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Abstract: Sedimentary deposits in Stoddard County, southeastern Missouri, reveal a K-Pg 

transition sequence represented by the uppermost Maastrichtian Owl Creek Formation and 

the Paleocene Clayton Formation. The Clayton Formation is characterized by a basal 

fossiliferous coquinite that contains reworked late Maastrichtian macrofossils. 

Dinoflagellate biostratigraphy is used to determine the age of the coquinite layer and 

specifically whether or not it is an end-K tsunamite deposit resulting from the Chicxulub 

impact event. Results indicate a mixed assemblage of late Maastrichtian and early Danian 

dinocysts within the basal coquinite of the Clayton Formation. Maastrichtian dinocyst taxa 

identified are Riculacysta amplexa, Pierceites pentagonus, Phelodinium tricuspe and 

Dinogymnium sp. and dinocysts utilized as global indicators of the basal Danian, also 

present in the coquinite, consist of Senoniasphaera inornata, Carpatella cornuta, 

Damassadinium californicum, and Lanternosphaeridium reinhardtii. A gray mud occurring 

above the coquinite in the middle of the Clayton Formation contains the mid-Danian 

dinoflagellate Senegalinium iterlaaense. Collectively, these data suggest that the coquinite 

was deposited well after the K-Pg event but before the middle Danian. The mixed 

assemblage of Late Cretaceous and Paleocene dinocysts preserved in the coquinite 

weakens the hypothesis that it is an end-K tsunamite deposit and suggests instead that it 

may result from a long-term transgressive lag. We also extend the stratigraphic range of the 

Paleocene Senegalinium simplex downward into the uppermost Maastrichtian. 
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1. Introduction 

The Mississippi embayment is a long, narrow basin located between the Appalachian Highlands 

and the Ozark Plateaus (Figure 1). Preserved in the Mississippi Embayment are sediments that were 

deposited within an early Late Cretaceous epeiric sea that invaded the continent as a result of regional 

subsidence [1]. Sedimentary deposits near the head of the embayment range from Cretaceous to 

Quaternary in age [2–4] and in some localities are known to contain the Cretaceous-Paleogene (K-Pg) 

boundary interval [5–7]. 

Figure 1. Late Cretaceous shoreline for eastern and central regions of the United States 

from [8]. ME: Mississippi Embayment. Inset: location of the study site (star) in Stoddard 

County, Missouri near the towns of Bloomfield and Bell City. Dashed line: Stoddard 

County boundary. Global coordinates of study site: 36°55'15" N; 89°52'2" W. 

 

Paleontological and palynological studies done in Missouri and within the upper Mississippi 

Embayment province [5,7,9–17] have proven valuable in documenting the geological history of this 

region and also in resolving issues relating to the K-Pg boundary sequence in this area. Palynological 

work to date has focused largely on pollen and spores [7,17]. Although dinoflagellate cysts (dinocysts) 

have also received some attention in these efforts, research centered on dinocyst occurrences in this 

region should prove highly informative, and considerably augment our understanding of the unique 

geologic and biotic events characterizing the Cretaceous-Paleogene transition interval in this area. 

Here, we examine the palynology of the K-Pg sequence in southeastern Missouri, particularly the 

Clayton Formation, using dinoflagellates as our primary focus. We use dinocyst occurrences recovered 

from the Clayton Formation and other K-Pg transition units to determine the timing of deposition of 

these units. We are particularly interested in whether a coquinite forming the basal part of the Clayton 

Formation is an end-K tsunamite deposit resulting from the Chicxulub impact event as proposed by 

previous workers [7,17]. By doing this, we hope to complement these previous efforts and to provide 

additional insight on the deposition of the Clayton Formation and its significance with respect to the 

K-Pg impact event. 
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2. Geologic Setting 

The K-Pg sequence near the head of the Embayment in Missouri, Tennessee, Illinois and in parts of 

northern Mississippi is represented by the Upper Cretaceous Owl Creek Formation, the uppermost 

member of the Ripley Group, and by the Paleocene Clayton and Porters Creek Formations, both 

members of the Midway Group [1,2,5,10–12,18–23]. In most sections, the Owl Creek Formation is 

unconformably overlain by the Clayton and Porters Creek Formations. In Arkansas, the uppermost 

Maastrichtian deposits are represented by the Arkadelphia Formation; in Alabama and in parts of 

northern Mississippi, by the Prairie Bluff Chalk Formation [6,12,22,24]. In these areas, Paleocene 

deposits of the Clayton Formation overlie Late Cretaceous sediments. 

In Missouri, exposures of the K-Pg transition interval are few. Those that occur are poorly exposed 

due to intense weathering [7], and also due to patchy occurrences of the Clayton Formation in the 

upper Mississippi Embayment region [14]. However, the K-Pg transition sequence has been studied at 

sites in New Madrid, Scott, and Stoddard Counties, Missouri [7,17]. 

At these sites, Campbell et al. [7] interpret the Clayton Formation as a possible tsunami-induced 

deposit generated by the end-Cretaceous Chicxulub bolide impact. The interpretation advanced [7] is 

that the entire Clayton Formation represents the product of a suspension cloud which settled as a  

185 cm thick graded isochronous deposit. They identified the basal 30 cm of this unit as composed of 

an unsorted fossiliferous coquinite containing tektite-bearing rip-up clasts. Their arguments for 

supporting this interpretation involve two primary points: (1) the coquinite contains a dense 

assemblage of presumably reworked Cretaceous marine macrofossils and Late Cretaceous and 

Paleocene palynomorphs; and, (2) layers of impact microtektites occur within unfossiliferous rip-up 

clasts contained in the coquinite. Campbell et al. [7] interpret the microtektites as deriving from a 

cloud of hot Chicxulub impact ejecta deposited immediately following the impact. The layering 

derived from the fusion of hot microtektites with the sediment into which they fell. This was followed 

a short time later by the mobilization of the substrate by the arrival of an impact-generated tsunami. 

Rip-up clasts containing the now-solidified layers of microtektites were formed as the bottom sediment 

was broken up and re-suspended by tsunami turbulence with the consequent rip-ups then re-deposited 

as the tsunami waned. 

More recently, these authors [17] restricted the tsunamite interpretation to the Clayton coquinite. 

They state that the coquinite formed as a post-Chicxulub impact-related Danian megatsunamite 

unconformably deposited over the Maastrichtian Owl Creek Formation. They propose that only the 

coquinite represents an end-Cretaceous tsunamite deposit. They suggest that the glauconitic and gray 

clays of the upper Clayton Formation above the coquinite were deposited as a transgressive systems 

tract in deeper water conditions as determined by ichnofossil, sedimentologic, invertebrate and 

palynofacies data. 

