parameters description, calibration range, change step for calibration, and 

parameter value after calibration. 

Parameter Name Calibration Range Change Step Default Used Units 

Ssisnow 
Irreducible water  

content for Snow 
0.01–0.10 0.001 0.04 0.017 - 

Bifall Density of new snow 50–150 1 80 73 kg/m3 

dmlimit 
Density limit for  

compaction of snow 
50–200 1 100 96 kg/m3 

eta0 
Viscosity coefficient for  

overburden compaction 
4 × 105–4 × 106 1 × 104 9 × 105 6.9 × 105 kg·s/m2 

A detailed explanation of the parameters can be found in Jordan 1991 [12]. The calibration range, as 

well as the final decision of values used, was based on previous work done by Anderson 1976, Mellor 

and Kojima 1967, Kattelmann 1986, and Jordan 1991 [12,36,38–40]. Irreducible water content for snow 

(ssisnow) is the minimum amount of water that can have a layer of snow, controlling evaporation and 

sublimation in the snowpack. Density of new snow (bifall) is the assumed density for the snow 

precipitation. Density limit for compaction of snow (dmlimit) is the upper limit on destructive metamorphism 

compaction. Finally, the viscosity coefficient (eta0) controls the compaction rate of snowpack due to 

overburden. 

5. Results and Discussions 

5.1. Snow Depth and Snow Water Equivalent 

The model successfully predicted timing and magnitude of variations in snow depth (Figure 4), 

including the total melt out time. Overall, CRESTSIM was more accurate in simulating snow depth  

(Figure 5). This performance shows how reliable forcing data produce better land surface modeling 

results. Figure 5 also depicts that CRESTSIM scenario exhibited a slight overestimation in the 

accumulation period (before March) and underestimation in the ablation period (after March). It is 

suspected that the model parametrization of the snow thermal properties caused this divergence in the 

simulations. Using 2012 as a study case, the analysis shows the higher the concurrence between 

simulated snowpack temperature and observed data, the higher the agreement in the simulations. 

However, in seasonal terms, as shown in the statistics on Table 3, there is very good agreement between 

the observed and simulated data when using CREST-SAFE. 

For CRESTSIM, its high R2 (≥0.70) and KGE (≥0.75) values indicates that the variability of the snow 

depth through time is well captured by the model. The low RMSE indicates that the average error is low. 

As the critical value for the t-test is ±1.96, there is no significant difference between the observed and 

simulated average snow depth. 

Figures 4 and 5 also show that forcing the model with NLDAS data produces a good agreement with 

the observed phenomenon (snow depth). The statistical tests (Table 3) demonstrated that the SNTHERM 

model forced with either observed or assimilated meteorological data is a good approach to estimate the 

snow depth. 
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Figure 4. Time series for 2011–2012 winter snow depth (cm). Legend: snow depth 

observations (Observed), NLDAS meteorological data simulation (NLDAS), and CREST-SAFE 

meteorological data simulation (CRESTSIM). 

 

Figure 5. Snow depth Scatter Plot (winter 2011–2012) for both simulated scenarios:  

(left) CRESTSIM; and (right) NLDAS. 

Table 3. Statistics of snow depth and snow water equivalent. Winter 2011–2012. Max is the 

maximum value for the period. SD is the standard deviation. RMSE is the root mean squared 

error. The R2 is the correlational coefficient. The t-test is the t-statistic value for the student’s 

t-test (tcritical = ±1.66). The number of observations for snow depth was 2030. The number of 

observations for SWE was 26. 

Statistic 
Snow Depth (cm) Snow Water Equivalent (cm) 

Observed CRESTSIM NLDAS Observed CRESTSIM NLDAS 

Mean 36.59 36.83 34.77 9.45 7.96 7.95 
Max 73.32 66.90 68.90 14.73 10.89 10.59 
SD 19.97 16.35 15.15 4.14 1.82 2.30 

RMSE - 9.68 10.29 - 3.20 3.07 
R2 - 0.77 0.75 - 0.60 0.58 

KGE - 0.75 0.71 - 0.64 0.56 
t - −0.16 1.23 - 1.09 1.05 
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The snow water equivalent time series (Figure 6) also showed a good agreement in the accumulation 

period (before March) but some underestimation in the later period (after late February, Figures 6 and 7). 

The SWE underestimation in that second period explains the similar behavior the snow depth had for 

the same period (Figure 4). Additionally, it was observed that before the snowpack warmed to an 

isothermal state 0 °C, the difference between observed SWE and the modeled data was minimal. The 

statistics for snow water equivalent (Table 3) still showed that SNTHERM is an adequate model for 

simulating this land surface process even if it is forced with NLDAS assimilated data. 