K-Pg palynomorph taxa (pollen, spores, fungi, algae, dinoflagellates and acritarchs) have been 

recovered from the Clayton Formation by the above workers [7,16,17], who suggest that extensive 

sediment reworking has resulted in a mixed assemblage of late Cretaceous and Paleocene palynomorph 

taxa in the Clayton Formation, and particularly in the coquinite. Palynomorphs, including dinocysts, 

supported a Late Maastrichtian age for the Owl Creek Formation based on the presence of  

Manumiella seelandica and Kenleyia? sp., which they say [17] had their first appearance datum (FADs) in 
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the latest Maastrichtian. They state that reworked Cretaceous dinocysts found in the Clayton Formation 

consist of the species: Dinogymnium acuminatum, Dinogymnium sp., and Lejeunecysta izerzensis. The 

following species, which they have reported from the Clayton Formation, and which they inferred as 

Danian are: Achomosphaera alcicornu, Senoniasphaera inornata, Cerodinium striatum, C. diebelii, 

Hafniasphaera graciosa, H. septata, Palaeocystodinium golzowense, Palynodinium grallator, and 

Phelodinium magnificum. According to these authors [17], these dinocysts, as well as pollen analysis, 

suggest a Danian age for the Clayton Formation. They also proposed a middle-late Paleocene age for 

the Porters Creek Formation using pollen and spores, but noted the presence of several Cretaceous 

dinocyst taxa (Dinogymnium acuminatum and Odontochitina porifera) in the Porters Creek Formation 

which they considered to be reworked. 

3. K-Pg Boundary Sequence at Bloomfield, Missouri 

Recent mining activities have unearthed fresh and unweathered surface exposures of the K-Pg 

transition sequence near Bloomfield, Missouri (Figure 1). Our work is based on a new exposure on 

Crowley’s Ridge, located about 4 km south-south-west of the Stoddard County site studied  

previously [7,17]. Figure 2 shows the K-Pg units at our locality. 

3.1. Owl Creek Formation 

At our locality, 1.3 m of the uppermost Owl Creek Formation is exposed above the base of a mining 

pit, and is composed of brown micaceous, quartz-rich, fossiliferous, silty, very fine sand (Figure 3A). 

Cretaceous marine macrofossils, such as cephalopods and bivalves, are commonly preserved in this 

formation at this site (Figure 3A). 

3.2. Clayton Formation 

At our site, the Clayton Formation lies unconformably above the Owl Creek Formation and has an 

overall measured thickness of 2.2 m. Long, sinuous burrows 1–2 cm in diameter of the ichnofossil 

Thalassinoides (Figure 3C,D) progress downward from the Clayton Formation into the Owl Creek 

Formation. The Clayton Formation is a green, glauconitic, muddy sand with a fossiliferous lag 

concentrated within the basal 75–100 cm. The lag is cemented with calcite, and in places the lag 

becomes a coquinite that is whitish in color (Figure 2). The coquinite at our site is discontinuous and 

broken into discrete pods separate from one another. A glauconitic clay matrix surrounds the whitish 

coquinite pods (Figure 3B). The coquinite pods enclose reworked Late Cretaceous macrofossils  

(Figure 3B). At the Missouri sites studied earlier [7], the basal Clayton coquinite is described as 

continuous but variable in thickness. The coquinite at these sites also contains rip-up clasts, 3–20 cm in 

length and enclose layers of microtektites, as well as ooids, and sub-rounded quartz grains [7]. We 

have not recovered any such rip-ups at our locality. 

Glauconitic mud of the Clayton Formation at our site continues for 30 cm above the fossiliferous 

coquinite. Above the glauconite, macrofossils become sparse with only shell remains and occasional 

molds of small bivalves preserved. The glauconitic mud grades upward into a gray, fine sandy clay 

which represents the upper Clayton Formation. The gray clay is 1.1 m thick and contains sparse 
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occurrences of glauconite at its base. The gray clay lacks macrofossils completely. The contact 

between the glauconitic mud and gray clay is moderately burrowed. The glauconitic mud at our site is 

relatively thin compared to the outcrop studied by the previous authors, where they report it is 70 cm 

thick [7]. They describe the overlying gray mud as having a thickness of 65 cm, whereas at our site, it 

is 1.1 m thick. They also recovered numerous Upper Cretaceous macrofossil fragments and limonitic 

burrows in the glauconitic mud, as well as manganese oxide pebbles in the gray mud [7], but such 

materials are absent at our site. 

Figure 2. Bloomfield Missouri collecting site. (a) Sampled outcrop located in a mining pit 

freshly excavated at the time of collection. Black arrows indicate the locations of coquinite 

pods. (b) Stratigraphic column of the sedimentary sequence. The boundary between the 

Owl Creek and Clayton Formations is marked by an unconformity. The position of all 

samples collected for dinocyst analysis shown at right. Sample 6a was collected from the 

glauconitic mud below the glauconite-gray mud contact, and Sample 6b from a burrow in 

the overlying gray mud above the contact. 
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Figure 3. Sediment samples from our collecting site. (A) Fossiliferous Owl Creek 

fragment containing bivalves, gastropods and cephalopods within a muddy matrix. The 

fragment contains the index late Maastrichtian scaphite Discoscaphites iris (white arrow). 

(B) Coquinite forming the basal layer of the Clayton Formation showing the characteristic 

lithology and concentrated shell hash. (C) and (D) Fragments from the Owl Creek 

Formation contain burrows (outlined in white) of the ichnofossil Thalassinoides that 

progress downward from the Clayton Formation into the Owl Creek Formation. The 

burrows are filled with shell fragments and Clayton sediments. 

 

3.3. Porters Creek Formation 

Overlying the Clayton Formation is the Porters Creek Formation, which, at its base, is an 

unfossiliferous, gray, silty claystone. The contact between the Clayton and the Porters Creek 

Formations appears gradational and contains whitish indurated concretions (Figure 2). The uppermost 

Clayton Formation is described as a hard claystone at the locality studied previously [7]. At our site 

there is no claystone, and the uppermost Clayton Formation terminates with gray mud. They state  

that the contact between the upper Clayton and Porters Creek Formations contained large (>1 m)  

torpedo-shaped, limonitic concretions at their site [7]. We find only small whitish non-limonitic 

concretions at the Clayton-Porters Creek contact noted above. 



Geosciences 2014, 4 7 

 

 

4. Methods 

4.1. Collecting Procedures 

Fresh surfaces of the exposure studied here were provided by the excavation of the pit which 

occurred on the same day as sediment sample collection. A total of 14 sediment samples, each of 

approximately 500 g, were collected using a paleo-pic and chiseled edges of rock hammers cleaned 

before and after every sample was taken. Samples were collected at approximately 25.5 cm intervals, 

except for Samples 3 and 4, which are more closely spaced (Figure 2 and Table 1). For each sample 

taken, sediment was collected over an interval approximately 5 cm above and below the horizons 

indicated in Figure 2. 

Table 1. Samples Studied. List of sediment sample numbers, horizon in which samples 

were collected, number of slides analyzed for each sample and degree of microfossil 

recovery. High, more than 300 dinocysts per slide. Low, fewer than seven dinocysts per slide. 

Sample # 1 2a 2b 3 4 5 6a 6b 7 8 9 10 11 12 

Horizon sampled  

above 0 cm datum 
0 25.5 25.5 38 50.5 76 101.5 101.5 127 152.5 178 203.5 229 254 

# Of slides analyzed 2 3 2 1 1 1 1 1 1 1 1 1 1 1 

Microfossil recovery High 
Low  

to High 

Low  

to High 
Low Low Low High High High High High High High High

We collected two samples at two horizons in the Clayton Formation, one just above the base of the 

coquinite (Samples 2a and 2b; Figure 2; and Table 1), and one at the glauconitic/gray mud contact 

(Samples 6a and 6b; Figure 2; and Table 1). Sample 2a was collected between coquinite pods in the 

lower Clayton Formation, while Sample 2b was collected immediately below, but adjacent to, a 

coquinite pod. Sample 6a was collected in the glauconitic mud while Sample 6b was taken from a 

burrow filled with the overlying gray mud piped downward to the level of 6a. 

4.2. Palynological Preparation Procedures 

All of the sediment samples were processed using standard palynological preparation techniques [25]. 

Sediment samples were first treated with 10% HCl to dissolve carbonates and secondly with 70% HF 

solutions and centrifuged. Washing and centrifuging were then repeated several times to remove fine 

caustic material. Heavy liquid separation using ZnBr2 adjusted to a specific gravity of 2.0 was used to 

float palynomorphs. The residue was oxidized with 10% solution of NH4OH. A 20-μm sieve was used 

to concentrate dinoflagellates. The 20 μm organic residues were stained using Safranin-red; and were 

then permanently mounted on slides for light microscopy analysis. Samples were prepared by Global 

Geolab Ltd., Medicine Hat, AB, Canada. 

A total of 18 slides were produced from the 14 samples collected (Table 1). Most slides (13 out of 

the 18) yielded high microfossil recovery (Table 1) and exhibit abundant well-preserved cysts, with 

over 300 dinocysts mounted per slide. The coquinite showed variable preservation of taxa with most of 

the slides from the coquinite showing almost barren to low or poor recovery and contain  

6–55 dinocysts mounted per slide. Consequently, multiple slides per sample were produced for the 
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coquinite (Table 1). This variability may result from parts of the coquinite containing more  

limestone-rich material, which can affect preservation potential of palynomorphs [25]. Samples 2a and 2b, 

which were retrieved from the lowermost coquinite, produced some slides that exhibited high 

recovery. Acritarchs were found in most samples. 

4.3. Microscope Procedures 

Transmitted light microscopy was used for identification of dinocysts and acritarchs. All slides 

were analyzed with a Nikon Eclipse E600 Polarizing Light Microscope (PLM) (Nikon Corporation, 

Tokyo, Japan) housed in the Micro-imaging lab at Brooklyn College. England Finder coordinates;  

size-measurements and descriptions of the dinoflagellates and acritarchs identified were recorded. 

Pictures and measurements were obtained using 2010 CellSens software on an Olympus light 

microscope (Olympus America, and Olympus Optical Co. Ltd., Tokyo, Japan) at the United States 

Geological Survey, Reston, VA, USA, or using an ocular micrometer on the Nikon Eclipse E600 PLM 

at Brooklyn College. 

A total of 300 dinocysts and acritarchs were counted for each slide in productive samples. In 

unproductive samples, almost all taxa were counted and identified. Counts of unidentifiable taxa were 

the result of poor preservation and/or poor orientation. The number of unidentifiable specimens noted 

for each slide is also listed in the Supplementary. These data were then used to analyze the distribution 

of age-diagnostic important taxa within each sample and throughout the section. Species and genus 

names are based on the terminology of Fensome and Williams [26] as extended in Fensome,  

MacRae and Williams [27], with the exception of two newly assigned species [28] which follow 

principles used in Lentin and Williams [29] and Stover and Evitt [30]. Age ranges of taxa were 

determined using Palynodata [31], as well as existing available literature [5,6,13,14,25–74]. 

5. Results: Marine Palynomorph Occurrences 

The Supplementary lists the 87 marine dinoflagellate and acritarch taxa that were identified, 

counted from our site. We extracted from this total data set 17 taxa based on the utility of their 

geologic ranges in timing events at the end of the Cretaceous, and arranged the selected taxa into three 

groups: Late Cretaceous taxa (4 species); Paleocene taxa (10 species); and short ranging K-Pg 

boundary-crossing taxa. Other taxa listed in the Supplementary we do not discuss further. 

The absolute age of the K-Pg boundary that we use is 66.043 ± 0.043 Ma as determined by  

Renne et al. [75] who employed high-precision 40Ar/39Ar dating of K/Pg boundary event tektites from 

Beloc, Haiti and bentonites from the Hell Creek region and Hauso Flats section in northeastern 

Montana. We realize that the age determined by these authors [75] readjusts the age of the K/Pg 

boundary and will also alter the first occurrence (FO) absolute ages of the known earliest Danian index 

dinoflagellate species. In recent palynological work, Crouch et al. [74] takes the same approach in 

readjusting the boundary to 66 Ma. We believe that this adjustment of the age of the K-Pg boundary 

downward will adjust the absolute ages determined by Williams et al. [68] of Senoniasphaera inornata, 

Damassadinium californicum and Carpatella cornuta, but this does not alter the observations of these 

authors that the FO of S. inornata, and subsequent FOs of D. californicum and C. cornuta takes place 

after the K-Pg boundary event. Our age designations for the species discussed below are taken from 
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the geologic ranges given for them by the authorities identified in our descriptions of these species. 

The phenomenon of diachroneity is known to exist at the K-Pg boundary in which the FO or last 

occurrence (LO) of a species can vary by location. This phenomena has been discussed by  

Brinkhuis et al. [35] who analyzed the distribution patterns of some temperature-sensitive organic 

walled dinocysts (i.e., Palynodinium grallator) and concluded that such taxa experienced migration 

across the K-Pg boundary as a response to global cooling related to the K/Pg impact. 

5.1. Late Cretaceous Taxa 

Late Cretaceous taxa are those having stratigraphic ranges terminating at the top of the Maastrichtian. 

None of the taxa we treat in this section are known to be diachronous at the K-Pg boundary. 

5.1.1. Pierceites pentagonus, Figure 4a 

Pierceites pentagonus is distinguished by having a pentagonal outline, one apical and two antapical 

protrusions, and an archeopyle that involves three intercalary plates [45]. A late Maastrichtian age has 

been confirmed for P. pentagonus [41,71]. At our site, P. pentagonus occurs in the uppermost Owl 

Creek Formation (Sample 1) and in the basal coquinite (Samples 2a and 2b) of the Clayton Formation 

where it is last recorded. 

Figure 4. Cretaceous Taxa. Scale bar applies to all images. (a) Pierceites pentagonus, 

Sample 2a, slide BC2-11a: N66/2. (b) Dinogymnium sp., Sample 2b, slide BC2-11b: H68/2. 

(c) Riculacysta amplexa, Sample 1, slide BC2-12: J38. (d) Phelodinium tricuspe, Sample 2a, 

slide BC2-11a: L35. 

 

5.1.2. Dinogymnium sp., Figure 4b 

This taxon is characterized by having a bi-conical outline, a well-developed cingulum and ridges 

that are present longitudinally on the epicyst and hypocyst; its archeopyle is small and located at the 

anterior apex of the dinocyst. Species of the genus Dinogymnium do not cross the K-Pg boundary and 

appearances of this genus in younger strata are considered reworked [44,67,68]. At our site, 

Dinogymnium sp. is recorded in the uppermost Owl Creek Formation (Sample 1) and in the basal 

coquinite (Samples 2a and 2b) of the Clayton Formation where it is last recorded. 
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5.1.3. Riculacysta amplexa, Figure 4c 

Riculacysta amplexa is circumcavate with slender process-like interconnections between the 

autophragm and ectophragm that are most prevalent near ventral margins. The ectophragm is thin, the 

endocyst is spherical to slightly lobate, and the archeopyle is apical. R. amplexa is known to 

stratigraphically occur in the late Maastrichtian [42,72]. R. amplexa occurs in the uppermost Owl 

Creek Formation (Sample 1) and is last recorded in the lowermost coquinite of the Clayton Formation 

(Sample 2b). 