The results for the three simulated winters were considered good when tested for efficiency 

measurements. Figure 8 shows the variation of the snow depth RMSE for all simulated winters, being 

the first bar the RMSE average for all simulated winters. The RMSE values are always below 10 cm, 

which is less than fifty percent of the standard deviation. RMSE values less than half of the standard 

deviation along with the KGE and R2 values observed on Table 3 are considered a good simulation. 

 

Figure 6. Time series for 2011–2012 winter. Snow water equivalent (cm). Legend: manual 

CREST-SAFE Observations (Observed), NLDAS meteorological data simulation (NLDAS), 

and CREST-SAFE meteorological data simulation (CRESTSIM). 

 

Figure 7. SWE Scatter Plot (winter 2011–2012) for both simulated scenarios:  

(left) CRESTSIM; and (right) NLDAS. 
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Figure 8. Seasonal variation of the RMSE for simulated snow depth. The first bar is the 

average RMSE for all simulated winter seasons. The other bars are the RMSE of each 

particular simulated winter season. 

5.2. Last Day of Snow 

The last day of snow is defined by the National Oceanic and Atmospheric Administration (NOAA) 

and United States Geological Survey (USGS) as the last day of measurable snow (that is, greater than a 

trace), which is approximately 3 cm. This threshold was defined based on the detection threshold on 

most automatic snow depth sensors and remote sensing binary products (snow and no-snow detection). 

It is a very interesting variable mainly because it is a good measurement of model performance in the 

melting period and it is a very important parameter to discretize the “snow and no-snow” mask for snow 

remote sensing. 

Figure 9 shows the model performance in the different simulated years. The plot’s top part shows 

that, on average, the model melts the snow within the ±1.3 days of the actual snow disappearance, which 

can be considered fair to good timing for most hydrological applications. 

 

Figure 9. Last day of snow. This plot assumes the last day of snow as the 1st day of observed 

snow depth under 3 cm. Zero is the observed last day of snow and the bars represent the time 

difference between the simulated and observed last day of snow. 
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5.3. Snowpack Temperature 

Figure 10 shows the temperature for top layer, bottom layer, and average temperature of the 

snowpack. The top layer is the most influenced layer by the climatic conditions (air temperature, wind, 

and solar radiation). As expected, there are lower temperatures in the top and average layers of the 

snowpack relative to the bottom layer. This is explained by the lagging effect that the upper layers of the 

snowpack have over the lower layers (lag in the energy transfer between layers), which increases with 

the increase of the overall snowpack depth. 

The observed and simulated temperatures in the top layer showed a similar behavior for both 

simulated scenarios (Figure 11, top). However, the observed temperature showed less variability 

characterized by a lower standard deviation. This implies that even in the first 5 cm of the snowpack, 

there is a temperature dampening effect. It also indicates that the model snow layers heat loss/gain 

process is represented but overestimated within the snowpack. 

On the other hand, the bottom layer simulated temperature, which is less influenced by the 

meteorological conditions, showed less variability than the observed temperatures at that same depth. 

This is especially true when snow depth is less than 40 cm in the accumulation period  

(before February). 

 

Figure 10. Time series for temperature (°C) in the top layer (upper), average (middle), and 

bottom layer (lower) of the snowpack. Legend: NLDAS meteorological data simulation 

(NLDAS), CREST-SAFE meteorological data simulation (CRESTSIM), and manual CREST-

SAFE Observations (Observed). 
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Figure 11. Scatter plot for top layer snowpack temperature (top) and snowpack surface 

temperature (bottom) for both simulated scenarios: (left) CRESTSIM and (right) NLDAS. 

Regarding the average snowpack temperature, statistics on Table 4 show that the agreement between 

observed and simulated temperatures was fair, but the t-test results demonstrate that there are significant 

differences between the averages of the compared variables. Consequently, the simulation was not 

satisfactory within acceptable tolerances. 

Table 4. Statistics for overall snowpack temperature (°C). Validation period:  

Winter 2011–2012. Rows definitions are same as in Table 3. The number of observations 

was 2030. 