5.1.4. Phelodinium tricuspe, Figure 4d 

The taxon Phelodinium tricuspe (= Phelodinium tricuspis) has a geologic range known to terminate 

at the end of the Cretaceous [62]. It has been noted that P. tricuspe has occasionally been recorded 

from Paleocene sediments and its occurrence may range across the K-Pg boundary, however the last 

reliable occurrence of typical specimens of this taxon has been documented from the upper 

Maastrichtian [62]. P. tricuspe is a cornocavate, peridinioid cyst composed of two wall layers. The 

endophragm and periphragm are closely appressed but can be seen to separate in the antapical and 

apical regions. P. tricuspe differs from P. magnificum which has a cyst that is wider than it is long, a 

different shaped archeopyle and antapical horns which are almost equal in length. At our site,  

P. tricuspe has been recorded in the uppermost Owl Creek Formation (Sample 1) and occurs last in the 

lowermost coquinite (Sample 2a). 

5.2. Paleocene Taxa 

Paleocene taxa originate in the early Paleocene. The K-Pg boundary is generally marked by the 

extinction of late Cretaceous taxa and the initial presence of distinctive Danian species. 

5.2.1. Carpatella cornuta, Figure 5a–c 

In our material, Carpatella cornuta can be characterized by its ellipsoidal cyst composed of two 

wall layers that are closely appressed, the cyst wall is thick and dark in color; it has one apical and 

antapical horn-like protrusions and contains a precingular archeopyle [37]. At our site, C. cornuta 

appears in three samples of the Clayton Formation: first is in the lowermost coquinite (Sample 2b), 

second in a burrow located in the glauconitic mud but filled with overlying gray mud (Sample 6b), and 

last in the lowermost Porters Creek Formation (Sample 12). C. cornuta has an early Danian to 

Selandian age assignment, and an absolute age of 64.75–59.95 Ma in northern mid-latitudes as 

discussed for this species by previous authors [68]. This absolute age has not been adjusted to consider 

the more recently determined age of the K-Pg boundary of 66.043 ± 0.043 Ma [75], nonetheless, the 

FO of this species is one that marks the early Danian [6,45,51]. 

5.2.2. Damassadinium californicum, Figure 5d,e,g,h 

Damassadinium californicum and associated D. californicum intergrades Figure 5i,j,m,n (intergrades 

between D. californicum and the genus Fibrocysta, or between the genus Cordosphaeridium)—which 
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are clearly part of the D. californicum lineage [55]—were counted separately. In our samples, both 

Damassadinium californicum and D. californicum intergrades occur through most parts of the Clayton 

Formation. D. californicum is distinguished by having a spheroidal to ovoidal central body, a prominent 

apical protrusion and tabulation consisting of high penitabular septa that are broad and open.  

D. californicum has a Danian age assignment and an absolute age of 64.75–60.33 Ma in Northern 

Hemisphere mid-latitudes [68]. This absolute age has not been adjusted to consider the more recently 

determined age of the K-Pg boundary, but this species FO also marks the early Danian [47,51]. The 

FO of such forms at our site is in the basal coquinite (Sample 2b). D. californicum and D. californicum 

intergrades do not occur in the middle and upper coquinite (Samples 3–5) but reappear in the 

glauconitic mud (Sample 6a) of the Clayton Formation. Its presence is consistent from the glauconitic 

mud and upwards throughout the rest of the overlying sampled section (Sample 6a–12). D. californicum 

also increases in abundance with its highest quantity occurring in the Porters Creek Formation 

(Supplementary Information). 

5.2.3. Senoniasphaera inornata, Figure 5o–q 

Senoniasphaera inornata is a cavate cyst composed of an endophragm and periphragm that are 

generally smooth; however a faint cingulum and slight paratabulation may be present. According to 

Hultberg [51], S. inornata can have a spherical to slightly lobate endophragm, and the periphragm is 

described to mimic the shape of the endophragm. However, the holotype of this species contains a 

spherical endophragm and periphragm. S. inornata has a Danian age assignment and an absolute age of 

64.95–62.6 Ma in Northern Hemisphere mid-latitudes [68]. Although this age has not been adjusted 

like the previous taxa discussed, its FO still marks the early Danian and it is commonly used as a K-Pg 

boundary marker [6,51,55]. Specimens that we counted and identified as S. inornata also have 

spherical wall layers, and only resemble the holotype. S. inornata only occurs in the basal coquinite of 

the Clayton Formation in our section (Samples 2a and 2b) where it is last recorded in Sample 2b. 

5.2.4. Xenocodinium lubricum, Figure 5s–v 

The first occurrence of Xenicodinium lubricum can be used as a marker species to identify the basal 

Paleogene [65], and indicates the last and most upper zonule of the S. inornata Subzone established by 

Hansen [47]. X. lubricum is characterized by an ellipsoidal cyst with relatively thick walled theca that 

is granular on the outer surface. It also has a characteristic short membrane located on the margins of 

the cyst that truncate evenly, distally and makes the outer margins appear furry or hairy-like [57].  

X. lubricum is extremely rare in our slides and is first recorded in the gray mud of the Clayton 

Formation at our site (Sample 7). It is also occurs in Samples 9–11 where it is last recorded. 

5.2.5. Lanternosphaeridium reinhardtii, Figure 5y,z,aa 

Lanternosphaeridium reinhardtii is a relatively new species and is potentially useful for distinguishing 

the basal Danian [6,73]. L. reinhardtii is characterized by an ovoid endocyst with prominent, long 

apical and shorter antapical spikes. If it is dorso-ventrally compressed, a bilateral, symmetrical wing or 

butterfly shape can be seen which is characteristic of the holotype [6]. L. reinhardtii appears three 
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times in Sample 2b of the basal coquinite. A poorly preserved specimen of the genus 

Lanternosphaeridium, possibly L. lanosum?, as determined by the possession of shorter endocystal 

spikes, Figure 5ab,ac, occurs in the Owl Creek Formation (Sample 1) as well as in the coquinite of the 

basal Clayton Formation at our site (Samples 2a and 2b). 

Figure 5. Paleocene Taxa. Scale bar in (s) applies to all images except for (t,u,v).  

(a–c) Carpatella cornuta (upper, mid and lower foci), Sample 6b, slide BC-7b: T34.  

(d) Damassadinium californicum, Sample 12, slide BC-1: D41. (e) D. californicum, 

Sample 7: slide BC-6: D62. (f) Senegalinium simplex, Sample 6b, slide BC-7b: C36.  

(g,h) D. californicum (upper and lower foci), Sample 2b, slide BC2-11b: H48.  

(i,j) D. californicum intergrades (upper and lower foci), Sample 9, slide: BC-4: M55/2.  

(k) Arvalidinium cristatum, Sample 6b, slide BC-7b: F64/4. (l) Senegalinium iterlaaense, 

Sample 12, slide BC-1: V48. (m,n) D. californicum intergrades (upper and mid foci), slide 

BC-8: L62/2. (o–q) Senoniasphaera inornata (upper, mid and lower foci), Sample 2b, slide 

BC2-11b: L33. (r) Deflandrea phosphoritica, Sample 12, slide BC-1: F42. (s) Xenicodinium 

lubricum, Sample 7, slide BC-6: G64/1. (t–v) X. lubricum (same specimen as (m) magnified 

100×, (upper, mid and lower foci). (w,x) Hafniasphaera hyalospinosa (upper and mid foci), 

Sample 8, slide BC-5: O50. (y,z,aa) Lanternosphaeridium reinhardtii (upper, mid and 

lower foci), Sample 2b, slide BC2-11b: E54/3. (ab,ac) Lanternosphaeridium lanosum? 