Statistic 
Snowpack Average Temperature 

Observed CRESTSIM NLDAS 

Mean −3.26 −4.27 −3.07 
Max −0.01 −0.03 −0.03 
SD 2.11 2.74 2.37 

RMSE - 2.06 1.64 
R2 - 0.57 0.55 

KGE - 0.61 0.63 
t - 11.39 −2.40 
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Results also indicated that the model successfully captured the variability of the temperature at the 

snowpack surface (Figures 11 and 12). This conclusion is supported by the statistics which showed a 

good model performance, especially when using observed meteorological data (Table 5). However, 

statistical results also indicated that the model did not simulate the snowpack temperature effectively for 

the snow-ground interface. The snow-ground interface is the theoretical boundary layer of the snowpack 

which separates the snow from the ground. The temperature at this layer is a direct representation of how 

the model is simulating the heat transfer between the soil and the snowpack. This confirms the 

aforementioned hypothesis of the model poorly predicting the energy gains and losses throughout the 

snowpack. 

 

Figure 12. Time series for temperature (°C) in the surface (upper) and snow-ground 

interface (lower) snowpack boundaries. Legend: NLDAS meteorological data simulation 

(NLDAS), CREST-SAFE meteorological data simulation (CRESTSIM), and manual 

CREST-SAFE observations (Observed). Validation period: Winter 2011–2012. The number 

of observations was 975 for top and 2030 for bottom. 

Table 5. Statistics for surface and snow-ground interface snowpack temperatures (°C). 

Validation period: Winter 2011–2012. Row definitions are same as in Table 3. The number 

of observations was 2030 and 975 respectively. 

Statistic 
Snow Surface Temperature Snow-Ground Interface Temperature

Observed CRESTSIM NLDAS Observed CRESTSIM NLDAS 

Mean −6.43 −7.39 −9.75 −6.43 −1.03 −0.03 
Max −0.01 −0.04 −0.01 −0.01 0.14 0.14 
SD 3.83 4.51 7.64 3.83 1.11 0.18 

RMSE - 1.39 6.29 - 6.36 7.47 
R2 - 0.97 0.58 - 0.29 0.00 

KGE - 0.85 0.35 - 0.26 0.00 
t - 6.1 15.0 - −52.2 −64.7 
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The standard deviation (SD) was much higher in the simulations than in the observed data for the 

snow surface temperature. This means that the energy losses and gains of the simulated snowpack are 

higher than they should be. In other words, when the air temperature drops, the model draws more energy 

from the snowpack that it should, particularly in very low temperatures (lower than −15 °C). Thus, 

adjustments to the energy transfer of snow layers could improve the model performance, particularly for 

the top layer. 

5.4. Snowpack Grain Size 

Snow grain size is important to accurately predict snow depth and SWE using microwave remote 

sensing. Differences between the observed and simulated snow grain size are associated with the manual 

method (microscope) used to estimate in situ snow grain size, which represents the average size of several 

grains collected in a random sample. The accuracy of this measurement has been questioned [56] and it is 

hypothesized to be the cause of the discrepancies between observations and simulations. Even though, 

Figures 13 and 14 depicts that observed and simulated grain size are within range. However, the  

3 simulated years showed major disagreements, mainly occurring during the warm periods.  

Both simulated scenarios (CRESTSIM and NLDAS) failed the efficiency tests. Nonetheless, the 

disagreement in part can be explained with the uncertainties associated with the manual observations 

(including human error) of grain size, in particular during the snow isothermal state. 

 

Figure 13. Time series for grain size (mm). Legend: NLDAS meteorological data simulation 

(NLDAS), CREST-SAFE meteorological data simulation (CRESTSIM), and manual 

CREST-SAFE observations (Observed). 

 

Figure 14. Snow grain size scatter plot (winter 2011–2012) for both simulated scenarios: 

(left) CRESTSIM; and (right) NLDAS. 



Geosciences 2015, 5 327 

 

 

Statistics on Table 6 show that the average variability of the observed grain size was not well captured 

by the model (low correlational coefficient) and the RMSE is as high as the standard deviation. These 

results indicate poor model efficiency for this particular parameter. Adjustments are recommended to 

the grain size growth algorithm, before simulations results can be used as input for radiative transfer 

models (RTMs) and other remote sensing applications. However, in recent years many improvements 

have been made to reduce the uncertainties associated with snow grain size simulations [57]. Most 

improvements are based on snow age, snow temperature, and the snow temperature gradient. These 

improvements can easily be incorporated into SNTHERM. 

Table 6. Grain size statistics. Validation period: Winter 2011–2012. Row definitions are 

same as in Table 3. The number of observations was 29. 