(upper and lower foci), Sample 1, slide BC-12: H38/1. 
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5.2.6. Senegalinium simplex, Figure 5f 

Senegalinium simplex is a small to medium sized, thin-walled, peridinioid dinoflagellate that has 

been described and recorded from the Upper Paleocene in the Aquia Formation in Virginia and from 

the Lower Paleocene Ellenton Formation in Georgia and South Carolina [28]. Senegalinium simplex is 

proximate and circumcavate, and is often found as an isolated endocyst. The endocyst can have an oval 

to peridinioid shape and is smooth. Senegalinium simplex is distinguished by its short apical horn, 

approximately equal, short antapical horns, and a hexagonal precingular archeopyle. Tabulation is only 

indicated by the archeopyle and less clearly by the cingulum. Senegalinium simplex clearly differs 

from ?Andalusiella rhombohedra, which has one prominent longer antapical horn and a significant 

apical horn in comparison. Senegalinium simplex consistently occurs throughout the section and within 

each formation at our site, with the exception of Samples 4, 5 and 11 where it is not recorded. As noted 

in the Supplementary, this species is a common constituent of Sample 1, which was taken from the top 

of the late Maastrichtian Owl Creek Formation. We thus suggest that in contrast to its occurrence in 

the Atlantic Coastal Plain, in Missouri this species ranges downward into the Late Maastrichtian, and 

thus is actually a K-Pg boundary crossing species. 

5.2.7. Hafniasphaera hyalospinosa, Figure 5w,x 

According to Hansen [47,48], species of Hafniasphaera first occur above the K-Pg boundary in the 

Danian with the exception of Hafniasphaera fluens, which ranges into the Late Cretaceous [47]. At our 

site, specimens of Hafniasphaera sp., occur in the Owl Creek Formation and throughout most of the 

studied section (Supplementary Information). Hafniasphaera hyalospinosa is larger in size compared to  

H. fluens (the diameter of the central body of H. fluens is 32–37 μm), and the material that the processes are 

composed of are brighter and appear glassy [47]. Good specimens of the Danian species, H. hyalospinosa 

first occurs in Sample 6a, and again from Sample 7 through Sample 11 of the upper Clayton Formation 

and is last recorded in the Porters Creek Formation, Sample 12 (Supplementary Information). 

5.2.8. Arvalidinium cristatum, Figure 5k 

Arvalidinium cristatum is a peridinioid that has been described and recorded in the lower Paleocene 

of the Ellenton Formation in South Carolina [28]. This species is a round, thin-walled, pale, cyst with a 

short apical horn and two short, unequal antapical horns. A. cristatum is distinguished by its shoulders 

and ornamentation of spines and penitabular/intratabular sutural crests that cover the outer wall.  

A. cristatum is found sparsely throughout our section and have been recorded in Samples 2a, 6b,  

8 and 9 (Supplementary Information). 

5.2.9. Senegalinium interlaaense, Figure 5l 

Senegalainium iterlaaense is a relatively new species that has been studied from localities in West 

Greenland and Denmark, where it is first described, and recorded in the middle Danian [61]. These authors 

indicate that the range of this species is middle Danian to lower Selandian. Senegalinium iterlaaense is 

distinguished by its small size, and possession of an apical and two almost equal antapical horns that 

are short or strongly reduced. The cingulum is broad and deep, and S. iterlaaense is composed of two 
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wall layers that are slightly striated, these features are most prominent around the cingulum. At our 

section, S. iterlaaense first occurs in Sample 6b of the Clayton Formation. Senegalinium iterlaaense is 

recorded in the gray mud of the upper Clayton Formation (Samples 7 and 9–11), and is also recorded 

in the lowermost Porters Creek Formation (Sample 12). 

5.2.10. Deflandrea phosphoritica, Figure 5r 

Deflandrea phosphoritica can be characterized by its peridinioid shape, almost equal antapical 

horns, a hyaline periphragm and a large cavate cyst [25]. The stratigraphic range of D. phosphoritica is 

from the early Eocene-Oligocene [26,62], however, this species has been recorded from late Paleocene 

sediments [25]. We found one specimen of D. phosphoritica in the basal Porters Creek Formation 

(Sample 12). 

5.3. Index Species for the Early Danian and the K-Pg Boundary 

Danian species commonly used as global indicators to identify the early Danian or used to mark the 

K-Pg boundary are: Carpatella cornuta; Damassadinium californicum; Senoniasphaera inornata; 

Xenicodinium lubricum; Lanternosphaeridium reinhardtii and most species of Hafniasphaera (e.g.,  

H. hyalospinosa) [6,41,43,44,47,54,55,68,69]. Firth [41] noted that the K-Pg boundary could be 

approximated by the highest occurrence of P. grallator. Or as suggested by others, the boundary can 

be located by the lowest occurrence of C. cornuta [6,45,47,50,52]. More recently, Gedl [44] stated that 

the boundary could be approximated by the last occurrence of the Maastrichtian dinoflagellate, 

Dinogymnium sp., and the first occurrence of C. cornuta. Commonly used as a boundary marker to 

identify the K-Pg boundary and the earliest Danian is S. inornata [6]. 

Hansen [47] established the Damassadinium californicum (= Danea mutabilis) Zone which he 

divided into two subzones: the lower S. inornata (= Chiropteridium inornatum) Subzone and the upper 

Hafniasphaera cryptovesiculata Subzone. He further divided the S. inornata Subzone into three different 

zonules in this order: the C. cornuta Zonule, Tectatodinium rugulatum (= Xenicodinium rugulatum) 

Zonule and the Xenicodinium lubricum Zonule. According to Hansen [47,48], the lower boundary of 

the S. inornata Subzone ranges before the Danian, and into the uppermost Maastrichtian P. grallator 

Zone, a conclusion that probably resulted from an identification error [50,55]. The first occurrence of 

P. grallator identifies the P. grallator Zone, which has been established from studies done in the  

North Sea [65]. 

5.4. K-Pg Boundary-Crossing Taxa 

We consider dinoflagellates whose ranges extend from the late Cretaceous upward to at least the 

early Paleocene to be K-Pg boundary-crossing taxa. K-Pg boundary-crossing taxa include the 

following: Palynodinium grallator, Hafniasphaera fluens, Disphaerogena carposphaeropsis; 

Fibrocysta axialis; Fibrocysta ovalis; Isabelidinium? sp.; Tanyosphaeridium xanthiopyxides; 

Phelodinium magnificum; Fibradinium annetorpense; Hystrichokolpoma bulbosum; Deflandrea galeata; 

Renidinium gracile; Magallanesium densispinatum; and Trithyrodinium evitii. Of these boundary 

crossing taxa, P. grallator and H. fluens are particularly interesting. The absolute age of P. grallator is 
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recorded from 66.77 to 64.75 Ma in Northern Hemisphere mid-latitudes as discussed by previous authors 

(this age assignment has not been adjusted to accommodate the new age of the K-Pg boundary) [68]. 

H. fluens is the only species of its genus which crosses the K-Pg boundary [47]. These two species are 

described below. 

5.4.1. Palynodinium grallator, Figure 6a–c 

Palynodinium grallator is distinguished by having two wall layers, an apical archeopyle and two 

distinctive latero ventral pericoels that extend from epicyst to hypocyst, processes along the cingulum 

indicate paratabulation on the dorsal surface [69]. Firth [41] showed that in Georgia, the first 

occurrence of P. grallator occurred in the uppermost Maastrichtian. Additionally, he correlated 

organic walled phytoplankton assemblages from Maastrichtian and Danian strata in Georgia with 

dinoflagellate zonations of Wilson [70], Benson [32], and Hansen [47] and concluded that P. grallator 

does not occur above the K-Pg boundary. The P. grallator Zone, which is defined by the lowest 

occurrence of P. grallator, also identifies the uppermost Maastrichtian according to its incidence in 

regions of the North Sea [65]. 

Conversely, more recent palynological studies in El Kef, Tunisia record the FO of P. grallator at 

the K-Pg boundary and the last occurrence of this species within the lowermost Danian [35,46,59]. 

Brinkhuis et al. [35] recognized P. grallator as a temperature sensitive species whose occurrence 

varied latitudinally, thus exemplifying the phenomenon of diachroneity. In North America, accounts of 

P. grallator have not been found above the K-Pg boundary with the exceptions of two studies done on 

the K-Pg boundary in Georgia and Alabama [6,46]. The occurrence of P. grallator in Danian sediments 

is recorded as reworked in the Atlantic Coastal Plain [55]. Even if the last occurrence of P. grallator 

has been shown to extend into the Danian, its uppermost or last occurrence is still useful in helping to 

locate early Danian sediments. P. grallator has its highest abundance in our stratigraphically lowest 

sample of the uppermost Owl Creek Formation (Sample 1). The data provided in Table 2 shows that  

P. grallator is also present in the basal coquinite of the Clayton Formation (Samples 2a and 2b), but is 

less abundant when compared to its occurrence in the underlying Owl Creek Formation. P. grallator is 

not recorded above the lowermost coquinite (Samples 2a and 2b) at our site. 

5.4.2. Hafniasphaera fluens, Figure 6v,w 

Hafniasphaera fluens is the only species of Hafniasphaera that is found in the Maastrichtian, and 

crosses the K-Pg boundary [47] into the Paleocene. All other species of this genus occur above the  

K-Pg boundary [47]. The genus Hafniasphaera is distinguished by an ovoid cyst composed of two 

wall layers that contain numerous vesicles with variable distribution. Vesicles can also be seen within 

intratabular and distal processes. H. fluens is distinguished by its small-sized central body (32–37 μm 

in diameter) [47]. The processes of H. fluens bifurcate and trifurcate and to some extent resemble 

Spiniferites ramosus. H. fluens consistently occurs throughout the studied section in all formations 

with the exception of Samples 3–5. 
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Figure 6. K-Pg boundary crossing taxa. Scale bar applies to all images.  

(a–c) Palynodinium grallator (upper, mid and lower foci), Sample 1, slide BC-12: R63/3. 

(d–f) Disphaerogena carposphaeropsis (upper, mid and lower foci), Sample 1, slide BC2-12: 

F33/1. (g) Fibrocysta axialis, Sample 2b, slide BC2-11b: F61/1. (h,i) Fibrocysta ovalis (upper 

and mid foci), Sample 2b, slide BC2-11b: T56. (j–l) Isabelidinium? sp. (upper, mid and 

lower foci), Sample 10, slide BC-3: B32/4. (m) Tanyosphaeridium xanthiopyxides, Sample 8, 

BC-5: O64/3. (n) Phelodinium magnificum, Sample 11, slide BC-2: G62/3. (o) Fibradinium 

annetorpense, Sample 6a, slide BC-7a: L59/3. (p–r) Hystrichokolpoma bulbosum (upper, 

mid and lower foci), Sample 9, slide BC-4: B48. (s) Deflandrea galeata, Sample 2a, slide 

BC2-11a: S61. (t) D. galeata, Sample 6b, slide BC-7b: H40/4. (u) Renidinium gracile, 

Sample 2b, slide BC2-11b, England Finder coordinate is unavailable and microscope 

coordinates (Nikon Eclipse E600 PLM) are provided: 23.5 and 99.9. (v,w) Hafniasphaera 

fluens (upper and lower foci), Sample 9, slide BC-4: P47/2-O47/4. (x) Magallanesium 

densispinatum, Sample 6b, slide BC-7b: K61. (y) Trithyrodinium evittii (upper and lower 

foci), Sample 1, slide BC2-12: N40. (z) T. evittii, Sample 10, slide BC-3: K49/4. 

 

6. Discussion 

6.1. Age of the Cretaceous-Paleogene Sequence at Bloomfield, Missouri 

Figure 7 shows the geologic ranges of the geochronologically significant (GS) dinocysts discussed 

in Section 5 above as they are preserved in the sediments at our Bloomfield locality. We use this 
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information, together with the known times of origination and extinction of these taxa, to infer the 

geologic ages of the Cretaceous-Paleogene transition units exposed in our Bloomfield section. 

Figure 7. Stratigraphic ranges of 17 geochronologically significant (GS) dinoflagellate 

species in the Cretaceous-Paleogene sequence at Bloomfield, Missouri. Solid lines, species 

present in samples from the interval indicated at left. Dotted lines, species not present in 

samples from the interval indicated at left. 

 

6.1.1. Age of the Owl Creek Formation 

At our site, the uppermost Owl Creek Formation preserves Late Cretaceous index dinocysts: 

Pierceites pentagonus; Dinogymnium sp.; Riculacysta amplexa; and Phelodinium tricuspe. This 

supports the Late Cretaceous age already established for this unit [11,12,14,19]. In addition, we found 

two other GS species present in the Bloomfield Owl Creek Formation: Hafniasphaera fluens and 

Senegalinium simplex (Figure 7). H. fluens is the only species of this otherwise Paleocene genus 

known to extend downward into the Maastrichtian [47]. Based on its presence in the Owl Creek 

sample reported here, the same is true of S. simplex. Taken together these observations indicate that the 
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distribution of dinocysts at the Bloomfield site is consistent with the interpretation of the uppermost 

Owl Creek formation as latest Maastrichtian. 

6.1.2. Age of the Clayton Coquinite 

The coquinite at our site is represented by Samples 2a, 2b and 3–5. Late Cretaceous dinocysts 

preserved in the basal coquinite (Samples 2a and 2b) are: P. tricuspe, P. pentagonus, Dinogymnium sp., 

and R. amplexa. All of these Late Cretaceous taxa have their last occurrences in the basal coquinite 

(Samples 2a and 2b) of our section recovered at and below 25.5 cm (Table 1, Figure 7, Supplementary 

Information). The following Paleocene dinoflagellates are also found in the coquinite: Carpatella cornuta, 

Senoniasphaera inornatum, Damassadinium californicum, D. californicum intergrades, and 

Lanternosphaeridium reinhardtii. These taxa are commonly used as global basal Danian indicators. 

Other Paleocene taxa that occur in this part of the section are smaller pale peridinioids such as 

Arvalidinium cristatum, and the boundary crossing forms Senegalinium simplex and Hafniasphaera fluens. 