Statistic 
Snowpack Average Grain Size 

Observed CRESTSIM NLDAS 

Mean 0.923 0.901 0.878 
Max 1.560 1.269 1.115 
SD 0.185 0.183 1.143 

RMSE - 0.164 0.167 
R2 - 0.357 0.278 

KGE - 0.60 0.49 
t - 0.441 1.010 

5.5. Snowpack Density 

The simulated values of snow density were close to the observed values (Figures 15 and 16). The top 

layer density was in better agreement relative to the bottom layer, in which density was overestimated 

by the model as shown in the statistics presented in Table 7. This indicates that algorithm from is working 

better at the top layer and failing for the overburden, which is the most influential phenomenon in the 

bottom layer. Is also important to notice that there are some sudden peaks in the simulation that are hard 

to explain and that could be caused by sudden peaks in the snow temperature, melting events or the 

presence of wet snow. 

 

Figure 15. Average snow density scatter plot (winter 2011–2012) for both simulated 

scenarios: (left) CRESTSIM and (right) NLDAS. 
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Figure 16. Time series for snow density (kg/m3) in the top layer (upper), average (middle), 

and bottom layer (lower) of the snowpack. Legend: NLDAS meteorological data simulation 

(NLDAS), CREST-SAFE meteorological data simulation (CRESTSIM), and manual 

CREST-SAFE observations (Observed). The number of observations was 29. 

Table 7. Snow density (kg/m3) statistics for bottom layer and top layer. Validation period: 

winter 2011–2012. Row definitions are same as in Table 3. The number of observations was 

29. 

Statistic 

Snowpack Density 

Top Layer Bottom Layer Average 

Observed CRESTSIM NLDAS Observed CRESTSIM NLDAS Observed CRESTSIM NLDAS 

Mean 129.66 127.92 126.18 234.62 292.30 289.26 169.86 214.79 225.86 

Max 287.50 286.19 241.16 352.78 328.81 322.06 257.56 310.00 306.0 

SD 60.25 43.831 38.43 36.08 25.99 21.09 30.74 36.89 32.183 

RMSE - 40.553 35.01 - 65.64 62.71 - 49.92 59.12 

R2 - 0.53 0.69 - 0.261 0.25 - 0.64 0.66 

KGE - 0.70 0.62 - 0.31 0.24 - 0.66 0.57 

t - 0.126 0.262 - −6.86 −6.92 - −4.95 −6.66 

The main parameter controlling the compaction rate of snow by overburden is snow viscosity (eta0 

on Table 2). This parameter was selected for calibration partly because of the uncertainties associated 

with the value used expressed by Jordan 1991 [12]. The calibration process optimized the value for 

“eta0” on the CREST-SAFE, considering geographical and seasonal influences. Even though the 
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parameter was adjusted, the overestimation of snowpack densities was also shown in the snowpack 

average values. Consequently, further adjustments to the overburden algorithm are recommended to 

achieve additional improvements in the simulations. 

6. Conclusions 

In this phase of the CREST-SAFE research, the evaluation of the SNTHERM on a point scale was 

performed. Meteorological data from CREST-SAFE and NLDAS assimilation system were used as input 

parameters to the SNTHERM model. The snowpack properties from both simulations were analyzed to 

assess the overall model capabilities and potential to produce both input datasets for hydrological models 

and datasets for remote sensing snow product calibration and validation. 

Better parameterization for model initialization increases the accuracy of the model. In this work, the 

majority of the simulations with in situ weather forcing measurements produced better results than 

simulations performed with NLDAS assimilated meteorological data. This is true for snowpack physical 

properties such as snow depth, snow water equivalent, grain size, and temperature. However, NLDAS 

simulations were generally acceptable and the results of the quantitative assessments (i.e., KGE) 

performed with the simulated scenarios were similar. This is especially true for snow depth, snow water 

equivalent, snow density, and average last day of snow. This indicates that for hydrological modeling 

and binary snow remote sensing (snow and no-snow detection), the SNTHERM model forced with 

NLDAS meteorological data can provide results within acceptable tolerances. 

Layered snowpack information is of great interest for snow remote sensing products and hydrological 

modeling. The simulations results confirmed that the lag in the energy transfer that the snowpack upper 

layers have over the lower layers is very important. Failing to capture this effect in the simulations could 

lead to large errors in the results. However, the SNTHERM model successfully captured the variability 

of the temperature at the surface. On the other hand, the model did not perform as well for the middle 

and lower snowpack layers. 

 For snow grain size, statistical analysis shows that the variability of the observed grain size was not 

well captured by the model, as represented by a low correlational coefficient. Consequently, adjustments 

are recommended to the grain size growth algorithm. In the same manner, based on the results obtained 

in this work, the SNTHERM model’s algorithm could be modified to further improve its performance 

for simulating these aforementioned snowpack physical properties. The steps recommended include 

adjusting the heat transfer coefficients within the snowpack layers, then adjusting the snow compaction 

rate by overburden, and finally adjusting grain size exponential growth coefficients. 
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