These occurrences indicate that the Clayton coquinite contains a mixed assemblage of Late Cretaceous 

and early Paleocene taxa. 

The co-occurrence of all three early Danian index taxa (D. californicum, S. inornata and C. cornuta) 

in the coquinite are particularly interesting because according to Williams et al. [68] these three 

species make their first appearance in northern mid-latitudes about 500,000–700,000 years after the 

end of the Cretaceous. These observations indicate very strongly that the coquinite is Danian in age, 

and is separated in time from events marking the end of the Cretaceous. Its deposition would thus 

result from a sedimentary event occurring long after the Chicxulub impact and the K-Pg mass 

extinction, and would not be intimately associated with either one. 

6.1.3. Age of the Glauconitic and Gray Muds of the Clayton Formation 

Samples 6a and 6b were taken from a thin horizon of glauconitic mud occurring above the 

coquinite: 6a from the glauconitic mud and 6b from a burrow in the glauconitic mud filled with 

sediment of the overlying gray mud unit (Figure 7). Sample 6a is thus representative of the glauconitic 

mud while 6b is representative of the gray mud. The Paleocene species Hafniasphaera hyalospinosa is 

first recorded in the glauconitic mud at our section, and is also present in the overlying gray mud. 

Damassadinium californicum, D. californicum intergrades, H. fluens, and Senegalinium simplex, 

which occur in the basal coquinite but not higher in the coquinite, re-appear in the glauconitic mud.  

C. cornuta and Arvalidinium cristatum, which also occur in the coquinite, re-appear in the gray mud. 

Xenicodinium lubricum is first recorded in Sample 7 at the base of the gray mud and is last recorded in 

Sample 11 from the uppermost gray mud. The first occurrence of Senegalinium iterlaaense is in the 

gray mud of Sample 6b. This species is continuously recorded to the top of the section. 

These occurrences indicate that the gray mud and glauconitic mud of the Clayton Formation contain 

an assortment of Paleocene dinoflagellates and no taxa restricted to the Late Cretaceous. The recorded 

presence of S. iterlaaense in the gray mud is significant because the known stratigraphic range of  

S. iterlaaense begins in the middle Danian and ends in the lower Selandian. Since it is not present in 

underlying strata, it is presumably not reworked. Thus, its first occurrence in the gray mud should indicate 

a middle Danian age for this sediment. This is consistent with the early Danian age for the coquinite. 
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6.1.4. Age of Basal Porters Creek Formation 

The dinocyst Carpatella cornuta reappears in Sample 12 since last recorded in Sample 6a. 

Damassadinium californicum, and D. californicum intergrades are consistently recorded from the 

coquinite up to the Porters Creek Formation (Sample 12) where they occur more frequently in 

comparison to their occurrence in any other sample. S. iterlaaense is also found in the Porters Creek 

beds, as is Deflandrea phosphoritica, which is recorded for the first time in the lowermost Porters 

Creek Formation (Sample 12). This species is more commonly found in the basal Eocene [26,62], but 

has been found in late Paleocene sediments [25]. These occurrences, especially of S. iterlaaense and  

D. phosphoritica, suggest a possible middle to late Paleocene age for the Porters Creek Formation beds 

exposed at our site. 

6.2. Shell Concentrations and the Clayton Coquinite 

A variety of processes can produce shell-rich concentrations such as the Clayton coquinite. Some 

examples include storm-induced events, turbidity currents, regressive and transgression cycles, facies 

changes and mass-mortality events [76,77]. In our section, the contact between the uppermost 

Cretaceous Owl Creek Formation and the base of the coquinite in the lowermost Paleocene Clayton 

Formation is sharp and distinct. Following Kidwell [78,79], we interpret this contact to be the result of 

an erosive interval occurring prior to the deposition of the coquinite. We recognize that this erosive 

interval may in fact be an early phase of the depositional process that produced the coquinite, as for 

example, in the case of a storm driven event where erosion of the existing surface sediment precedes 

the mixing and re-deposition of this material. Following Kidwell [76–81], we suggest alternative 

hypotheses for the formation of the Clayton coquinite: 

First, the Clayton coquinite may have resulted from a single fossil concentration event produced by 

a short-term process acting over a geologically brief period of time [77,79], e.g., tsunamis, turbidity 

currents, earthquakes, and storms. We would expect a dinoflagellate assemblage preserved in a lag 

deposit deriving from such a single event to be composed only of dinocysts from the most recently 

deposited sediments prior to the onset of the event and mixed with dinocysts reworked from older, 

underlying beds. Dinoflagellates younger than the event would not be present in the event lag. 

Alternatively, the Clayton coquinite may result from complex multiple events that form  

time-averaged lag deposits revealing complex sedimentologic and stratigraphic histories [77,79], or 

from time-averaged hiatal concentrations that form from missing intervals of time due to erosional 

reworking, from sediment bypassing, or during times of slow sedimentation rates [76,77,80,81]. We 

would expect dinocysts preserved in such stratigraphic settings to be comprised of a complex 

assemblage, possibly preserving dinocysts across different environments and from different time 

intervals mixed with taxa present at the time of deposition. 

6.3. The Chicxulub Impact and the Clayton Coquinite 

The Clayton coquinite is separated from the Owl Creek Formation immediately beneath it by a single 

erosional surface. There are no additional erosional surfaces of similar magnitude visible within the 

coquinite. In addition, as reported here and in [7,17], the coquinite contains a mixed Maastrichtian and 
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Danian dinoflagellate assemblage. It also contains abundant Late Cretaceous macrofossils including 

Discoscaphites iris, an index ammonite for the latest Maastrichtian in the Gulf Coastal Plain [82]. 

Except for the event defined by the Owl Creek-Clayton contact, there is no record in either the 

lithology of the coquinite, or in its fossil content, of multiple depositional events separated by major 

hiatal gaps. 

However, understanding the details of the process by which the coquinite was deposited has proven 

more difficult. Campbell et al. [7] originally interpreted the entire Clayton Formation as the product of 

a tsunamite created by the End-Cretaceous Chicxulub bolide impact in the Yucatan region of Mexico. 

In their view, an impact generated tsunami mobilized the uppermost Owl Creek sediment as it surged 

up the Mississippi Embayment in the hours following the impact and then deposited the three Clayton 

sedimentary units during its waning phase shortly after that. They interpreted the presence of rip-up 

clasts containing layered tektites within the coquinite as evidence for this scenario of deposition from 

an impact-derived tsunami. More recently, these authors [17] have restricted the tsunamite to the 

coquinite. The overlying glauconitic and gray muds they attribute to depositional events occurring later 

in the Paleocene not related to the end-Cretaceous catastrophe. 

Our view of the Clayton coquinite differs from both of these interpretations. If the deposition of the 

Clayton Formation in southeast Missouri resulted from a tsunami generated by the Chicxulub impact, 

we would expect that the macrofauna and microbiota preserved in this formation, and especially in the 

lowermost basal coquinite to be restricted to a late Maastrichtian age. A Chicxulub impact generated 

tsunami would rip up sediment from the Cretaceous Owl Creek seafloor, causing dispersed Cretaceous 

macrofauna to settle out primarily as the heavy fossiliferous component and the microbiota, including 

dinocysts, to settle out in more quiet water conditions associated with the waning phases of the tsunami. 

Tsunamite deposition would end have ended quickly, within weeks to months of the impact—far too 

rapidly to allow Danian forms to come into existence and be preserved in the coquinite. We discovered 

a mixed dinocyst assemblage in the basal coquinite composed of extinct Late Cretaceous taxa that have 

their last occurrences at this horizon: Dinogymnium sp.; Pierceites pentagonus; Riculacysta amplexa; 

Phelodinium tricuspe, and early Danian taxa: Senoniasphaera inornata; Carpatella cornuta; 

Damassadinium californicum; Lanternosphaera reinhardtii; Arvalidinium cristatum, along with the 

last occurrence of the short-range boundary-crossing taxon Palynodinium grallator. 

The preservation of a rich Danian dinocyst complement in the coquinite suggests to us that the coquinite 

was deposited during the Danian, not as a Chicxulub impact tsunamite at the Cretaceous-Paleogene 

boundary. This view is strengthened by the observation that the Owl Creek-coquinite contact is 

burrowed (Figures 2 and 3C,D). None of the other K/Pg sites at which tsunamites have been 

recognized have a bioturbated base. This indicates the presence of a hiatus between the Owl Creek 

Formation and coquinite which is hard to reconcile with the highly compressed time frame an  

end-Cretaceous tsunami origin requires for the deposition of the coquinite. The tektite-containing  

rip-up clasts which occur within the coquinite at the sites studied by Campbell et al. [7] also suggest a 

lengthy interval between tektite deposition and the formation of the clasts enclosing them. Rip-up 

clasts are fragments of a consolidated or semi-consolidated substrate broken up and re-suspended by 

an energetic, erosive flow event. Sediment consolidation implies the passage of considerable time, 

orders of magnitude more than the hours separating the arrival in what is now southeastern Missouri of 

impact tektites and the slower moving impact tsunami. We do not see Campbell et al.’s [7] attempt to 
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side-step this problem by arguing that the still hot tektites would quickly fuse the sediment at the 

substrate surface into a coherent, resistant layer as a convincing argument because it appears unlikely 

to us that tektites would retain any heat at all after settling through the approximately 60 m of water 

depth that the sedimentary features suggests is a reasonable estimate of water depth in this region at the 

time. The tektites are very likely the result of the Chicxulub impact, but the origin of the clasts 

containing them is not; the clasts are the result of an event occurring well into the Danian. 

The presence of the Middle Danian Senegalinium iterlaaense in the overlying gray mud (Figure 7), 

and the origination times for the species S. inornata, C. cornuta, D. californicum of 500,000 years or 

more into the Danian [69] puts this hiatus into a reasonable secular perspective, provides time for the 

evolution of Danian species preserved in the coquinite, and for the consolidation of the substrate, and 

suggests that the coquinite depositional event, although early Danian in age, occurred well after events 

marking the end of the Cretaceous, and was therefore completely unrelated to them. To maintain an 

impact-related, End-Cretaceous age for the coquinite one would have to invoke massive re-working of 

the coquinite microbiota and significant error in establishing the times of origin of the species noted 

above. We think this is highly unlikely. 

6.4. The Origin of the Clayton Coquinite 

Although there are a number of possibilities, consistent with the dinocyst data we present here, that 

could account for an early Danian Clayton coquinite not related to the Chicxulub impact, e.g.,  

turbidity flow, slumping, storm deposition, we suggest that the most likely cause is early Danian sea  

level fluctuation. 

Sea Level Change 

The dinocyst data and sedimentary features of the coquinite suggest that the Clayton coquinite is a 

hiatal lag deposit resulting from an erosive interval produced by sea level cycling in the Mississippi 

Embayment. We postulate that during an early Danian regressive-transgressive phase of sea level 

change, suspension, mixing, and re-deposition of Maastrichtian Owl Creek sediment, tektites and other 

sedimentary material deriving from the end-K Chicxulub impact, and early Danian strata resulted in a 

Danian age coquinite containing a mixed assemblage of Late Cretaceous and early Danian macro and 

microbiota. The glauconitic mud and gray mud overlying the coquinite were produced in the early 

phases of the transgressive part of the cycle. 

A most interesting aspect of the Cretaceous-Paleocene sequence in southeastern Missouri is that it 

lacks a strong End-Cretaceous impact signature. This probably is not due to an original absence of 

such a signature, as the tektite rip-ups in the coquinite attest, but rather to the overprinting of this 

signature by the erosive early Danian sea level cycling event we describe here. Equally interesting is 

the fact that there are other locations around the periphery of the Mississippi Embayment, particularly 

on its eastern side, at which an End-Cretaceous impact signature is also missing and at which a Danian 

age erosional surface has been identified [83–86]. In addition, the Cretaceous-Paleogene sequence in 

New Jersey also contains evidence of hiatuses in the Danian [55,56,87]. We suggest that some 

Mississippi Embayment occurrences, and possibly one or more of those in New Jersey also, are linked 

in the sense that they were produced by the same sequence stratigraphic erosive event. The effects of 
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this event appear to vary geographically. At Starkville, Mississippi, the End-Cretaceous part of the 

sequence is obliterated [85,86]; at our site near Bloomfield, Missouri, some End-Cretaceous sedimentary 

features remain (e.g., the layered tektites); at sites in Monmouth County, NJ, End-Cretaceous events 

appear to be largely preserved undisturbed [87]. Local depositional and paleoenvironmental conditions 

seem to have played a guiding role in producing the disparate character with which the Late 

Cretaceous-Early Paleogene record is expressed in the sediments of the Atlantic and Gulf Coastal 

Plains and of the Mississippi Embayment. Pursuing these complex associations will undoubtedly 

become a prime focus of future work on this subject. 

7. Conclusions 

The Clayton Formation is a prominent lithologic unit of the Cretaceous-Paleogene transition in the 

Mississippi Embayment of the United States. At Bloomfield, Missouri, the Clayton Formation contains a 

basal coquinite preserving a mixed dinocyst assemblage of Maastrichtian taxa (e.g., Phelodinium tricuspe, 

Pierceites pentagonus, Riculacysta amplexa, Dinogymnium sp.) and early Danian taxa (e.g., 

Carpatella cornuta, Damassadinium californicum, Senoniasphaera inornata), along with the last 

occurrence of the short-range K-Pg boundary crossing taxon, Palynodinium grallator. A gray mud 

occurring above the coquinite in the middle of the Clayton Formation contains the mid-Danian 

dinoflagellate Senegalinium iterlaaense. The mixed assemblage of late Cretaceous and early Danian 

dinocysts in the Clayton coquinite weakens the hypothesis that the Clayton coquinite resulted from a 

tsunami thrown off by the end-Cretaceous Chicxulub impact event, and suggests instead that the 

Clayton coquinite is early Danian in age. The known times of first occurrence of the three Danian 

dinocysts listed above suggest that the coquinite is about a half million years younger than the 

Cretaceous-Paleogene boundary. The dinocyst data support the interpretation of the coquinite, not as 

an End-Cretaceous tsunamite, but rather as a transgressive lag deposit that occurred well after events 

marking the end of the Cretaceous, but before the middle Danian. Danian erosive events with 

approximately similar stratigraphic position have been described in Cretaceous-Paleogene sequences 

in other parts of the Mississippi embayment. We suggest that at least some of these events  

are expressions of the same episode of early Danian sea level change as we identify in  

southeastern Missouri. 
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